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Introduction to Streaming Signal Processing in MATLAB
This example shows how to use System objects to do streaming signal processing in MATLAB®. The
signals are read in and processed frame by frame (or block by block) in each processing loop. You can
control the size of each frame.

In this example, frames of 1024 samples are filtered using a notch-peak filter in each processing loop.
The input is a sine wave signal that is streamed frame by frame from a dsp.SineWave object. The
filter is a notch-peak filter created using a dsp.NotchPeakFilter object. To ensure smooth
processing as each frame is filtered, the System objects maintain the state of the filter from one
frame to the next automatically.

Initialize Streaming Components

Initialize the sine wave source to generate the sine wave, the notch-peak filter to filter the sine wave,
and the spectrum analyzer to show the filtered signal. The input sine wave has two frequencies: one
at 100 Hz, and the other at 1000 Hz. Create two dsp.SineWave objects, one to generate the 100 Hz
sine wave, and the other to generate the 1000 Hz sine wave.

Fs = 2500;
Sineobject1 = dsp.SineWave('SamplesPerFrame',1024,...
                     'SampleRate',Fs,'Frequency',100);
Sineobject2 = dsp.SineWave('SamplesPerFrame',1024,...
                     'SampleRate',Fs,'Frequency',1000);

SA = spectrumAnalyzer('SampleRate',Fs,...
    'Method','welch',...
    'AveragingMethod','exponential',...
    'ForgettingFactor',0.1,...
    'PlotAsTwoSidedSpectrum',false,...
    'ChannelNames',{'SinewaveInput','NotchOutput'},'ShowLegend',true);

Create Notch-Peak Filter

Create a second-order IIR notch-peak filter to filter the sine wave signal. The filter has a notch at 750
Hz and a Q-factor of 35. A higher Q-factor results in a narrower 3-dB bandwidth of the notch. If you
tune the filter parameters during streaming, you can see the effect immediately in the spectrum
analyzer output.

Wo = 750; 
Q  = 35;
BW = Wo/Q;
NotchFilter = dsp.NotchPeakFilter('Bandwidth',BW,...
    'CenterFrequency',Wo, 'SampleRate',Fs);
fvtool(NotchFilter);
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Stream In and Process Signal

Construct a for-loop to run for 3000 iterations. In each iteration, stream in 1024 samples (one frame)
of the sinewave and apply a notch filter on each frame of the input signal. To generate the input
signal, add the two sine waves. The resultant signal is a sine wave with two frequencies: one at 100
Hz and the other at 1000 Hz. The notch of the filter is tuned to a frequency of 100, 500, 750, or 1000
Hz, based on the value of VecIndex. The filter bandwidth changes accordingly. When the filter
parameters change during streaming, the output in the spectrum analyzer gets updated accordingly.

FreqVec = [100 500 750 1000];
VecIndex = 1;
VecElem = FreqVec(VecIndex);
for Iter = 1:3000
    Sinewave1 = Sineobject1();
    Sinewave2 = Sineobject2();
    Input = Sinewave1 + Sinewave2;
    if (mod(Iter,350)==0)
        if VecIndex < 4 
            VecIndex = VecIndex+1;
        else
            VecIndex = 1;
        end
        VecElem = FreqVec(VecIndex); 
    end
    NotchFilter.CenterFrequency = VecElem;
    NotchFilter.Bandwidth = NotchFilter.CenterFrequency/Q;
    Output = NotchFilter(Input);
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    SA(Input,Output);
end

fvtool(NotchFilter)
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At the end of the processing loop, the CenterFrequency is at 100 Hz. In the filter output, the 100
Hz frequency is completely nulled out by the notch filter, while the frequency at 1000 Hz is
unaffected.

See Also
“Filter Frames of a Noisy Sine Wave Signal in MATLAB” on page 1-6 | “Filter Frames of a Noisy
Sine Wave Signal in Simulink” on page 1-8 | “Lowpass IIR Filter Design in Simulink” on page 1-20
| “Multirate Filtering in MATLAB and Simulink” on page 1-36
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Filter Frames of a Noisy Sine Wave Signal in MATLAB
This example shows how to lowpass filter a noisy signal in MATLAB® and visualize the original and
filtered signals using a spectrum analyzer. For a Simulink® version of this example, see “Filter
Frames of a Noisy Sine Wave Signal in Simulink” on page 1-8.

Specify Signal Source

The input signal is the sum of two sine waves with frequencies of 1 kHz and 10 kHz. The sampling
frequency is 44.1 kHz.

Sine1 = dsp.SineWave('Frequency',1e3,'SampleRate',44.1e3);
Sine2 = dsp.SineWave('Frequency',10e3,'SampleRate',44.1e3);

Create Lowpass Filter

The lowpass FIR filter, dsp.LowpassFilter, designs a minimum-order FIR lowpass filter using the
generalized Remez FIR filter design algorithm. Set the passband frequency to 5000 Hz and the
stopband frequency to 8000 Hz. The passband ripple is 0.1 dB and the stopband attenuation is 80 dB.

FIRLowPass = dsp.LowpassFilter('PassbandFrequency',5000,...
    'StopbandFrequency',8000);

Create Spectrum Analyzer

Set up the spectrum analyzer to compare the power spectra of the original and filtered signals. The
spectrum units are dBm.

SpecAna = spectrumAnalyzer('PlotAsTwoSidedSpectrum',false,...
    'SampleRate',Sine1.SampleRate,...
    'ShowLegend',true, ...
    'YLimits',[-145,45]);

SpecAna.ChannelNames = {'Original noisy signal',...
    'Lowpass filtered signal'};

Specify Samples per Frame

This example uses frame-based processing, where data is processed one frame at a time. Each frame
of data contains sequential samples from an independent channel. Frame-based processing is
advantageous for many signal processing applications because you can process multiple samples at
once. By buffering your data into frames and processing multisample frames of data, you can improve
the computational time of your signal processing algorithms. Set the number of samples per frame to
4000.

Sine1.SamplesPerFrame = 4000;
Sine2.SamplesPerFrame = 4000;

Filter the Noisy Sine Wave Signal

Add zero-mean white Gaussian noise with a standard deviation of 0.1 to the sum of sine waves. Filter
the result using the FIR filter. While running the simulation, the spectrum analyzer shows that
frequencies above 8000 Hz in the source signal are attenuated. The resulting signal maintains the
peak at 1 kHz because it falls in the passband of the lowpass filter.

for i = 1 : 1000
    x = Sine1()+Sine2()+0.1.*randn(Sine1.SamplesPerFrame,1);
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    y = FIRLowPass(x);    
    SpecAna(x,y);                              
end
release(SpecAna)

See Also
“Lowpass Filter Design in MATLAB” on page 1-12 | “Filter Frames of a Noisy Sine Wave Signal in
Simulink” on page 1-8 | “Introduction to Streaming Signal Processing in MATLAB” on page 1-2 |
“Multirate Filtering in MATLAB and Simulink” on page 1-36
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Filter Frames of a Noisy Sine Wave Signal in Simulink
This example shows how to lowpass filter a noisy signal in Simulink® and visualize the original and
filtered signals with a spectrum analyzer. For a MATLAB® version of this example, see “Filter Frames
of a Noisy Sine Wave Signal in MATLAB” on page 1-6.

Open Model
To create a new blank model and open the library browser:

1 On the MATLAB Home tab, click Simulink, and choose the Basic Filter model template.
2 Click Create Model to create a basic filter model opens with settings suitable for use with DSP

System Toolbox. To access the library browser, in the Simulation tab, click Library Browser on
the model toolstrip.

The new model using the template settings and contents appears in the Simulink Editor. The model is
only in memory until you save it.

Inspect Model
Input Signal

Three source blocks comprise the input signal. The input signal consists of the sum of two sine waves
and white Gaussian noise with mean 0 and variance 0.05. The frequencies of the sine waves are 1
kHz and 15 kHz. The sampling frequency is 44.1 kHz. The dialog box shows the block parameters for
the 1 kHz sine wave.
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Lowpass Filter

The lowpass filter is modeled using a Lowpass Filter block. The example uses a generalized Remez
FIR filter design algorithm. The filter has a passband frequency of 8000 Hz, a stopband frequency of
10,000 Hz, a passband ripple of 0.1 dB, and a stopband attenuation of 80 dB.
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The Lowpass Filter block uses frame-based processing to process data one frame at a time. Each
frame of data contains sequential samples from an independent channel. Frame-based processing is
advantageous for many signal processing applications because you can process multiple samples at
once. By buffering your data into frames and processing multisample frames of data, you can improve
the computational time of your signal processing algorithms.

Compare Original and Filtered Signal
Use a Spectrum Analyzer to compare the power spectra of the original and filtered signals. The
spectrum units are in dBm.

To run the simulation, in the model, click Run. To stop the simulation, in the Spectrum Analyzer
block, click Stop. Alternatively, you can execute the following code to run the simulation for 200
frames of data.

set_param(model,'StopTime','256/44100 * 200')
sim(model);
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Frequencies above 10 kHz in the source signal are attenuated. The resulting signal maintains the
peak at 1 kHz because it falls in the passband of the lowpass filter.
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Lowpass Filter Design in MATLAB
This example shows how to design lowpass filters. The example highlights some of the most
commonly used command-line tools in the DSP System Toolbox™. Alternatively, you can use the Filter
Builder app to implement all the designs presented here. For more design options, see “Designing
Lowpass FIR Filters” on page 4-63.

Introduction

When designing a lowpass filter, the first choice you make is whether to design an FIR or IIR filter.
You generally choose FIR filters when a linear phase response is important. FIR filters also tend to be
preferred for fixed-point implementations because they are typically more robust to quantization
effects. FIR filters are also used in many high-speed implementations such as FPGAs or ASICs
because they are suitable for pipelining. IIR filters (in particular biquad filters) are used in
applications (such as audio signal processing) where phase linearity is not a concern. IIR filters are
generally computationally more efficient in the sense that they can meet the design specifications
with fewer coefficients than FIR filters. IIR filters also tend to have a shorter transient response and a
smaller group delay. However, the use of minimum-phase and multirate designs can result in FIR
filters comparable to IIR filters in terms of group delay and computational efficiency.

FIR Lowpass Designs - Specifying the Filter Order

There are many practical situations in which you must specify the filter order. One such case is if you
are targeting hardware which has constrained the filter order to a specific number. Another common
scenario is when you have computed the available computational budget (MIPS) for your
implementation and this affords you a limited filter order. FIR design functions in the Signal
Processing Toolbox (including fir1, firpm, and firls) are all capable of designing lowpass filters
with a specified order. In the DSP System Toolbox, the preferred function for lowpass FIR filter design
with a specified order is firceqrip. This function designs optimal equiripple lowpass/highpass FIR
filters with specified passband/stopband ripple values and with a specified passband-edge frequency.
The stopband-edge frequency is determined as a result of the design.

Design a lowpass FIR filter for data sampled at 48 kHz. The passband-edge frequency is 8 kHz. The
passband ripple is 0.01 dB and the stopband attenuation is 80 dB. Constrain the filter order to 120.

N = 120;        
Fs = 48e3;      
Fp = 8e3;       
Ap = 0.01;      
Ast = 80;

Obtain the maximum deviation for the passband and stopband ripples in linear units.

Rp = (10^(Ap/20) - 1)/(10^(Ap/20) + 1); 
Rst = 10^(-Ast/20);

Design the filter using firceqrip and view the magnitude frequency response.

NUM = firceqrip(N,Fp/(Fs/2),[Rp Rst],'passedge');
fvtool(NUM,'Fs',Fs)
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The resulting stopband-edge frequency is about 9.64 kHz.

Minimum-Order Designs

Another design function for optimal equiripple filters is firgr. firgr can design a filter that meets
passband/stopband ripple constraints as well as a specified transition width with the smallest possible
filter order. For example, if the stopband-edge frequency is specified as 10 kHz, the resulting filter
has an order of 100 rather than the 120th-order filter designed with firceqrip. The smaller filter
order results from the larger transition band.

Specify the stopband-edge frequency of 10 kHz. Obtain a minimum-order FIR filter with a passband
ripple of 0.01 dB and 80 dB of stopband attenuation.

Fst = 10e3; 
NumMin = firgr('minorder',[0 Fp/(Fs/2) Fst/(Fs/2) 1],...
    [1 1 0 0],[Rp,Rst]);

Plot the magnitude frequency responses for the minimum-order FIR filter obtained with firgr and
the 120th-order filter designed with firceqrip. The minimum-order design results in a filter with
order 100. The transition region of the 120th-order filter is, as expected, narrower than that of the
filter with order 100.

hvft = fvtool(NUM,1,NumMin,1,'Fs',Fs);
legend(hvft,'N = 120','N = 100')
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Filtering Data

To apply the filter to data, you can use the filter command or you can use dsp.FIRFilter.
dsp.FIRFilter has the advantage of managing state when executed in a loop. dsp.FIRFilter
also has fixed-point capabilities and supports C code generation, HDL code generation, and optimized
code generation for ARM® Cortex® M and ARM Cortex A.

Filter 10 seconds of white noise with zero mean and unit standard deviation in frames of 256 samples
with the 120th-order FIR lowpass filter. View the result on a spectrum analyzer.

LP_FIR = dsp.FIRFilter('Numerator',NUM);
SA_FIR = spectrumAnalyzer('SampleRate',Fs);
tic
while toc < 10
    x = randn(256,1);   
    y = LP_FIR(x); 
    step(SA_FIR,y);         
end
release(SA_FIR)
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Using dsp.LowpassFilter

dsp.LowpassFilter is an alternative to using firceqrip and firgr in conjunction with
dsp.FIRFilter. Basically, dsp.LowpassFilter condenses the two step process into one.
dsp.LowpassFilter provides the same advantages that dsp.FIRFilter provides in terms of
fixed-point support, C code generation support, HDL code generation support, and ARM Cortex code
generation support.

Design a lowpass FIR filter for data sampled at 48 kHz. The passband-edge frequency is 8 kHz. The
passband ripple is 0.01 dB and the stopband attenuation is 80 dB. Constrain the filter order to 120.
Create a dsp.FIRFilter based on your specifications.

LP_FIR = dsp.LowpassFilter('SampleRate',Fs,...
    'DesignForMinimumOrder',false,'FilterOrder',N,...
    'PassbandFrequency',Fp,...
    'PassbandRipple',Ap,'StopbandAttenuation',Ast);

The coefficients in LP_FIR are identical to the coefficients in NUM.

NUM_LP = tf(LP_FIR);

You can use LP_FIR to filter data directly, as shown in the preceding example. You can also analyze
the filter using FVTool or measure the response using measure.

fvtool(LP_FIR,'Fs',Fs);
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measure(LP_FIR)

ans = 
Sample Rate      : 48 kHz    
Passband Edge    : 8 kHz     
3-dB Point       : 8.5843 kHz
6-dB Point       : 8.7553 kHz
Stopband Edge    : 9.64 kHz  
Passband Ripple  : 0.01 dB   
Stopband Atten.  : 79.9981 dB
Transition Width : 1.64 kHz  
 

Minimum-Order Designs with dsp.LowpassFilter

You can use dsp.LowpassFilter to design minimum-order filters and use measure to verify that
the design meets the prescribed specifications. The order of the filter is again 100.

LP_FIR_minOrd = dsp.LowpassFilter('SampleRate',Fs,...
    'DesignForMinimumOrder',true,...
    'PassbandFrequency',Fp,...
    'StopbandFrequency',Fst,...
    'PassbandRipple',Ap,...
    'StopbandAttenuation',Ast);
measure(LP_FIR_minOrd)

ans = 
Sample Rate      : 48 kHz      
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Passband Edge    : 8 kHz       
3-dB Point       : 8.7136 kHz  
6-dB Point       : 8.922 kHz   
Stopband Edge    : 10 kHz      
Passband Ripple  : 0.0098641 dB
Stopband Atten.  : 80.122 dB   
Transition Width : 2 kHz       
 

Nlp = order(LP_FIR_minOrd)

Nlp = 100

Designing IIR Filters

Elliptic filters are the IIR counterpart to optimal equiripple FIR filters. Accordingly, you can use the
same specifications to design elliptic filters. The filter order you obtain for an IIR filter is much
smaller than the order of the corresponding FIR filter.

Design an elliptic filter with the same sampling frequency, cutoff frequency, passband-ripple
constraint, and stopband attenuation as the 120th-order FIR filter. Reduce the filter order for the
elliptic filter to 10.

N = 10;
LP_IIR = dsp.LowpassFilter('SampleRate',Fs,...
    'FilterType','IIR',...
    'DesignForMinimumOrder',false,...
    'FilterOrder',N,...
    'PassbandFrequency',Fp,...
    'PassbandRipple',Ap,...
    'StopbandAttenuation',Ast);

Compare the FIR and IIR designs. Compute the cost of the two implementations.

hfvt = fvtool(LP_FIR,LP_IIR,'Fs',Fs);
legend(hfvt,'FIR Equiripple, N = 120',...
    'IIR Elliptic, N = 10');
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cost_FIR = cost(LP_FIR)

cost_FIR = struct with fields:
                  NumCoefficients: 121
                        NumStates: 120
    MultiplicationsPerInputSample: 121
          AdditionsPerInputSample: 120

cost_IIR = cost(LP_IIR)

cost_IIR = struct with fields:
                  NumCoefficients: 25
                        NumStates: 20
    MultiplicationsPerInputSample: 25
          AdditionsPerInputSample: 20

The FIR and IIR filters have similar magnitude responses. The cost of the IIR filter is about 1/6 the
cost of the FIR filter.

Running the IIR Filters

The IIR filter is designed as a biquad filter. To apply the filter to data, use the same commands as in
the FIR case.

Filter 10 seconds of white Gaussian noise with zero mean and unit standard deviation in frames of
256 samples with the 10th-order IIR lowpass filter. View the result on a spectrum analyzer.
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SA_IIR = spectrumAnalyzer('SampleRate',Fs);
tic
while toc < 10
    x = randn(256,1);   
    y = LP_IIR(x); 
    SA_IIR(y);         
end
release(SA_IIR)

Variable Bandwidth FIR and IIR Filters

You can also design filters that allow you to change the cutoff frequency at run-time.
dsp.VariableBandwidthFIRFilter and dsp.VariableBandwidthIIRFilter can be used for
such cases.

See Also

Related Examples
• “Filter Frames of a Noisy Sine Wave Signal in MATLAB” on page 1-6
• “Lowpass IIR Filter Design in Simulink” on page 1-20
• “Tunable Lowpass Filtering of Noisy Input in Simulink” on page 1-47
• “Multirate Filtering in MATLAB and Simulink” on page 1-36
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Lowpass IIR Filter Design in Simulink
In this section...
“filterBuilder” on page 1-20
“Butterworth Filter” on page 1-21
“Chebyshev Type I Filter” on page 1-26
“Chebyshev Type II Filter” on page 1-27
“Elliptic Filter” on page 1-29
“Minimum-Order Designs” on page 1-31
“Lowpass Filter Block” on page 1-34
“Variable Bandwidth IIR Filter Block” on page 1-35

This example shows how to design classic lowpass IIR filters in Simulink.

The example first presents filter design using filterBuilder. The critical parameter in this design
is the cutoff frequency, the frequency at which filter power decays to half (-3 dB) the nominal
passband value. The example shows how to replace a Butterworth design with either a Chebyshev or
elliptic filter of the same order and obtain a steeper roll-off at the expense of some ripple in the
passband and/or stopband of the filter. The example also explores minimum-order designs.

The example then shows how to design and use lowpass filters in Simulink using the interface
available from the Lowpass Filter block..

Finally, the example showcases the Variable Bandwidth IIR Filter, which enables you to change the
filter cutoff frequency at run time.

filterBuilder
filterBuilder starts user interface for building filters. filterBuilder uses a specification-
centered approach to find the best algorithm for the desired response. It also enables you to create a
Simulink block from the specified design.

To start designing IIR lowpass filter blocks using filterBuilder, execute the command
filterBuilder('lp'). A Lowpass Design dialog box opens.
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Butterworth Filter
Design an eighth order Butterworth lowpass filter with a cutoff frequency of 5 kHz, assuming a
sample rate of 44.1 KHz.

Set the Impulse response to IIR, the Order mode to Specify, and the Order to 8. To specify the
cutoff frequency, set Frequency constraints to Half power (3 dB) frequency. To specify the
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frequencies in Hz, set Frequency units to Hz, Input sample rate to 44100, and Half power (3 dB)
frequency to 5000. Set the Design method to Butterworth.
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Click Apply. To visualize the filter's frequency response, click View Filter Response. The filter is
maximally flat. There is no ripple in the passband or in the stopband. The filter response is within the
specification mask (the red dotted line).

Generate a block from this design and use it in a model. Open the model ex_iir_design. In Filter
Builder, on the Code Generation tab, click Generate Model. In the Export to Simulink window,
specify the Block name as Butter and Destination as Current. You can also choose to build the
block using basic elements such as delays and gains, or use one of the DSP System Toolbox filter
blocks. This example uses the filter block.
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Click Realize model to generate the Simulink block. You can now connect the block's input and
output ports to the source and sink blocks in the ex_iir_design model.

In the model, a noisy sine wave sampled at 44.1 kHz passes through the filter. The sine wave is
corrupted by Gaussian noise with zero mean and a variance of 10–5. Run the model. The view in the
Spectrum Analyzer shows the original and filtered signals.
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Chebyshev Type I Filter
Now design a Chebyshev Type I filter. A Chebyshev type I design allows you to control the passband.
There are still no ripples in the stopband. Larger ripples enable a steeper roll-off. In this model, the
peak-to-peak ripple is specified as 0.5 dB.

In the Main tab of Filter Builder, set the

1 Magnitude Constraints to Passband ripple.
2 Passband ripple to 0.5.
3 Design method to Chebyshev type I.

Click Apply and then click View Filter Response.

Zooming in on the passband, you can see that the ripples are contained in the range [-0.5, 0] dB.
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Similar to the Butterworth filter, you can generate a block from this design by clicking Generate
Model on the Code Generation tab, and then clicking Realize model.

Chebyshev Type II Filter
A Chebyshev type II design allows you to control the stopband attenuation. There are no ripples in
the passband. A smaller stopband attenuation enables a steeper roll-off. In this example, the stopband
attenuation is 80 dB. Set the Filter Builder Main tab as shown, and click Apply.
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Click View Filter Response.

To generate a block from this design, on the Code Generation tab, click Generate Model, and then
click Realize model.

Elliptic Filter
An elliptic filter can provide steeper roll-off compared to previous designs by allowing ripples in both
the stopband and passband. To illustrate this behavior, use the same passband and stopband
characteristics specified in the Chebyshev designs. Set the Filter Builder Main tab as shown, and
click Apply.
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To generate a block from this design, on the Code Generation tab, click Generate Model, and then
click Realize model.

Minimum-Order Designs
To specify the passband and stopband in terms of frequencies and the amount of tolerable ripple, use
a minimum-order design. As an example, verify that the Order mode of the Butterworth filter is set
to Minimum, and set Design method to Butterworth. Set the passband and stopband frequencies
to 0.1*22050 Hz and 0.3*22050 Hz, and the passband ripple and the stopband attenuation to 1 dB
and 60 dB, respectively. A seventh-order filter is necessary to meet the specifications with a
Butterworth design. By following the same approach for other design methods, you can verify that a
fifth-order filter is required for Chebyshev type I and type II designs. A fourth-order filter is sufficient
for the elliptic design.
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This figure shows the magnitude response for the seventh-order Butterworth design.
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The pole-zero plot for the seventh-order Butterworth design shows the expected clustering of 7 poles
around an angle of zero radians on the unit circle and the corresponding 7 zeros at an angle of π
radians.
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Lowpass Filter Block
As an alternative to Filter Builder, you can use the Lowpass Filter block in your Simulink model. The
Lowpass Filter block combines the design and implementation stages into one step. The filter designs
its coefficients using the elliptical method, and allows minimum order and custom order designs.

The Lowpass Filter block is used in the model ex_lowpass to filter a noisy sine wave signal sampled
at 44.1 kHz. The original and filtered signals are displayed in a spectrum analyzer.

model = 'ex_lowpass';
open_system(model);
set_param(model,'StopTime','1024/44100 * 1000')
sim(model);

1 DSP Tutorials

1-34



The Lowpass Filter block allows you to design filters that approximate arbitrarily close to
Butterworth and Chebyshev filters. To approximate a Chebyshev Type I filter, make the stopband
attenuation arbitrarily large, for example, 180 dB. To approximate a Chebyshev Type II filter, make
the passband ripple arbitrarily small, for example, 1e-4. To approximate a Butterworth filter, make
the stopband attenuation arbitrarily large and the passband ripple arbitrarily small.

Variable Bandwidth IIR Filter Block
You can also design filters that allow you to change the cutoff frequency at run time. The Variable
Bandwidth IIR Filter block can be used for such cases. Refer to the “Tunable Lowpass Filtering of
Noisy Input in Simulink” on page 1-47 example for a model that uses this block.

See Also

Related Examples
• “Tunable Lowpass Filtering of Noisy Input in Simulink” on page 1-47
• “Lowpass Filter Design in MATLAB” on page 1-12
• “Multirate Filtering in MATLAB and Simulink” on page 1-36
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Multirate Filtering in MATLAB and Simulink
Multirate filters are digital filters that change the sample rate of an sampled input signal. The process
of rate conversion involves an upsampler, a downsampler, and a lowpass filter to process the signal.

The most basic multirate filters are interpolators, decimators, and noninteger sample rate converters.
These filters are building components of more advanced filter technologies such as channelizers,
channel synthesizers, two-channel filter banks, and Quadrature Mirror Filter (QMF). You can design
these filters in MATLAB and Simulink using the designMultirateFIR function.

The designMultirateFIR function automatically designs an anti-aliasing FIR filter based on the
rate conversion factor that you specify. The inputs to the designMultirateFIR function are the
interpolation factor and the decimation factor. Optionally, you can provide the half-polyphase length
or transition width and stopband attenuation. To design a decimator, set the interpolation factor to 1.
Similarly, to design an interpolator, set the decimation factor to 1.

To implement the multirate filters in MATLAB, use the coefficients returned by the
designMultirateFIR function as inputs to the dsp.FIRDecimator, dsp.FIRInterpolator, and
dsp.FIRRateConverter System objects.

b = designMultirateFIR(1,4);
firDecim = dsp.FIRDecimator(4,b)

firDecim = 

  dsp.FIRDecimator with properties:

    DecimationFactor: 4
     NumeratorSource: 'Property'
           Numerator: [0 -2.2355e-05 -5.0269e-05 -5.2794e-05 0 1.0256e-04 1.9352e-04 … ]
           Structure: 'Direct form'

Alternatively, you can set the SystemObject flag of the designMultirateFIR function to true.
The function designs and automatically creates the appropriate rate conversion object.

firDecim = designMultirateFIR(1,4,'SystemObject',true)

firDecim = 

  dsp.FIRDecimator with properties:

    DecimationFactor: 4
     NumeratorSource: 'Property'
           Numerator: [0 -2.2355e-05 -5.0269e-05 -5.2794e-05 0 1.0256e-04 1.9352e-04 … ]
           Structure: 'Direct form'

In Simulink, compute these coefficients using the designMultirateFIR function in the default
Auto mode of the FIR Decimation, FIR Interpolation, and FIR Rate Conversion blocks. You can also
specify these coefficients as parameters or pass them through an input port.

These examples show how to implement an FIR decimator in MATLAB and Simulink. You can apply
this workflow to an FIR interpolator and FIR rate converter as well.

Implement an FIR Decimator in MATLAB
To implement an FIR Decimator, you must first design it by using the designMultirateFIR
function. Specify the decimation factor of interest (usually greater than 1) and an interpolation factor
equal to 1. You can use the default half-polyphase length of 12 and the default stopband attenuation
of 80 dB. Alternatively, you can also specify the half-polyphase length, transition width, and stopband
attenuation values.
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Design an FIR decimator with the decimation factor set to 3 and the half-polyphase length set to 14.
Use the default stopband attenuation of 80 dB.

b = designMultirateFIR(1,3,14);

Provide the coefficients vector b as an input to the dsp.FIRDecimator System object™.

firDecim = dsp.FIRDecimator(3,b);
fvtool(firDecim)

By default, the fvtool function shows the magnitude response. Navigate through the Filter
Visualization Tool toolbar to see the phase response, impulse response, group delay, and other filter
analysis information.

Filter a noisy sine wave input using the firDecim object. The sine wave has frequencies at 1000 Hz
and 3000 Hz. The noise is a white Gaussian noise with zero mean and a standard deviation of 1e-5.
The decimated output will have one-third the sample rate as the input. Initialize two
spectrumAnalyzer objects, one for the input and the other for the output.

f1 = 1000;
f2 = 3000;
Fs = 8000;
source = dsp.SineWave('Frequency',[f1,f2],'SampleRate',Fs,...
    'SamplesPerFrame',1026);

specanainput = spectrumAnalyzer('SampleRate',Fs,...
    'PlotAsTwoSidedSpectrum',false,...
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    'Method','welch',...
    'ShowLegend',true,'YLimits',[-120 40],...
    'Title','Noisy Input signal',...
    'ChannelNames', {'Noisy Input'});
specanaoutput = spectrumAnalyzer('SampleRate',Fs/3,...
    'PlotAsTwoSidedSpectrum',false,...
    'Method','welch',...
    'ShowLegend',true,'YLimits',[-120 40],...
    'Title','Filtered output',...
    'ChannelNames', {'Filtered output'});

Stream the input and filter it in a processing loop.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

for Iter = 1:1000
    input = sum(source(),2);
    noisyInput = input + (10^-5)*randn(1026,1);
    output = firDecim(noisyInput);
    specanainput(noisyInput)
    specanaoutput(output)
end
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The input has two peaks: one at 1000 Hz and the other at 3000 Hz. The filter has a lowpass response
with a passband frequency of 0 . 3π rad/sample. With a sample rate of 8000 Hz, that value is a
passband frequency of 1200 Hz. The tone at 1000 Hz is unattenuated because it falls in the passband
of the filter. The tone at 3000 Hz is filtered out.

Similarly, you can design an FIR interpolator and an FIR rate Converter by providing appropriate
inputs to the designMultirateFIR function. To implement the filters, pass the designed coefficients
to the dsp.FIRInterpolator and dsp.FIRRateConverter objects.

Implement an FIR Decimator in Simulink
You can design and implement the FIR multirate filters in Simulink™ using the FIR Decimation, FIR
Interpolation, and FIR Rate Conversion blocks.

Open the model 'multiratefiltering.slx'.

The input signal is a noisy sinusoidal signal with two frequencies: one at 1000 Hz and the other at
3000 Hz. The sample rate of the signal is 8000 Hz and the Samples per frame parameter of the Sine
Wave blocks is set to 1026. The noise added to the signal is a white Gaussian noise with zero mean
and a variance of 1e-10.
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The Coefficient source parameter of the FIR Decimation block is set to Dialog parameters, and
the FIR filter coefficients parameter is set to designMultirateFIR(1,2). The function uses the
default half-polyphase length of 12 and the default stopband attenuation of 80 dB. The magnitude
response of the designed filter looks like as follows:
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Run the model.

The first spectrum analyzer shows the spectrum of the original signal, while the second spectrum
analyzer shows the spectrum of the decimated signal. Because the Rate options parameter in the
FIR Decimation block is set to Allow multirate processing, the frame size of the signal is the
same at the input and output of the FIR Decimation block, while the sample rate changes. For more
details on this mode, see “Rate Conversion by Frame-Rate Adjustment” on page 3-17.
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Sample Rate Conversion
Sample rate conversion is a process of converting the sample rate of a signal from one sampling rate
to another sampling rate. Multistage filters minimize the amount of computation involved in sample
rate conversion. To perform an efficient multistage rate conversion, use the
dsp.SampleRateConverter object that:

1 Accepts input sample rate and output sample rate as inputs.
2 Partitions the design problem into optimal stages.
3 Designs all the filters required by the various stages.
4 Implements the design.

The design makes sure that aliasing does not occur in the intermediate steps.

In this example, change the sample rate of a noisy sine wave signal from an input rate of 192 kHz to
an output rate of 44.1 kHz.
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Initialize a sample rate converter object.

SRC = dsp.SampleRateConverter;

Display the filter information.

info(SRC)

ans = 
    'Overall Interpolation Factor    : 147
     Overall Decimation Factor       : 640
     Number of Filters               : 3
     Multiplications per Input Sample: 27.667188
     Number of Coefficients          : 8631
     Filters:                         
        Filter 1:
        dsp.FIRDecimator     - Decimation Factor   : 2 
        Filter 2:
        dsp.FIRDecimator     - Decimation Factor   : 2 
        Filter 3:
        dsp.FIRRateConverter - Interpolation Factor: 147
                             - Decimation Factor   : 160 
     '

SRC is a three-stage filter: two FIR decimators followed by an FIR rate converter.

Initialize the sine wave source. The sine wave has two tones: one at 2000 Hz and the other at 5000
Hz.

source = dsp.SineWave ('Frequency',[2000 5000],'SampleRate',192000,...
    'SamplesPerFrame',1280);

Initialize two spectrum analyzers, one to see the spectrum of the input signal and the other to see the
spectrum of the rate converted output signal. The 'PlotAsTwoSidedSpectrum' property of the
spectrumAnalyzer objects is set to 'false', indicating that the spectrum shown is one-sided in
the range [0 Fs/2], where Fs is the sample rate of the signal.

Fsin = SRC.InputSampleRate;
Fsout = SRC.OutputSampleRate;
specanainput = spectrumAnalyzer('SampleRate',Fsin,...
    'PlotAsTwoSidedSpectrum',false,...
    'Method','welch',...
    'ShowLegend',true,'YLimits',[-120 50],...
    'Title','Input signal',...
    'ChannelNames', {'Input'});
specanaoutput = spectrumAnalyzer('SampleRate',Fsout,...
    'PlotAsTwoSidedSpectrum',false,...
    'Method','welch',...
    'ShowLegend',true,'YLimits',[-120 50],...
    'Title','Rate Converted output',...
    'ChannelNames', {'Rate Converted output'});

Stream the input signal and convert the sample rate of the signal using the sample rate converter.
View the spectra of both the input and output signals in the two spectrum analyzers.
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The spectrum analyzers show the spectrum in the range [0 Fs/2]. For the spectrum analyzer showing
the input, Fs/2 is 192000/2. For the spectrum analyzer showing the output, Fs/2 is 44100/2. Hence,
the sample rate of the signal changes from 192 kHz to 44.1 kHz.

for Iter = 1:10000
    input = sum(source(),2);
    noisyinput = input + (10^-5)*randn(1280,1);
    output = SRC(noisyinput);
    specanainput(noisyinput);
    specanaoutput(output);
end
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See Also

More About
• “Overview of Multirate Filters” on page 7-2
• “Design of Decimators and Interpolators” on page 4-229
• “Overview of Multistage Filters” on page 7-11
• “Multilevel Filter Banks” on page 7-28
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Tunable Lowpass Filtering of Noisy Input in Simulink
In this section...
“Open Lowpass Filter Model” on page 1-47
“Simulate the Model” on page 1-49

This example shows how to filter a noisy chirp signal with a lowpass filter that has a tunable
passband frequency. The filter is a Variable Bandwidth IIR Filter block with Filter type set to
Lowpass. This type of filter enables you to change the passband frequency during simulation without
having to redesign the whole filter. The filter algorithm recomputes the filter coefficients whenever
the passband frequency changes.

Open Lowpass Filter Model
model = 'ex_tunable_chirp_lowpass';
open_system(model);

The input signal is a noisy chirp sampled at 44.1 kHz. The chirp has an initial frequency of 5000 Hz
and a target frequency of 8000 Hz.
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The Variable Bandwidth IIR Filter block has a lowpass frequency response, with the passband
frequency set to 2000 Hz.
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Simulate the Model
After you configure the block parameters, simulate the model. In the initial configuration, the chirp
sweeps from 5000 Hz to 8000 Hz which falls in the stopband of the filter. When the chirp input passes
through this filter, the filter attenuates the chirp.
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To tune the Passband frequency of the filter, in the Variable Bandwidth IIR Filter block dialog box,
change Filter passband frequency (Hz) to 6000 Hz. Click Apply and the output of the Spectrum
Analyzer changes immediately.

The chirp's sweep frequency ranges from 5000 to 8000 Hz. Part of this frequency range is in the
passband and the remaining part is in the stopband. While in the filter's passband frequency, the
chirp is unaffected.
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While in the filter's stopband frequency, the chirp is attenuated.

 Tunable Lowpass Filtering of Noisy Input in Simulink

1-51



During simulation, you can tune any of the tunable parameters in the model and see the effect on the
filtered output real time.

See Also
“Lowpass IIR Filter Design in Simulink” on page 1-20 | “Multirate Filtering in MATLAB and Simulink”
on page 1-36 | “Filter Frames of a Noisy Sine Wave Signal in MATLAB” on page 1-6 | “Filter Frames
of a Noisy Sine Wave Signal in Simulink” on page 1-8 | “Introduction to Streaming Signal Processing
in MATLAB” on page 1-2
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Signal Processing Algorithm Acceleration in MATLAB
In this section...
“FIR Filter Algorithm” on page 1-53
“Accelerate the FIR Filter Using codegen” on page 1-54
“Accelerate the FIR Filter Using dspunfold” on page 1-55
“Kalman Filter Algorithm” on page 1-56
“Accelerate the Kalman Filter Using codegen” on page 1-58
“Accelerate the Kalman Filter Using dspunfold” on page 1-59

Note The benchmarks in this example have been measured on a machine with four physical cores.

This example shows how to accelerate a signal processing algorithm in MATLAB using the codegen
and dspunfold functions. You can generate a MATLAB executable (MEX function) from an entire
MATLAB function or specific parts of the MATLAB function. When you run the MEX function instead
of the original MATLAB code, simulation speed can increase significantly. To generate the MEX
equivalent, the algorithm must support code generation.

To use codegen, you must have MATLAB Coder installed. To use dspunfold, you must have
MATLAB Coder and DSP System Toolbox installed.

To use dspunfold on Windows and Linux, you must use a compiler that supports the Open Multi-
Processing (OpenMP) application interface. See https://www.mathworks.com/support/
compilers/current_release/.

FIR Filter Algorithm
Consider a simple FIR filter algorithm to accelerate. Copy the firfilter function code into the
firfilter.m file.

function [y,z1] = firfilter(b,x)
% Inputs:
%   b - 1xNTaps row vector of coefficients
%   x - A frame of  noisy input 

% States:
%   z, z1 - NTapsx1 column vector of states

% Output:
%   y - A frame of filtered output
 
persistent z;

if (isempty(z))
    z = zeros(length(b),1);
end
Lx = size(x,1);
y = zeros(size(x),'like',x);

z1 = z;
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for m = 1:Lx
    % Load next input sample
    z1(1,:) = x(m,:);
    
    % Compute output
    y(m,:) = b*z1;
    
    % Update states
    z1(2:end,:) = z1(1:end-1,:);
    z = z1;
end

The firfilter function accepts a vector of filter coefficients, b, a noisy input signal, x, as inputs.
Generate the filter coefficients using the fir1 function.

NTaps = 250;
Fp = 4e3/(44.1e3/2);
b = fir1(NTaps-1,Fp);

Filter a stream of a noisy sine wave signal by using the firfilter function. The sine wave has a
frame size of 4000 samples and a sample rate of 192 kHz. Generate the sine wave using the
dsp.SineWave System object™. The noise is a white Gaussian with a mean of 0 and a variance of
0.02. Name this function firfilter_sim.  The firfilter_sim function calls the firfilter
function on the noisy input.

function totVal = firfilter_sim(b)
% Create the signal source
Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200);
totVal = zeros(4000,500);
R  = 0.02;

clear firfilter;

% Iteration loop. Each iteration filters a frame of the noisy signal.
for i = 1 : 500
    trueVal = Sig();                        % Original sine wave 
    noisyVal = trueVal + sqrt(R)*randn;     % Noisy sine wave
    filteredVal = firfilter(b,noisyVal);    % Filtered sine wave
    totVal(:,i) = filteredVal;              % Store the entire sine wave
end

Run firfilter_sim and measure the speed of execution. The execution speed varies depending on
your machine.

tic;totVal = firfilter_sim(b);t1 = toc;
fprintf('Original Algorithm Simulation Time: %4.1f seconds\n',t1);

Original Algorithm Simulation Time:  7.8 seconds

Accelerate the FIR Filter Using codegen
Call codegen on firfilter, and generate its MEX equivalent, firfilter_mex. Generate and pass
the filter coefficients and the sine wave signal as inputs to the firfilter function.
Ntaps = 250;
Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200); % Create the Signal Source
R = 0.02;           
trueVal = Sig();                    % Original sine wave
noisyVal = trueVal + sqrt(R)*randn; % Noisy sine wave

1 DSP Tutorials

1-54



Fp = 4e3/(44.1e3/2);
b = fir1(Ntaps-1,Fp);               % Filter coefficients

codegen firfilter -args {b,noisyVal}

In the firfilter_sim function, replace firfilter(b,noisyVal) function call with
firfilter_mex(b,noisyVal). Name this function firfilter_codegen.
function totVal = firfilter_codegen(b)
% Create the signal source
Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200);
totVal = zeros(4000,500);
R  = 0.02;

clear firfilter_mex;

% Iteration loop. Each iteration filters a frame of the noisy signal.
for i = 1 : 500
    trueVal = Sig();                           % Original sine wave 
    noisyVal = trueVal + sqrt(R)*randn;        % Noisy sine wave
    filteredVal = firfilter_mex(b,noisyVal);   % Filtered sine wave
    totVal(:,i) = filteredVal;                 % Store the entire sine wave
end

Run firfilter_codegen and measure the speed of execution. The execution speed varies
depending on your machine.

tic;totValcodegen = firfilter_codegen(b);t2 = toc;
fprintf('Algorithm Simulation Time with codegen: %5f seconds\n',t2);
fprintf('Speedup factor with codegen: %5f\n',(t1/t2));

Algorithm Simulation Time with codegen: 0.923683 seconds
Speedup factor with codegen: 8.5531

The speedup gain is approximately 8.5.

Accelerate the FIR Filter Using dspunfold
The dspunfold function generates a multithreaded MEX file which can improve the speedup gain
even further.

dspunfold also generates a single-threaded MEX file and a self-diagnostic analyzer function. The
multithreaded MEX file leverages the multicore CPU architecture of the host computer. The single-
threaded MEX file is similar to the MEX file that the codegen function generates. The analyzer
function measures the speedup gain of the multithreaded MEX file over the single-threaded MEX file.

Call dspunfold on firfilter and generate its multithreaded MEX equivalent, firfilter_mt.
Detect the state length in samples by using the -f option, which can improve the speedup gain
further. -s auto triggers the automatic state length detection. For more information on using the -f
and -s options, see dspunfold.

dspunfold firfilter -args {b,noisyVal} -s auto -f [false,true]

State length: [autodetect] samples, Repetition: 1, Output latency: 8 frames, Threads: 4
Analyzing: firfilter.m
Creating single-threaded MEX file: firfilter_st.mexw64
Searching for minimal state length (this might take a while)
Checking stateless ... Insufficient
Checking 4000 samples ... Sufficient
Checking 2000 samples ... Sufficient
Checking 1000 samples ... Sufficient
Checking 500 samples ... Sufficient
Checking 250 samples ... Sufficient
Checking 125 samples ... Insufficient
Checking 187 samples ... Insufficient
Checking 218 samples ... Insufficient
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Checking 234 samples ... Insufficient
Checking 242 samples ... Insufficient
Checking 246 samples ... Insufficient
Checking 248 samples ... Insufficient
Checking 249 samples ... Sufficient
Minimal state length is 249 samples
Creating multi-threaded MEX file: firfilter_mt.mexw64
Creating analyzer file: firfilter_analyzer.p

The automatic state length detection tool detects an exact state length of 259 samples.

Call the analyzer function and measure the speedup gain of the multithreaded MEX file with respect
to the single-threaded MEX file. Provide at least two different frames for each input argument of the
analyzer. The frames are appended along the first dimension. The analyzer alternates between these
frames while verifying that the outputs match. Failure to provide multiple frames for each input can
decrease the effectiveness of the analyzer and can lead to false positive verification results.
firfilter_analyzer([b;0.5*b;0.6*b],[noisyVal;0.5*noisyVal;0.6*noisyVal]);

Analyzing multi-threaded MEX file firfilter_mt.mexw64. For best results, 
please refrain from interacting with the computer and stop other processes until the 
analyzer is done.
Latency = 8 frames
Speedup = 3.2x

firfilter_mt has a speedup gain factor of 3.2 when compared to the single-threaded MEX file,
firfilter_st. To increase the speedup further, increase the repetition factor using the -r option.
The tradeoff is that the output latency increases. Use a repetition factor of 3. Specify the exact state
length to reduce the overhead and increase the speedup further.

dspunfold firfilter -args {b,noisyVal} -s 249 -f [false,true] -r 3

State length: 249 samples, Repetition: 3, Output latency: 24 frames, Threads: 4
Analyzing: firfilter.m
Creating single-threaded MEX file: firfilter_st.mexw64
Creating multi-threaded MEX file: firfilter_mt.mexw64
Creating analyzer file: firfilter_analyzer.p

Call the analyzer function.
firfilter_analyzer([b;0.5*b;0.6*b],[noisyVal;0.5*noisyVal;0.6*noisyVal]);

Analyzing multi-threaded MEX file firfilter_mt.mexw64. For best results, 
please refrain from interacting with the computer and stop other processes 
until the analyzer is done.
Latency = 24 frames
Speedup = 3.8x

The speedup gain factor is 3.8, or approximately 32 times the speed of execution of the original
simulation.

For this particular algorithm, you can see that dspunfold is generating a highly optimized code,
without having to write any C or C++ code. The speedup gain scales with the number of cores on
your host machine.

The FIR filter function in this example is only an illustrative algorithm that is easy to understand. You
can apply this workflow on any of your custom algorithms. If you want to use an FIR filter, it is
recommended that you use the dsp.FIRFilter System object in DSP System Toolbox. This object
runs much faster than the benchmark numbers presented in this example, without the need for code
generation.

Kalman Filter Algorithm
Consider a Kalman filter algorithm, which estimates the sine wave signal from a noisy input. This
example shows the performance of Kalman filter with codegen and dspunfold.
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The noisy sine wave input has a frame size of 4000 samples and a sample rate of 192 kHz. The noise
is a white Gaussian with mean of 0 and a variance of 0.02.

The function filterNoisySignal calls the kalmanfilter function on the noisy input.

type filterNoisySignal

function totVal = filterNoisySignal
% Create the signal source
Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200);
totVal = zeros(4000,500);
R  = 0.02;
clear kalmanfilter;
% Iteration loop to estimate the sine wave signal
for i = 1 : 500
    trueVal = Sig();                    % Actual values
    noisyVal = trueVal + sqrt(R)*randn; % Noisy measurements
    estVal = kalmanfilter(noisyVal);    % Sine wave estimated by Kalman filter
    totVal(:,i) = estVal;               % Store the entire sine wave
end

type kalmanfilter

function [estVal,estState] = kalmanfilter(noisyVal)
% This function tracks a noisy sinusoid signal using a Kalman filter
%
% State Transition Matrix
A = 1;
stateSpaceDim = size(A,1);

% Measurement Matrix
H = 1;
measurementSpaceDim = size(H,1);
numTsteps = size(noisyVal,1)/measurementSpaceDim;

% Containers to store prediction and estimates for all time steps
zEstContainer = noisyVal;
xEstContainer = zeros(size(noisyVal));

Q = 0.0001; % Process noise covariance
R = 0.02;   % Measurement noise covariance
persistent xhat P xPrior PPrior;

% Local copies of discrete states
if isempty(xhat)
    xhat = 5; % Initial state estimate
end

if isempty(P)
    P = 1; % Error covariance estimate
end

if isempty(xPrior)
    xPrior = 0;
end

if isempty(PPrior)
    PPrior = 0;
end

% Loop over all time steps
for n=1:numTsteps
    
    % Gather chunks for current time step
    zRowIndexChunk = (n-1)*measurementSpaceDim + (1:measurementSpaceDim);
    stateEstsRowIndexChunk = (n-1)*stateSpaceDim + (1:stateSpaceDim);
        
    % Prediction step
    xPrior = A * xhat;
    PPrior =  A * P * A' + Q;
    
    % Correction step. Compute Kalman gain.
    PpriorH   = PPrior * H';
    HPpriorHR  = H * PpriorH + R;
    KalmanGain = (HPpriorHR \ PpriorH')';
    KH  = KalmanGain * H;
    
    % States and error covariance are updated in the
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    % correction step
    xhat = xPrior + KalmanGain * noisyVal(zRowIndexChunk,:) - ...
        KH * xPrior;
    P = PPrior - KH * PPrior;
    
    % Append estimates
    xEstContainer(stateEstsRowIndexChunk, :) = xhat;
    zEstContainer(zRowIndexChunk,:) = H*xhat;
   
end

% Populate the outputs
estVal = zEstContainer;
estState = xEstContainer;

end

Run filterNoisySignal.m and measure the speed of execution.

tic;totVal = filterNoisySignal;t1 = toc;
fprintf('Original Algorithm Simulation Time: %4.1f seconds\n',t1);

Original Algorithm Simulation Time: 21.7 seconds

Accelerate the Kalman Filter Using codegen
Call the codegen function on kalmanfilter, and generate its MEX equivalent,
kalmanfilter_mex.

The kalmanfilter function requires the noisy sine wave as the input.

Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200); % Create the Signal Source
R = 0.02;                           % Measurement noise covariance
trueVal = step(Sig);                % Actual values
noisyVal = trueVal + sqrt(R)*randn; % Noisy measurements
codegen -args {noisyVal} kalmanfilter.m

Replace kalmanfilter(noisyVal) in filterNoisySignal function with
kalmanfilter_mex(noisyVal). Name this function as filterNoisySignal_codegen
function totVal = filterNoisySignal_codegen
% Create the signal source
Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200);
totVal = zeros(4000,500);
R  = 0.02;
clear kalmanfilter_mex;
% Iteration loop to estimate the sine wave signal
for i = 1 : 500
    trueVal = Sig();                        % Actual values
    noisyVal = trueVal + sqrt(R)*randn;     % Noisy measurements
    estVal = kalmanfilter_mex(noisyVal);    % Sine wave estimated by Kalman filter
    totVal(:,i) = estVal; % Store the entire sine wave
end

Run filterNoisySignal_codegen and measure the speed of execution.

tic; totValcodegen = filterNoisySignal_codegen; t2 = toc;
fprintf('Algorithm Simulation Time with codegen: %5f seconds\n',t2);
fprintf('Speedup with codegen is %0.1f',t1/t2);

Algorithm Simulation Time with codegen: 0.095480 seconds
Speedup with codegen is 227.0

The Kalman filter algorithm implements several matrix multiplications. codegen uses the Basic
Linear Algebra Subroutines (BLAS) libraries to perform these multiplications. These libraries
generate a highly optimized code, hence giving a speedup gain of 227.
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Accelerate the Kalman Filter Using dspunfold
Generate a multithreaded MEX file using dspunfold and compare its performance with codegen.

Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200); 
% Create the signal source
R = 0.02;                           % Measurement noise covariance
trueVal = step(Sig);                % Actual values
noisyVal = trueVal + sqrt(R)*randn; % Noisy measurements
dspunfold kalmanfilter -args {noisyVal} -s auto

State length: [autodetect] frames, Repetition: 1, Output latency: 8 frames, Threads: 4
Analyzing: kalmanfilter.m
Creating single-threaded MEX file: kalmanfilter_st.mexw64
Searching for minimal state length (this might take a while)
Checking stateless ... Insufficient
Checking 1 frames ... Sufficient
Minimal state length is 1 frames
Creating multi-threaded MEX file: kalmanfilter_mt.mexw64
Creating analyzer file: kalmanfilter_analyzer.p

Call the analyzer function.
kalmanfilter_analyzer([noisyVal;0.01*noisyVal;0.05*noisyVal;0.1*noisyVal]);

Analyzing multi-threaded MEX file kalmanfilter_mt.mexw64. For best results, 
please refrain from interacting with the computer and stop other processes until 
the analyzer is done.
Latency = 8 frames
Speedup = 0.7x

kalmanfilter_mt has a speedup factor of 0.7, which is a performance loss of 30% when compared
to the single-threaded MEX file, kalmanfilter_st. Increase the repetition factor to 3 to see if the
performance increases. Also, detect the state length in samples.

dspunfold kalmanfilter -args {noisyVal} -s auto -f true -r 3

State length: [autodetect] samples, Repetition: 3, Output latency: 24 frames, Threads: 4
Analyzing: kalmanfilter.m
Creating single-threaded MEX file: kalmanfilter_st.mexw64
Searching for minimal state length (this might take a while)
Checking stateless ... Insufficient
Checking 4000 samples ... Sufficient
Checking 2000 samples ... Sufficient
Checking 1000 samples ... Sufficient
Checking 500 samples ... Sufficient
Checking 250 samples ... Insufficient
Checking 375 samples ... Sufficient
Checking 312 samples ... Sufficient
Checking 281 samples ... Sufficient
Checking 265 samples ... Sufficient
Checking 257 samples ... Insufficient
Checking 261 samples ... Sufficient
Checking 259 samples ... Sufficient
Checking 258 samples ... Insufficient
Minimal state length is 259 samples
Creating multi-threaded MEX file: kalmanfilter_mt.mexw64
Creating analyzer file: kalmanfilter_analyzer.p

Call the analyzer function.
kalmanfilter_analyzer([noisyVal;0.01*noisyVal;0.05*noisyVal;0.1*noisyVal]);

Analyzing multi-threaded MEX file kalmanfilter_mt.mexw64. For best results, 
please refrain from interacting with the computer and stop other processes until the 
analyzer is done.
Latency = 24 frames
Speedup = 1.4x

dspunfold gives a speedup gain of 40% when compared to the highly optimized single-threaded
MEX file. Specify the exact state length and increase the repetition factor to 4.
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dspunfold kalmanfilter -args {noisyVal} -s 259 -f true -r 4

State length: 259 samples, Repetition: 4, Output latency: 32 frames, Threads: 4
Analyzing: kalmanfilter.m
Creating single-threaded MEX file: kalmanfilter_st.mexw64
Creating multi-threaded MEX file: kalmanfilter_mt.mexw64
Creating analyzer file: kalmanfilter_analyzer.p

Invoke the analyzer function to see the speedup gain.
kalmanfilter_analyzer([noisyVal;0.01*noisyVal;0.05*noisyVal;0.1*noisyVal]);

Analyzing multi-threaded MEX file kalmanfilter_mt.mexw64. For best results, please refrain 
from interacting with the computer and stop other processes until the analyzer is done.
Latency = 32 frames
Speedup = 1.5x

The speedup gain factor is 50% when compared to the single-threaded MEX file.

The performance gain factors codegen and dspunfold give depend on your algorithm. codegen
provides sufficient acceleration for some MATLAB constructs. dspunfold can provide additional
performance gains using the cores available on your machine to distribute your algorithm via
unfolding. As shown in this example, the amount of speedup that dspunfold provides depends on
the particular algorithm to accelerate. Use dspunfold in addition to codegen if your algorithm is
well-suited for distributing via unfolding, and if the resulting latency cost is in line with the
constraints of your application.

Some MATLAB constructs are highly optimized with MATLAB interpreted execution. The fft
function, for example, runs much faster in interpreted simulation than with code generation.

See Also

More About
• “Multithreaded MEX File Generation” on page 1-66
• “Generate a Multithreaded MEX File from a MATLAB Function Using Unfolding” on page 4-314
• “Workflow for Accelerating MATLAB Algorithms” (MATLAB Coder)
• “Accelerate MATLAB Algorithms” (MATLAB Coder)
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Signal Processing Acceleration Through Code Generation
In this section...
“FIR Filter Algorithm” on page 1-61
“Accelerate the FIR Filter Using codegen” on page 1-62
“Accelerate the FIR Filter Using dspunfold” on page 1-63

Note The benchmarks in this example have been measured on a machine with four physical cores.

This example shows how to accelerate a signal processing algorithm in MATLAB using the codegen
and dspunfold functions. You can generate a MATLAB executable (MEX function) from an entire
MATLAB function or specific parts of the MATLAB function. When you run the MEX function instead
of the original MATLAB code, simulation speed can increase significantly. To generate the MEX
equivalent, the algorithm must support code generation.

To use codegen, you must have MATLAB Coder installed. To use dspunfold, you must have
MATLAB Coder and DSP System Toolbox installed.

To use dspunfold on Windows® and Linux®, you must use a compiler that supports the Open Multi-
Processing (OpenMP) application interface. See https://www.mathworks.com/support/
compilers/current_release/.

FIR Filter Algorithm
Consider a simple FIR filter algorithm to accelerate. Copy the firfilter function code into the
firfilter.m file.

function [y,z1] = firfilter(b,x)
% Inputs:
%   b - 1xNTaps row vector of coefficients
%   x - A frame of  noisy input 

% States:
%   z, z1 - NTapsx1 column vector of states

% Output:
%   y - A frame of filtered output
 
persistent z;

if (isempty(z))
    z = zeros(length(b),1);
end
Lx = size(x,1);
y = zeros(size(x),'like',x);

z1 = z;
for m = 1:Lx
    % Load next input sample
    z1(1,:) = x(m,:);
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    % Compute output
    y(m,:) = b*z1;
    
    % Update states
    z1(2:end,:) = z1(1:end-1,:);
    z = z1;
end

The firfilter function accepts a vector of filter coefficients, b, a noisy input signal, x, as inputs.
Generate the filter coefficients using the fir1 function.

NTaps = 250;
Fp = 4e3/(44.1e3/2);
b = fir1(NTaps-1,Fp);

Filter a stream of a noisy sine wave signal by using the firfilter function. The sine wave has a
frame size of 4000 samples and a sample rate of 192 kHz. Generate the sine wave using the
dsp.SineWave System object. The noise is a white Gaussian with a mean of 0 and a variance of 0.02.
Name this function firfilter_sim.  The firfilter_sim function calls the firfilter function
on the noisy input.

function totVal = firfilter_sim(b)
% Create the signal source
Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200);
totVal = zeros(4000,500);
R  = 0.02;

clear firfilter;

% Iteration loop. Each iteration filters a frame of the noisy signal.
for i = 1 : 500
    trueVal = Sig();                        % Original sine wave 
    noisyVal = trueVal + sqrt(R)*randn;     % Noisy sine wave
    filteredVal = firfilter(b,noisyVal);    % Filtered sine wave
    totVal(:,i) = filteredVal;              % Store the entire sine wave
end

Run firfilter_sim and measure the speed of execution. The execution speed varies depending on
your machine.

tic;totVal = firfilter_sim(b);t1 = toc;
fprintf('Original Algorithm Simulation Time: %4.1f seconds\n',t1);

Original Algorithm Simulation Time:  7.8 seconds

Accelerate the FIR Filter Using codegen
Call codegen on firfilter, and generate its MEX equivalent, firfilter_mex. Generate and pass
the filter coefficients and the sine wave signal as inputs to the firfilter function.
Ntaps = 250;
Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200); % Create the Signal Source
R = 0.02;           
trueVal = Sig();                    % Original sine wave
noisyVal = trueVal + sqrt(R)*randn; % Noisy sine wave
Fp = 4e3/(44.1e3/2);
b = fir1(Ntaps-1,Fp);               % Filter coefficients

codegen firfilter -args {b,noisyVal}

1 DSP Tutorials

1-62



In the firfilter_sim function, replace firfilter(b,noisyVal) function call with
firfilter_mex(b,noisyVal). Name this function firfilter_codegen.
function totVal = firfilter_codegen(b)
% Create the signal source
Sig = dsp.SineWave('SamplesPerFrame',4000,'SampleRate',19200);
totVal = zeros(4000,500);
R  = 0.02;

clear firfilter_mex;

% Iteration loop. Each iteration filters a frame of the noisy signal.
for i = 1 : 500
    trueVal = Sig();                           % Original sine wave 
    noisyVal = trueVal + sqrt(R)*randn;        % Noisy sine wave
    filteredVal = firfilter_mex(b,noisyVal);   % Filtered sine wave
    totVal(:,i) = filteredVal;                 % Store the entire sine wave
end

Run firfilter_codegen and measure the speed of execution. The execution speed varies
depending on your machine.

tic;totValcodegen = firfilter_codegen(b);t2 = toc;
fprintf('Algorithm Simulation Time with codegen: %5f seconds\n',t2);
fprintf('Speedup factor with codegen: %5f\n',(t1/t2));

Algorithm Simulation Time with codegen: 0.923683 seconds
Speedup factor with codegen: 8.5531

The speedup gain is approximately 8.5.

Accelerate the FIR Filter Using dspunfold
The dspunfold function generates a multithreaded MEX file which can improve the speedup gain
even further.

dspunfold also generates a single-threaded MEX file and a self-diagnostic analyzer function. The
multithreaded MEX file leverages the multicore CPU architecture of the host computer. The single-
threaded MEX file is similar to the MEX file that the codegen function generates. The analyzer
function measures the speedup gain of the multithreaded MEX file over the single-threaded MEX file.

Call dspunfold on firfilter and generate its multithreaded MEX equivalent, firfilter_mt.
Detect the state length in samples by using the -f option, which can improve the speedup gain
further. -s auto triggers the automatic state length detection. For more information on using the -f
and -s options, see dspunfold.

dspunfold firfilter -args {b,noisyVal} -s auto -f [false,true]

State length: [autodetect] samples, Repetition: 1, Output latency: 8 frames, Threads: 4
Analyzing: firfilter.m
Creating single-threaded MEX file: firfilter_st.mexw64
Searching for minimal state length (this might take a while)
Checking stateless ... Insufficient
Checking 4000 samples ... Sufficient
Checking 2000 samples ... Sufficient
Checking 1000 samples ... Sufficient
Checking 500 samples ... Sufficient
Checking 250 samples ... Sufficient
Checking 125 samples ... Insufficient
Checking 187 samples ... Insufficient
Checking 218 samples ... Insufficient
Checking 234 samples ... Insufficient
Checking 242 samples ... Insufficient
Checking 246 samples ... Insufficient
Checking 248 samples ... Insufficient
Checking 249 samples ... Sufficient
Minimal state length is 249 samples
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Creating multi-threaded MEX file: firfilter_mt.mexw64
Creating analyzer file: firfilter_analyzer.p

The automatic state length detection tool detects an exact state length of 259 samples.

Call the analyzer function and measure the speedup gain of the multithreaded MEX file with respect
to the single-threaded MEX file. Provide at least two different frames for each input argument of the
analyzer. The frames are appended along the first dimension. The analyzer alternates between these
frames while verifying that the outputs match. Failure to provide multiple frames for each input can
decrease the effectiveness of the analyzer and can lead to false positive verification results.
firfilter_analyzer([b;0.5*b;0.6*b],[noisyVal;0.5*noisyVal;0.6*noisyVal]);

Analyzing multi-threaded MEX file firfilter_mt.mexw64. For best results, 
please refrain from interacting with the computer and stop other processes until the 
analyzer is done.
Latency = 8 frames
Speedup = 3.2x

firfilter_mt has a speedup gain factor of 3.2 when compared to the single-threaded MEX file,
firfilter_st. To increase the speedup further, increase the repetition factor using the -r option.
The tradeoff is that the output latency increases. Use a repetition factor of 3. Specify the exact state
length to reduce the overhead and increase the speedup further.

dspunfold firfilter -args {b,noisyVal} -s 249 -f [false,true] -r 3

State length: 249 samples, Repetition: 3, Output latency: 24 frames, Threads: 4
Analyzing: firfilter.m
Creating single-threaded MEX file: firfilter_st.mexw64
Creating multi-threaded MEX file: firfilter_mt.mexw64
Creating analyzer file: firfilter_analyzer.p

Call the analyzer function.
firfilter_analyzer([b;0.5*b;0.6*b],[noisyVal;0.5*noisyVal;0.6*noisyVal]);

Analyzing multi-threaded MEX file firfilter_mt.mexw64. For best results, 
please refrain from interacting with the computer and stop other processes 
until the analyzer is done.
Latency = 24 frames
Speedup = 3.8x

The speedup gain factor is 3.8, or approximately 32 times the speed of execution of the original
simulation.

For this particular algorithm, you can see that dspunfold is generating a highly optimized code,
without having to write any C or C++ code. The speedup gain scales with the number of cores on
your host machine.

The FIR filter function in this example is only an illustrative algorithm that is easy to understand. You
can apply this workflow on any of your custom algorithms. If you want to use an FIR filter, it is
recommended that you use the dsp.FIRFilter System object in DSP System Toolbox. This object
runs much faster than the benchmark numbers presented in this example, without the need for code
generation.

See Also

More About
• “Multithreaded MEX File Generation” on page 1-66
• “Generate a Multithreaded MEX File from a MATLAB Function Using Unfolding” on page 4-314
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• “Workflow for Accelerating MATLAB Algorithms” (MATLAB Coder)
• “Accelerate MATLAB Algorithms” (MATLAB Coder)

 Signal Processing Acceleration Through Code Generation

1-65



Multithreaded MEX File Generation
This example shows how to use the dspunfold function to generate a multithreaded MEX file from a
MATLAB® function using unfolding technology. The MATLAB function can contain an algorithm
which is stateless (has no states) or stateful (has states).

NOTE: The following example assumes that the current host computer has at least two physical CPU
cores. The presented screenshots, speedup, and latency values are collected using a host computer
with six physical CPU cores.

Required MathWorks™ products:

• DSP System Toolbox™
• MATLAB Coder™

Using dspunfold with a MATLAB Function Containing a Stateless Algorithm

Consider the MATLAB function dspunfoldDCTExample. This function computes the DCT of an input
signal and returns the value and index of the maximum energy point

type dspunfoldDCTExample.m

function [peakValue,peakIndex] = dspunfoldDCTExample(x)
% Stateless MATLAB function computing the dct of a signal (e.g. audio), and
% returns the value and index of the highest energy point

% Copyright 2015 The MathWorks, Inc.

X = dct(x);
[peakValue,peakIndex] = max(abs(X));

end

To accelerate the algorithm, a common approach is to generate a MEX file using the codegen
function. This example shows how to do so when using an input of 4096 doubles. The generated MEX
file, dspunfoldDCTExample_mex, is singlethreaded.

codegen dspunfoldDCTExample -args {(1:4096)'}

Code generation successful.

To generate a multithreaded MEX file, use the dspunfold function. The argument -s 0 indicates
that the algorithm in dspunfoldDCTExample is stateless.

dspunfold dspunfoldDCTExample -args {(1:4096)'} -s 0

State length: 0 frames, Repetition: 1, Output latency: 12 frames, Threads: 6
Analyzing: dspunfoldDCTExample.m
Creating single-threaded MEX file: dspunfoldDCTExample_st.mexa64
Creating multi-threaded MEX file: dspunfoldDCTExample_mt.mexa64
Creating analyzer file: dspunfoldDCTExample_analyzer.p

This command generates these files:

• Multithreaded MEX file dspunfoldDCTExample_mt
• Single-threaded MEX file dspunfoldDCTExample_st, which is identical to the MEX file obtained

using the codegen function
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• Self-diagnostic analyzer function dspunfoldDCTExample_analyzer

Additional three MATLAB files are also generated, containing the help for each of the above files.

To measure the speedup of the multithreaded MEX file relative to the single-threaded MEX file, see
the example function dspunfoldBenchmarkDCTExample.

type dspunfoldBenchmarkDCTExample

function dspunfoldBenchmarkDCTExample
% Function used to measure the speedup of the multi-threaded MEX file
% dspunfoldDCTExample_mt obtained using dspunfold vs the single-threaded MEX
% file dspunfoldDCTExample_st.

% Copyright 2015 The MathWorks, Inc.

clear dspunfoldDCTExample_mt;  % for benchmark precision purpose
numFrames = 1e5;
inputFrame = (1:4096)';

% exclude first run from timing measurements
dspunfoldDCTExample_st(inputFrame); 
tic;  % measure execution time for the single-threaded MEX
for frame = 1:numFrames 
    dspunfoldDCTExample_st(inputFrame);
end
timeSingleThreaded = toc;

% exclude first run from timing measurements
dspunfoldDCTExample_mt(inputFrame); 
tic;  % measure execution time for the multi-threaded MEX
for frame = 1:numFrames
    dspunfoldDCTExample_mt(inputFrame);
end
timeMultiThreaded = toc;
fprintf('Speedup = %.1fx\n',timeSingleThreaded/timeMultiThreaded);

dspunfoldBenchmarkDCTExample measures the execution time taken by
dspunfoldDCTExample_st and dspunfoldDCTExample_mt to process numFrames frames. Finally,
it prints the speedup, which is the ratio between the multithreaded MEX file execution time and
single-threaded MEX file execution time.

Run the example.

dspunfoldBenchmarkDCTExample;

Speedup = 2.9x

To improve the speedup even more, increase the repetition value. To modify the repetition value, use
the -r flag. For more information on the repetition value, see the dspunfold function reference
page. For an example on how to specify the repetition value, see the section 'Using dspunfold with a
MATLAB Function Containing a Stateful Algorithm'.

dspunfold generates a multithreaded MEX file, which buffers multiple signal frames and then
processes these frames simultaneously, using multiple cores. This process introduces some
deterministic output latency. Executing help dspunfoldDCTExample_mt displays more information
about the multithreaded MEX file, including the value of the output latency. For this example, the
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output of the multithreaded MEX file has a latency of 16 frames relative to its input, which is not the
case for the single-threaded MEX file.

Run dspunfoldShowLatencyDCTExample example. The generated plot displays the outputs of the
single-threaded and multithreaded MEX files. Notice that the output of the multithreaded MEX is
delayed by 16 frames, relative to that of the single-threaded MEX.

dspunfoldShowLatencyDCTExample;

Using dspunfold with a MATLAB Function Containing a Stateful Algorithm

The MATLAB function dspunfoldFIRExample executes two FIR filters.

type dspunfoldFIRExample.m

function y = dspunfoldFIRExample(u,c1,c2)
% Stateful MATLAB function executing two FIR filters 

% Copyright 2015 The MathWorks, Inc.

persistent FIRSTFIR SECONDFIR
if isempty(FIRSTFIR)
    FIRSTFIR = dsp.FIRFilter('NumeratorSource','Input port');
    SECONDFIR = dsp.FIRFilter('NumeratorSource','Input port');
end
t = step(FIRSTFIR,u,c1);
y = step(SECONDFIR,t,c2);
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To build the multithreaded MEX file, you must provide the state length corresponding to the two FIR
filters. Specify 1s to indicate that the state length does not exceed 1 frame.

firCoeffs1 = fir1(192,0.8);
firCoeffs2 = fir1(256,0.2,'High');
dspunfold dspunfoldFIRExample -args {(1:4096)',firCoeffs1,firCoeffs2} -s 1

State length: 1 frames, Repetition: 1, Output latency: 12 frames, Threads: 6
Analyzing: dspunfoldFIRExample.m
Creating single-threaded MEX file: dspunfoldFIRExample_st.mexa64
Creating multi-threaded MEX file: dspunfoldFIRExample_mt.mexa64
Creating analyzer file: dspunfoldFIRExample_analyzer.p

Executing this code generates:

• Multithreaded MEX file dspunfoldFIRExample_mt
• Single-threaded MEX file dspunfoldFIRExample_st
• Self-diagnostic analyzer function dspunfoldFIRExample_analyzer
• The corresponding MATLAB help files for these three files

The output latency of the multithreaded MEX file is 12 frames. To measure the speedup, execute
dspunfoldBenchmarkFIRExample.

dspunfoldBenchmarkFIRExample;

Speedup = 1.4x

To improve the speedup of the multithreaded MEX file even more, specify the exact state length in
samples. To do so, you must specify which input arguments to dspunfoldFIRExample are frames. In
this example, the first input is a frame because the elements of this input are sequenced in time.
Therefore it can be further divided into subframes. The last two inputs are not frames because the
FIR filters coefficients cannot be subdivided without changing the nature of the algorithm. The value
of the dspunfoldFIRExample MATLAB function state length is the sum of the state length of the
two FIR filters (192 + 256 = 448). Using the -f argument, mark the first input argument as true
(frame), and the last two input arguments as false (nonframes)

dspunfold dspunfoldFIRExample -args {(1:4096)',firCoeffs1,firCoeffs2} -s 448 -f [true,false,false]

State length: 448 samples, Repetition: 1, Output latency: 12 frames, Threads: 6
Analyzing: dspunfoldFIRExample.m
Creating single-threaded MEX file: dspunfoldFIRExample_st.mexa64
Creating multi-threaded MEX file: dspunfoldFIRExample_mt.mexa64
Creating analyzer file: dspunfoldFIRExample_analyzer.p

Again, measure the speedup for the resulting multithreaded MEX using the
dspunfoldBenchmarkFIRExample function. Notice that the speedup increased because the exact
state length was specified in samples, and dspunfold was able to subdivide the frame inputs.

dspunfoldBenchmarkFIRExample;

Speedup = 2.0x

Oftentimes, the speedup can be increased even more by increasing the repetition (-r) provided when
invoking dspunfold. The default repetition value is 1. When you increase this value, the
multithreaded MEX buffers more frames internally before the processing starts. Increasing the
repetition factor increases the efficiency of the multi-threading, but at the cost of a higher output
latency.
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dspunfold dspunfoldFIRExample -args {(1:4096)',firCoeffs1,firCoeffs2} ...
-s 448 -f [true,false,false] -r 5

State length: 448 samples, Repetition: 5, Output latency: 60 frames, Threads: 6
Analyzing: dspunfoldFIRExample.m
Creating single-threaded MEX file: dspunfoldFIRExample_st.mexa64
Creating multi-threaded MEX file: dspunfoldFIRExample_mt.mexa64
Creating analyzer file: dspunfoldFIRExample_analyzer.p

Again, measure the speedup for the resulting multithreaded MEX, using the
dspunfoldBenchmarkFIRExample function. Speedup increases again, but the output latency is
now 60 frames. The general output latency formula is 2 × Threads × Repetition frames. In these
examples, the number of Threads is equal to the number of physical CPU cores.

dspunfoldBenchmarkFIRExample;

Speedup = 2.2x

Detecting State Length Automatically

To request that dspunfold autodetect the state length, specify -s auto. This option generates an
efficient multithreaded MEX file, but with a significant increase in the generation time, due to the
extra analysis that it requires.

dspunfold dspunfoldFIRExample -args {(1:4096)',firCoeffs1,firCoeffs2} ...
-s auto -f [true,false,false] -r 5

State length: [autodetect] samples, Repetition: 5, Output latency: 60 frames, Threads: 6
Analyzing: dspunfoldFIRExample.m
Creating single-threaded MEX file: dspunfoldFIRExample_st.mexa64
Searching for minimal state length (this might take a while)
Checking stateless ... Insufficient
Checking 4096 samples ... Sufficient
Checking 2048 samples ... Sufficient
Checking 1024 samples ... Sufficient
Checking 512 samples ... Sufficient
Checking 256 samples ... Insufficient
Checking 384 samples ... Insufficient
Checking 448 samples ... Sufficient
Checking 416 samples ... Insufficient
Checking 432 samples ... Insufficient
Checking 440 samples ... Insufficient
Checking 444 samples ... Insufficient
Checking 446 samples ... Insufficient
Checking 447 samples ... Insufficient
Minimal state length is 448 samples
Creating multi-threaded MEX file: dspunfoldFIRExample_mt.mexa64
Creating analyzer file: dspunfoldFIRExample_analyzer.p

dspunfold checks different state lengths, using as inputs the values provided with the -args option.
The function aims to find the minimum state length for which the outputs of the multithreaded MEX
and single-threaded MEX are the same. Notice that it found 448, as the minimal state length value,
which matches the expected value, manually computed before.
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Verify Generated Multithreaded MEX Using the Generated Analyzer

When creating a multithreaded MEX file using dspunfold, the single-threaded MEX file is also created
along with an analyzer function. For the stateful example in the previous section, the name of the
analyzer is dspunfoldFIRExample_analyzer.

The goal of the analyzer is to provide a quick way to measure the speedup of the multithreaded MEX
relative to the single-threaded MEX, and also to check if the outputs of the multithreaded MEX and
single-threaded MEX match. Outputs usually do not match when an incorrect state length value is
specified.

Execute the analyzer for the multithreaded MEX file, dspunfoldFIRExample_mt, generated
previously using the -s auto option.

firCoeffs1_1 = fir1(192,0.8);
firCoeffs1_2 = fir1(192,0.7);
firCoeffs1_3 = fir1(192,0.6);
firCoeffs2_1 = fir1(256,0.2,'High');
firCoeffs2_2 = fir1(256,0.1,'High');
firCoeffs2_3 = fir1(256,0.3,'High');
dspunfoldFIRExample_analyzer((1:4096*3)',[firCoeffs1_1;firCoeffs1_2;firCoeffs1_3],...
[firCoeffs2_1;firCoeffs2_2;firCoeffs2_3]);

Analyzing multi-threaded MEX file dspunfoldFIRExample_mt.mexa64. For best results, please refrain from interacting with the computer and stop other processes until the analyzer is done.
Latency = 60 frames
Speedup = 2.4x

Each input to the analyzer corresponds to the inputs of the dspunfoldFIRExample_mt MEX file.
Notice that the length (first dimension) of each input is greater than the expected length. For
example, dspunfoldFIRExample_mt expects a frame of 4096 doubles for its first input, while
4096 × 3 samples were provided to dspunfoldFIRExample_analyzer. The analyzer interprets this
input as 3 frames of 4096 samples. The analyzer alternates between these 3 input frames circularly
while checking if the outputs of the multithreaded and single-threaded MEX files match.

The table shows the inputs used by the analyzer at each step of the numerical check. The total
number of steps invoked by the analyzer is 180 or 3 × latency, where latency is 60 in this case.

| input1 | input2 | input3

------+----------------+--------------+--------------

Step1 | (1:4096)' | firCoeffs1_1 | firCoeffs2_1

Step2 | (4097:8192)' | firCoeffs1_2 | firCoeffs2_2

Step3 | (8193:12288)' | firCoeffs1_3 | firCoeffs2_3

Step4 | (1:4096)' | firCoeffs1_1 | firCoeffs2_1

... | ... | ... | ...

NOTE: For the analyzer to correctly check for the numerical match between the multithreaded MEX
and single-threaded MEX, provide at least two frames with different values for each input. For inputs
that represent parameters, such as filter coefficients, the frames can have the same values for each
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input. In this example, you could have specified a single set of coefficients for the second and third
inputs.

References
[1] Unfolding (DSP implementation)

See Also
dspunfold

Related Examples
• “Generate a Multithreaded MEX File from a MATLAB Function Using Unfolding” on page 4-314
• “Workflow for Generating a Multithreaded MEX File using dspunfold” on page 19-43
• “Why Does the Analyzer Choose the Wrong State Length?” on page 19-47
• “How Is dspunfold Different from parfor?” on page 19-41
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Fixed-Point Filter Design in MATLAB
This example shows how to design filters for use with fixed-point input. The example analyzes the
effect of coefficient quantization on filter design. You must have the Fixed-Point Designer™ software
to run this example.

Introduction

Fixed-point filters are commonly used in digital signal processors where data storage and power
consumption are key limiting factors. With the constraints you specify, DSP System Toolbox™
software allows you to design efficient fixed-point filters. The filter for this example is a lowpass
equiripple FIR filter. Design the filter first for floating-point input to obtain a baseline. You can use
this baseline for comparison with the fixed-point filter.

FIR Filter Design

The lowpass FIR filter has the following specifications:

• Sample rate: 2000 Hz
• Center frequency: 450 Hz
• Transition width: 100 Hz
• Equiripple design
• Maximum 1 dB of ripple in the passband
• Minimum 80 dB of attenuation in the stopband

samplingFrequency = 2000;
centerFrequency = 450;
transitionWidth = 100;
passbandRipple = 1;
stopbandAttenuation = 80;

designSpec = fdesign.lowpass('Fp,Fst,Ap,Ast',...
    centerFrequency-transitionWidth/2, ...
    centerFrequency+transitionWidth/2, ...
    passbandRipple,stopbandAttenuation, ...
    samplingFrequency);
LPF = design(designSpec,'equiripple',...
    'SystemObject',true)

LPF = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form'
      NumeratorSource: 'Property'
            Numerator: [-0.0013 -0.0055 -0.0112 -0.0125 -0.0048 0.0062 ... ]
    InitialConditions: 0

  Show all properties

View the baseline frequency response. The dotted red lines show the design specifications used to
create the filter.

fvtool(LPF)
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Full-Precision Fixed-Point Operation

The fixed-point properties of the filter are contained in the Fixed-point properties section in the
display of the object. By default, the filter uses full-precision arithmetic to deal with fixed-point
inputs. With full-precision arithmetic, the filter uses as many bits for the product, accumulator, and
output as needed to prevent any overflow or rounding. If you do not want to use full-precision
arithmetic, you can set the FullPrecisionOverride property to false and then set the product,
accumulator, and output data types independently.

rng default
inputWordLength = 16;
fixedPointInput = fi(randn(100,1),true,inputWordLength);
floatingPointInput = double(fixedPointInput);
floatingPointOutput = LPF(floatingPointInput);

release(LPF)
fullPrecisionOutput = LPF(fixedPointInput);
norm(floatingPointOutput-double(fullPrecisionOutput),'inf')

ans = 6.8994e-05

The result of full-precision fixed-point filtering comes very close to floating point, but the results are
not exact. The reason for this is coefficient quantization. In the fixed-point filter, the
CoefficientsDataType property has the same word length (16) for the coefficients and the input.
The frequency response of the filter in full-precision mode shows this more clearly. The measure
function shows that the minimum stopband attenuation of this filter with quantized coefficients is
76.6913 dB, less than the 80 dB specified for the floating-point filter.

1 DSP Tutorials

1-74



LPF.CoefficientsDataType

ans = 
'Same word length as input'

fvtool(LPF)

measure(LPF)

ans = 
Sample Rate      : 2 kHz      
Passband Edge    : 400 Hz     
3-dB Point       : 416.2891 Hz
6-dB Point       : 428.1081 Hz
Stopband Edge    : 500 Hz     
Passband Ripple  : 0.96325 dB 
Stopband Atten.  : 76.6913 dB 
Transition Width : 100 Hz     
 

The filter was last used with fixed-point input and is still in a locked state. For that reason, fvtool
displays the fixed-point frequency response. The dash-dot response is that of the reference floating-
point filter, and the solid plot is the response of the filter that was used with fixed-point input. The
desired frequency response cannot be matched because the coefficient word length has been
restricted to 16 bits. This accounts for the difference between the floating-point and fixed-point
designs. Increasing the number of bits allowed for the coefficient word length makes the quantization
error smaller and enables you to match the design requirement for 80 dB of stopband attenuation.
Use a coefficient word length of 24 bits to achieve an attenuation of 80.1275 dB.
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LPF24bitCoeff = design(designSpec,'equiripple',...
    'SystemObject',true);
LPF24bitCoeff.CoefficientsDataType = 'Custom';
coeffNumerictype = numerictype(fi(LPF24bitCoeff.Numerator,true,24));
LPF24bitCoeff.CustomCoefficientsDataType = numerictype(true,...
            coeffNumerictype.WordLength,coeffNumerictype.FractionLength);
fullPrecisionOutput32bitCoeff = LPF24bitCoeff(fixedPointInput);
norm(floatingPointOutput-double(fullPrecisionOutput32bitCoeff),'inf')

ans = 4.1077e-07

fvtool(LPF24bitCoeff)

measure(LPF24bitCoeff)

ans = 
Sample Rate      : 2 kHz      
Passband Edge    : 400 Hz     
3-dB Point       : 416.2901 Hz
6-dB Point       : 428.1091 Hz
Stopband Edge    : 500 Hz     
Passband Ripple  : 0.96329 dB 
Stopband Atten.  : 80.1275 dB 
Transition Width : 100 Hz     
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Design Parameters and Coefficient Quantization

In many fixed-point design applications, the coefficient word length is not flexible. For example,
supposed you are restricted to work with 14 bits. In such cases, the requested minimum stopband
attenuation of 80 dB cannot be reached. A filter with 14-bit coefficient quantization can achieve a
minimum attenuation of only 67.2987 dB.

LPF14bitCoeff = design(designSpec,'equiripple',...
    'SystemObject',true);
coeffNumerictype = numerictype(fi(LPF14bitCoeff.Numerator,true,14));
LPF14bitCoeff.CoefficientsDataType = 'Custom';
LPF14bitCoeff.CustomCoefficientsDataType = numerictype(true, ...
            coeffNumerictype.WordLength,coeffNumerictype.FractionLength);
measure(LPF14bitCoeff,'Arithmetic','fixed')

ans = 
Sample Rate      : 2 kHz      
Passband Edge    : 400 Hz     
3-dB Point       : 416.2939 Hz
6-dB Point       : 428.1081 Hz
Stopband Edge    : 500 Hz     
Passband Ripple  : 0.96405 dB 
Stopband Atten.  : 67.2987 dB 
Transition Width : 100 Hz     
 

For FIR filters in general, each bit of coefficient word length provides approximately 5 dB of stopband
attenuation. Accordingly, if your filter's coefficients are always quantized to 14 bits, you can expect
the minimum stopband attenuation to be only around 70 dB. In such cases, it is more practical to
design the filter with stopband attenuation less than 70 dB. Relaxing this requirement results in a
design of lower order.

designSpec.Astop = 60;   
LPF60dBStopband = design(designSpec,'equiripple',...
    'SystemObject',true);
LPF60dBStopband.CoefficientsDataType = 'Custom';
coeffNumerictype = numerictype(fi(LPF60dBStopband.Numerator,true,14));
LPF60dBStopband.CustomCoefficientsDataType = numerictype(true, ...
            coeffNumerictype.WordLength,coeffNumerictype.FractionLength);
measure(LPF60dBStopband,'Arithmetic','fixed')

ans = 
Sample Rate      : 2 kHz      
Passband Edge    : 400 Hz     
3-dB Point       : 419.3391 Hz
6-dB Point       : 432.9718 Hz
Stopband Edge    : 500 Hz     
Passband Ripple  : 0.92801 dB 
Stopband Atten.  : 59.1829 dB 
Transition Width : 100 Hz     
 

order(LPF14bitCoeff)

ans = 51

order(LPF60dBStopband)
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ans = 42

The filter order decreases from 51 to 42, implying that fewer taps are required to implement the new
FIR filter. If you still want a high minimum stopband attenuation without compromising on the
number of bits for coefficients, you must relax the other filter design constraint: the transition width.
Increasing the transition width might enable you to get higher attenuation with the same coefficient
word length. However, it is almost impossible to achieve more than 5 dB per bit of coefficient word
length, even after relaxing the transition width.

designSpec.Astop = 80;    
transitionWidth = 200;
designSpec.Fpass = centerFrequency-transitionWidth/2;
designSpec.Fstop = centerFrequency+transitionWidth/2;
LPF300TransitionWidth = design(designSpec,'equiripple',...
    'SystemObject',true);
LPF300TransitionWidth.CoefficientsDataType = 'Custom';
coeffNumerictype = numerictype(fi(LPF300TransitionWidth.Numerator,...
                                  true, 14));
LPF300TransitionWidth.CustomCoefficientsDataType = numerictype(true,...
            coeffNumerictype.WordLength,coeffNumerictype.FractionLength);
measure(LPF300TransitionWidth,'Arithmetic','fixed')

ans = 
Sample Rate      : 2 kHz      
Passband Edge    : 350 Hz     
3-dB Point       : 385.4095 Hz
6-dB Point       : 408.6465 Hz
Stopband Edge    : 550 Hz     
Passband Ripple  : 0.74045 dB 
Stopband Atten.  : 74.439 dB  
Transition Width : 200 Hz     
 

As you can see, increasing the transition width to 200 Hz allows 74.439 dB of stopband attenuation
with 14-bit coefficients, compared to the 67.2987 dB attained when the transition width was set to
100 Hz. An added benefit of increasing the transition width is that the filter order also decreases, in
this case from 51 to 27.

order(LPF300TransitionWidth)

ans = 27
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Visualizing Multiple Signals Using Logic Analyzer
Visualize multiple signals of a programmable FIR filter by using a logic analyzer. For more
information on the model used in this example and how to configure the model to generate HDL code,
see “Programmable FIR Filter for FPGA” on page 20-22.

Model Programmable FIR Filter
Open the example model.

modelname = 'dspprogfirhdl';
open_system(modelname);

Consider two FIR filters, one with a lowpass response and the other with a highpass response. The
coefficients can be specified using the InitFcn* callback function. To specify the callback, select File
> Model Properties > Model Properties. In the dialog box, in the Callbacks tab, select InitFcn*.

The Programmable FIR via Registers block loads the lowpass coefficients from the Host Behavioral
Model block and processes the input chirp samples first. The block then loads the highpass
coefficients and processes the same chirp samples again.

Open the Programmable FIR via Registers block.

systemname = [modelname '/Programmable FIR via Registers'];
open_system(systemname);
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Simulation
Run the example model.

sim(modelname)

Open the scope.

open_system([modelname '/Scope']);
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Compare the DUT (Design under Test) output with the reference output.

Use the Logic Analyzer
The Logic Analyzer enables you to view multiple signals in one window. It also makes it easy to detect
signal transitions.

The signals of interest (input coefficient, write address, write enable, write done, filter in, filter out,
reference out, and error) have been marked for streaming in the model. Click the streaming button in
the toolbar and select Logic Analyzer.

The Logic Analyzer displays waveforms of the selected signals.
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Modify the Display
In the Logic Analyzer, you can modify the height of all the displayed channels, and the spacing
between the channels. Click the Settings button. Then, modify the default height and spacing for
each wave. Click Apply to show the new dimensions in the background.
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To zoom in on the waveform, click the Zoom In Time button in the ZOOM & PAN section of the
toolbar. Your cursor becomes a magnifying glass. Then click and drag to select an area on the
waveform.

The Logic Analyzer now displays the time span you selected.

You can also control the display on a per-waveform basis. To modify an individual waveform, double-
click the signal, select the signal, then click the WAVE tab to modify its settings.
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Display the CoeffIn signal in signed decimal mode. The conversion uses the fractional and integer
bits as defined for this signal in your model.

Another useful mode of visualization in the Logic Analyzer is the analog format. View the Filter In,
Filter Out, and Ref Out signals in analog format.

You can also add dividers to the display. Click the Add Divider button in the toolbar.
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Then specify a name for your divider on the DIVIDER tab. Add a second divider. A divider is added
underneath the selected wave. If no wave is selected, it is added at the bottom of the display. To move
the divider, click on the divider name and drag it to a new position. Alternatively, use the Move
arrows on the DIVIDER tab.
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Note the divider in its new position.

For more instructions on using the waveform display tool, see Logic Analyzer.
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Signal Visualization and Measurements in MATLAB
This example shows how to visualize and measure signals in the time and frequency domain in
MATLAB® using a time scope and spectrum analyzer.

Signal Visualization in Time and Frequency Domains

Create a sine wave with a frequency of 100 Hz sampled at 1000 Hz. Generate five seconds of the 100
Hz sine wave with additive N(0, 0 . 0025) white noise in one-second intervals. Send the signal to a
time scope and spectrum analyzer for display and measurement.

SampPerFrame = 1000;
Fs = 1000;
SW = dsp.SineWave('Frequency',100,...
  'SampleRate',Fs,...
  'SamplesPerFrame',SampPerFrame);
TS = timescope('SampleRate',Fs,...
    'TimeSpanSource','property',...
    'TimeSpan',0.1,...
    'YLimits',[-2, 2],...
    'ShowGrid',true);
SA = spectrumAnalyzer('SampleRate',Fs,...
    'Method','welch','AveragingMethod','exponential');
tic;
while toc < 10
  sigData = SW() + 0.05*randn(SampPerFrame,1);
  SA(sigData);
  TS(sigData);
end
release(TS)
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release(SA)
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Time-Domain Measurements

Using the time scope, you can make a number of time-domain signal measurements.

The following measurements are available:

• Cursor Measurements - Puts screen cursors on all scope displays.
• Signal Statistics - Displays maximum, minimum, peak-to-peak difference, mean, median, RMS

values of a selected signal, and the times at which the maximum and minimum occur.
• Bilevel Measurements - Displays information about a selected signal's transitions, aberrations,

and cycles.
• Peak Finder - Displays maxima and the times at which they occur.

You can enable and disable these measurements from the Measurements tab.
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To illustrate the use of measurements in the time scope, simulate an ECG signal. Use the ecg
function to generate 2700 samples of the signal. Use a Savitzky-Golay filter to smooth the signal and
periodically extend the data to obtain approximately 11 periods.

x = 3.5*ecg(2700).';
y = repmat(sgolayfilt(x,0,21),[1 13]);
sigData = y((1:30000) + round(2700*rand(1))).';

Display the signal in the time scope and use the Peak Finder and Data Cursor measurements. Assume
a sample rate of 4 kHz.

TS_ECG = timescope('SampleRate',4000,...
    'TimeSpanSource','Auto',...
    'ShowGrid', true);
TS_ECG(sigData);
TS_ECG.YLimits = [-4, 4];
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Peak Measurements

Enable Peak Measurements from the Measurements tab by clicking the corresponding toolstrip
button. The Peaks pane appears at the bottom of the time scope window. For the Num Peaks
property, enter 8 and press Enter. In the Peaks pane, the time scope displays a list of 8 peak
amplitude values and the times at which they occur.
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There is a constant time difference of 0.675 seconds between each heartbeat. Therefore, the heart
rate of the ECG signal is given by the following equation:

60 sec/min
0 . 675 sec/beat = 88 . 89 beats/min (bpm)

Cursor Measurements

Enable Cursor Measurements from the Measurements tab by clicking the corresponding toolstrip
button. The cursors appear on the time scope with a box showing the change in time and value
between the two cursors. You can drag the cursors and use them to measure the time between events
in the waveform. As you drag a cursor, the time an value at the cursor appears. This figure shows how
to use cursors to measure the time interval between peaks in the ECG waveform. The ΔT
measurement in the cursor box demonstrates that the time interval between the two peaks is 0.675
seconds corresponding to a heart rate of 1.482 Hz or 88.9 beats/min.
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Signal Statistics and Bilevel Measurements

You can also select Signal Statistics and various bilevel measurements from the Measurements
tab. Signal Statistics can be used to determine the signal's minimum and maximum values as well as
other metrics like the peak-to-peak, mean, median, and RMS values. Bilevel measurements can be
used to determine information about rising and falling transitions, transition aberrations, overshoot
and undershoot information, settling time, pulse width, and duty cycle. To read more about these
measurements, see “Configure Time Scope MATLAB Object” on page 25-89.

Frequency-Domain Measurements

This section explains how to make frequency domain measurements with the spectrum analyzer.

The spectrum analyzer provides the following measurements:

• Cursor Measurements - places cursors on the spectrum display.
• Peak Finder - displays maxima and the frequencies at which they occur.
• Channel Measurements - displays occupied bandwidth and ACPR channel measurements.
• Distortion Measurements - displays harmonic and intermodulation distortion measurements.

You can enable and disable these measurements from the spectrum analyzer toolstrip.
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Distortion Measurements

To illustrate the use of measurements with the spectrum analyzer, create a 2.5 kHz sine wave
sampled at 48 kHz with additive white Gaussian noise. Evaluate a high-order polynomial (9th degree)
at each signal value to model non-linear distortion. Display the signal in a spectrum analyzer.

Fs = 48e3;
SW = dsp.SineWave('Frequency',2500,...
  'SampleRate',Fs,...
  'SamplesPerFrame',SampPerFrame);

SA_Distortion = spectrumAnalyzer('SampleRate',Fs,...
    'Method','welch',...
    'AveragingMethod','exponential',...
    'PlotAsTwoSidedSpectrum',false);
y = [1e-6 1e-9 1e-5 1e-9 1e-6 5e-8 0.5e-3 1e-6 1 3e-3];
tic;
while toc < 5
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  x = SW() + 1e-8*randn(SampPerFrame,1);
  sigData = polyval(y, x);
  SA_Distortion(sigData);
end
release(SA_Distortion);

Enable the harmonic distortion measurements by selecting the Distortion button on the
Measurements tab of the spectrum analyzer toolstrip. In the Distortion section, change the value
for Num Harmonics to 9 and check the Label Harmonics checkbox. In the Harmonic Distortion
panel at the bottom of the spectrum analyzer window, you see the value of the fundamental close to
2500 Hz and 8 harmonics as well as their SNR, SINAD, THD and SFDR values, which are referenced
with respect to the fundamental output power.
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Peak Finder

You can track time-varying spectral components by using the Peak Finder measurements. You can
show and optionally label up to 100 peaks. To invoke the Peak Finder, select the Peak Finder button
on the Measurements tab of the spectrum analyzer toolstrip.

To illustrate the use of Peak Finder, create a signal consisting of the sum of three sine waves with
frequencies of 5, 15, and 25 kHz and amplitudes of 1, 0.1, and 0.01 respectively. The data is sampled
at 100 kHz. Add N(0, 10−8) white Gaussian noise to the sum of sine waves and display the one-sided
power spectrum in the spectrum analyzer.

Fs = 100e3;
SW1 = dsp.SineWave(1e0,5e3,0,...
    'SampleRate',Fs,...
    'SamplesPerFrame',SampPerFrame);
SW2 = dsp.SineWave(1e-1,15e3,0,...
    'SampleRate',Fs,...
    'SamplesPerFrame',SampPerFrame);
SW3 = dsp.SineWave(1e-2,25e3,0,...
    'SampleRate',Fs,...
    'SamplesPerFrame',SampPerFrame);

SA_Peak = spectrumAnalyzer('SampleRate',Fs,...
    'Method','welch',...
    'AveragingMethod','exponential',...
    'PlotAsTwoSidedSpectrum',false);
tic;
while toc < 10
    sigData = SW1() + SW2() + SW3() + 1e-4*randn(SampPerFrame,1);
    SA_Peak(sigData);
end
release(SA_Peak);
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Enable the Peak Finder to label the three sine wave frequencies. The frequency values and powers
in dBm are displayed below the plot. You can increase or decrease the maximum number of peaks,
specify a minimum peak distance, and change other settings in the Peaks section of the
Measurements tab.
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To learn more about the use of measurements with the spectrum analyzer, see the “Spectrum
Analyzer Measurements” on page 4-307 example.
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Input, Output, and Display

Learn how to input, output and display data and signals with DSP System Toolbox.

• “Discrete-Time Signals” on page 2-2
• “Continuous-Time Signals” on page 2-8
• “Create Signals for Sample-Based Processing” on page 2-9
• “Create Signals for Frame-Based Processing” on page 2-13
• “Create Multichannel Signals for Sample-Based Processing” on page 2-18
• “Create Multichannel Signals for Frame-Based Processing” on page 2-23
• “Deconstruct Multichannel Signals for Sample-Based Processing” on page 2-27
• “Deconstruct Multichannel Signals for Frame-Based Processing” on page 2-32
• “Import and Export Signals for Sample-Based Processing” on page 2-38
• “Import and Export Signals for Frame-Based Processing” on page 2-47
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Discrete-Time Signals
In this section...
“Time and Frequency Terminology” on page 2-2
“Recommended Settings for Discrete-Time Simulations” on page 2-3
“Simulink Tasking Modes” on page 2-4
“Other Settings for Discrete-Time Simulations” on page 2-5
“Cross-Rate Operations” on page 2-5

Time and Frequency Terminology
Simulink models can process both discrete-time and continuous-time signals. Models built with the
DSP System Toolbox are intended to process discrete-time signals only. A discrete-time signal is a
sequence of values that correspond to particular instants in time. The time instants at which the
signal is defined are the signal's sample times, and the associated signal values are the signal's
samples. Traditionally, a discrete-time signal is considered to be undefined at points in time between
the sample times. For a periodically sampled signal, the equal interval between any pairs of
consecutive sample times is the signal's sample period Ts. The sample rate Fs is the reciprocal of the
sample period, or 1/Ts. The sample rate is the number of samples in the signal per second.

This 7.5-second triangle wave segment has a sample period of 0.5 seconds, and sample times of 0.0,
0.5, 1.0, 1.5, ...,7.5. The sample rate of the sequence is therefore 1/0.5, or 2 Hz.

A number of different terms are used to describe the characteristics of discrete-time signals found in
Simulink models. This table lists terms that are frequently used to describe how various blocks
operate on sample-based and frame-based signals.

Term Symbol Units Notes
Sample period Ts

Tsi
Tso

Seconds The time interval between consecutive samples in a
sequence, as the input to a block (Tsi) or the output from a
block (Tso).

Frame period Tf
Tfi
Tfo

Seconds The time interval between consecutive frames in a sequence,
as the input to a block (Tfi) or the output from a block (Tfo).

Signal period T Seconds The time elapsed during a single repetition of a periodic
signal.

Sample frequency Fs Hz (samples
per second)

The number of samples per unit time, Fs = 1/Ts.

Frequency f Hz (cycles per
second)

The number of repetitions per unit time of a periodic signal
or signal component, f = 1/T.
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Term Symbol Units Notes
Nyquist rate  Hz (cycles per

second)
The minimum sample rate that avoids aliasing, usually twice
the highest frequency in the signal being sampled.

Nyquist frequency fnyq Hz (cycles per
second)

Twice the highest frequency present in the signal.

Normalized
frequency

fn Two cycles per
sample

Frequency (linear) of a periodic signal normalized to half the
sample rate, fn = ω/π = 2f/Fs.

Angular frequency Ω Radians per
second

Frequency of a periodic signal in angular units, Ω = 2πf.

Digital (normalized
angular) frequency

ω Radians per
sample

Frequency (angular) of a periodic signal normalized to the
sample rate, ω = Ω/Fs = πfn.

Note In the block dialogs, the term sample time is used to refer to the sample period Ts. For
example, the Sample time parameter in the Signal From Workspace block specifies the imported
signal's sample period.

Recommended Settings for Discrete-Time Simulations
Simulink allows you to select from several different simulation solver algorithms. You can access
these solver algorithms from a Simulink model:

1 On the Modeling tab, click Model Settings. The Configuration Parameters dialog box opens.
2 The selections you make in the Solver pane determine how discrete-time signals are processed

in Simulink. The recommended Solver settings for signal processing simulations are:

• Type: Fixed-step
• Solver: Discrete (no continuous states)
• Fixed-step size (fundamental sample time): auto
• Treat each discrete rate as a separate task: Off
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You can automatically set these solver options for all new models by using the DSP Simulink model
templates. For more information, see “Configure the Simulink Environment for Signal Processing
Models”.

Simulink Tasking Modes
When the solver type is set to Fixed-step, Simulink operates in two tasking modes:

• Single-tasking mode
• Multitasking mode

On the Modeling tab, click Model Settings. The Configuration Parameters dialog box opens. In
the Solver pane, select Type > Fixed-step. Expand Solver details. To specify the multitasking
mode, select Treat each discrete rate as a separate task. To specify the single-tasking mode, clear
Treat each discrete rate as a separate task.

If you select the Treat each discrete rate as a separate task parameter, the single-tasking mode is
still used in these cases:

• If your model contains one sample time

2 Input, Output, and Display

2-4



• If your model contains a continuous and a discrete sample time, and the fixed-step size is equal to
the discrete sample time

For a typical model that operates on a single rate, Simulink selects the single-tasking mode.

Fixed-step single-tasking mode

In the fixed-step, single-tasking mode, discrete-time signals differ from the prototype described in
“Time and Frequency Terminology” on page 2-2 by remaining defined between sample times. For
example, the representation of the discrete-time triangle wave looks like this.

This signal's value at t = 3.112 seconds is the same as the signal's value at t = 3 seconds. In the
fixed-step, single-tasking mode, a signal's sample times are the instants where the signal is allowed to
change values rather than where the signal is defined. Between sample times, the signal takes on the
value at the previous sample time.

As a result, in the fixed-step, single-tasking mode, Simulink permits cross-rate operations such as the
addition of two signals of different rates. This is explained further in “Cross-Rate Operations” on page
2-5.

Other Settings for Discrete-Time Simulations
It is useful to know how the other solver options available in Simulink affect discrete-time signals. In
particular, you should be aware of the properties of discrete-time signals under these settings:

• Type: Fixed-step, select Treat each discrete rate as a separate task to enable the
multitasking mode.

When the fixed-step, multitasking solver is selected, discrete signals in Simulink are undefined
between sample times. Simulink generates an error when operations attempt to reference the
undefined region of a signal, as, for example, when signals with different sample rates are added.

• Type: Variable-step (the Simulink default solver)

When the Variable-step solver is selected, discrete-time signals remain defined between
sample times, just as in the fixed-step, single-tasking case described in “Recommended Settings
for Discrete-Time Simulations” on page 2-3. When the Variable-step solver is selected, cross-
rate operations are allowed by Simulink.

For a typical model containing multiple rates, Simulink selects the multitasking mode.

Cross-Rate Operations
When the fixed-step, multitasking solver is selected, discrete signals in Simulink are undefined
between sample times. Therefore, to perform cross-rate operations like the addition of two signals
with different sample rates, you must convert the two signals to a common sample rate. Several
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blocks in the Signal Operations and Multirate Filters libraries can accomplish this task. See “Convert
Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16 for more
information. Rate change can occur implicitly depending on the diagnostic settings. However, this is
not recommended. See “Multitask data transfer” (Simulink), “Single task data transfer” (Simulink).
By requiring explicit rate conversions for cross-rate operations in discrete mode, Simulink helps you
identify sample rate conversion issues early in the design process.

When the Variable-step solver or fixed-step, single-tasking solver is selected, discrete-time signals
remain defined between sample times. Therefore, if you sample the signal with a rate or phase that is
different from the signal's own rate and phase, you will still measure meaningful values:

1 At the MATLAB command line, type ex_sum_tut1.

The Cross-Rate Sum Example model opens. This model adds two signals with different sample
periods.

2 Double-click the upper Signal From Workspace block. The Block Parameters: Signal From
Workspace dialog box opens.

3 Set the Sample time parameter to 1.

This creates a fast signal (Ts=1) with sample times 1, 2, 3, ...
4 Double-click the lower Signal From Workspace block.
5 Set the Sample time parameter to 2.

This creates a slow signal (Ts=2) with sample times 1, 3, 5, ...
6 On the Debug tab, select Information Overlays > Colors.

Selecting Colors allows you to see the different sampling rates in action. For more information
about the color coding of the sample times, see “View Sample Time Information” (Simulink).

7 Run the model.

Note Using the DSP Simulink model templates with cross-rate operations generates errors even
though a fixed-step, single-tasking solver is selected. This is due to the fact that Single task
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data transfer is set to error in the Sample Time pane of the Diagnostics section of the
Configuration Parameters dialog box.

8 At the MATLAB command line, type dsp_examples_yout.

The following output is displayed:

dsp_examples_yout =
     1     1     2
     2     1     3
     3     2     5
     4     2     6
     5     3     8
     6     3     9
     7     4    11
     8     4    12
     9     5    14
    10     5    15
     0     6     6

The first column of the matrix is the fast signal (Ts=1). The second column of the matrix is the
slow signal (Ts=2). The third column is the sum of the two signals. As expected, the slow signal
changes once every 2 seconds, half as often as the fast signal. Nevertheless, the slow signal is
defined at every moment because Simulink holds the previous value of the slower signal during
time instances that the block doesn't run.

In general, for Variable-step and the fixed-step, single-tasking modes, when you measure the
value of a discrete signal between sample times, you are observing the value of the signal at the
previous sample time.
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Continuous-Time Signals
In this section...
“Continuous-Time Source Blocks” on page 2-8
“Continuous-Time Nonsource Blocks” on page 2-8

Continuous-Time Source Blocks
Most signals in a signal processing model are discrete-time signals. However, many blocks can also
operate on and generate continuous-time signals, whose values vary continuously with time. Source
blocks are those blocks that generate or import signals in a model. Most source blocks appear in the
Sources library. The sample period for continuous-time source blocks is set internally to zero. This
indicates a continuous-time signal. The Simulink Signal Generator and Constant blocks are examples
of continuous-time source blocks. To render continuous-time signals in black when, in the Debug tab,
select Information Overlays > Colors.

When connecting continuous-time source blocks to discrete-time blocks, you might need to interpose
a Zero-Order Hold block to discretize the signal. Specify the desired sample period for the discrete-
time signal in the Sample time parameter of the Zero-Order Hold block.

Continuous-Time Nonsource Blocks
Most nonsource blocks in DSP System Toolbox software accept continuous-time signals, and all
nonsource blocks inherit the sample period of the input. Therefore, continuous-time inputs generate
continuous-time outputs. Blocks that are not capable of accepting continuous-time signals include the
Biquad Filter, Discrete FIR Filter, FIR Decimation, and FIR Interpolation blocks.
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Create Signals for Sample-Based Processing
In this section...
“Create Signals Using Constant Block” on page 2-9
“Create Signals Using Signal From Workspace Block” on page 2-11

In sample-based processing, blocks process signals one sample at a time. Each element of the input
signal represents one sample in a distinct channel. For example, from a sample-based processing
perspective, the following 3-by-2 matrix contains the first sample in each of six independent channels.

When you configure a block to perform sample-based processing, the block interprets scalar input as
a single-channel signal. Similarly, the block interprets an M-by-N matrix as multichannel signal with
M*N independent channels. For example, in sample-based processing, blocks interpret the following
sequence of 3-by-2 matrices as a six-channel signal.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.

This page discusses creating signals for sample-based processing using the Constant block and the
Signal From Workspace block. Note that the block receiving this signal implements sample-based
processing or frame-based processing on the signal based on the parameters set in the block dialog
box.

Create Signals Using Constant Block
1 Create a new Simulink model.
2 From the Sources library, click-and-drag a Constant block into the model.
3 From the Sinks library, click-and-drag a Display block into the model.
4 Connect the two blocks.
5 Double-click the Constant block, and set the block parameters as follows:

• Constant value = [1 2 3; 4 5 6]
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• Interpret vector parameters as 1–D = Clear this check box
• Sample time = 1

Based on these parameters, the Constant block outputs a constant, discrete-valued, 2-by-3 matrix
signal with a sample period of 1 second.

The Constant block's Constant value parameter can be any valid MATLAB variable or
expression that evaluates to a matrix.

6 Save these parameters and close the dialog box by clicking OK.
7 In the Debug tab of the model toolstrip, select Information Overlays > Signal Dimensions.
8 Run the model and expand the Display block so you can view the entire signal.

You have now successfully created a six-channel signal with a sample period of 1 second.

To view the model you just created, and to learn how to create a 1–D vector signal from the block
diagram you just constructed, continue to the next section.

Create an Unoriented Vector Signal

You can create an unoriented vector by modifying the block diagram you constructed in the previous
section:

1 To add another signal to your model, copy the block diagram you created in the previous section
and paste it below the existing signal in your model.

2 Double-click the Constant1 block, and set the block parameters as follows:

• Constant value = [1 2 3 4 5 6]
• Interpret vector parameters as 1–D = Check this box
• Sample time = 1

3 Save these parameters and close the dialog box by clicking OK.
4 Run the model and expand the Display1 block so you can view the entire signal.

Your model should now look similar to the following figure. You can also open this model by
typing ex_usingcnstblksb at the MATLAB command line.
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The Constant1 block generates a length-6 unoriented vector signal. This means that the output is not
a matrix. However, most nonsource signal processing blocks interpret a length-M unoriented vector
as an M-by-1 matrix (column vector).

Create Signals Using Signal From Workspace Block
This topic discusses how to create a four-channel signal for sample-based processing with a sample
period of 1 second using the Signal From Workspace block:

1 Create a new Simulink model.
2 From the Sources library, click-and-drag a Signal From Workspace block into the model.
3 From the Simulink Sinks library, click-and-drag a To Workspace block into the model.
4 Connect the two blocks.
5 Double-click the Signal From Workspace block, and set the block parameters as follows:

• Signal = cat(3,[1 -1;0 5],[2 -2;0 5],[3 -3;0 5])
• Sample time = 1
• Samples per frame = 1
• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a four-channel signal with
a sample period of 1 second. After the block has output the signal, all subsequent outputs have a
value of zero. The four channels contain the following values:

• Channel 1: 1, 2, 3, 0, 0,...
• Channel 2: -1, -2, -3, 0, 0,...
• Channel 3: 0, 0, 0, 0, 0,...
• Channel 4: 5, 5, 5, 0, 0,...

6 Save these parameters and close the dialog box by clicking OK.
7 In the Debug tab of the model toolstrip, select Information Overlays > Signal Dimensions.
8 Run the model.

The following figure is a graphical representation of the model's behavior during simulation. You
can also open the model by typing ex_usingsfwblksb at the MATLAB command line.
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9 At the MATLAB command line, type yout.

The following is a portion of the output:

yout(:,:,1) =

1    -1
0     5

yout(:,:,2) =

2    -2
0     5

yout(:,:,3) =

3    -3
0     5

yout(:,:,4) =

0     0
0     0

You have now successfully created a four-channel signal with sample period of 1 second using the
Signal From Workspace block. This signal is used for sample-based processing.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Create Signals for Frame-Based Processing” on page 2-13
• “Create Multichannel Signals for Sample-Based Processing” on page 2-18
• “Create Multichannel Signals for Frame-Based Processing” on page 2-23
• “Deconstruct Multichannel Signals for Sample-Based Processing” on page 2-27
• “Deconstruct Multichannel Signals for Frame-Based Processing” on page 2-32
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Create Signals for Frame-Based Processing
In this section...
“Create Signals Using Sine Wave Block” on page 2-14
“Create Signals Using Signal From Workspace Block” on page 2-15

In frame-based processing, blocks process data one frame at a time. Each frame of data contains
sequential samples from an independent channel. Each channel is represented by a column of the
input signal. For example, from a frame-based processing perspective, the following 3-by-2 matrix has
two channels, each of which contains three samples.

When you configure a block to perform frame-based processing, the block interprets an M-by-1 vector
as a single-channel signal containing M samples per frame. Similarly, the block interprets an M-by-N
matrix as a multichannel signal with N independent channels and M samples per channel. For
example, in frame-based processing, blocks interpret the following sequence of 3-by-2 matrices as a
two-channel signal with a frame size of 3.

Using frame-based processing is advantageous for many signal processing applications because you
can process multiple samples at once. By buffering your data into frames and processing multisample
frames of data, you can often improve the computational time of your signal processing algorithms.
To perform frame-based processing, you must have a DSP System Toolbox license.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.

This page discusses creating signals for frame-based processing using the Sine Wave block and the
Signal From Workspace block. Note that the block receiving this signal implements sample-based
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processing or frame-based processing on the signal based on the parameters set in the block dialog
box.

Create Signals Using Sine Wave Block
1 Create a new Simulink model.
2 From the Sources library, click-and-drag a Sine Wave block into the model.
3 From the Matrix Operations library, click-and-drag a Matrix Sum block into the model.
4 From the Simulink Sinks library, click-and-drag a To Workspace block into the model.
5 Connect the blocks in the order in which you added them to your model.
6 Double-click the Sine Wave block, and set the block parameters as follows:

• Amplitude = [1 3 2]
• Frequency = [100 250 500]
• Sample time = 1/5000
• Samples per frame = 64

Based on these parameters, the Sine Wave block outputs three sinusoids with amplitudes 1, 3,
and 2 and frequencies 100, 250, and 500 Hz, respectively. The sample period, 1/5000, is 10
times the highest sinusoid frequency, which satisfies the Nyquist criterion. The frame size is 64
for all sinusoids, and, therefore, the output has 64 rows.

7 Save these parameters and close the dialog box by clicking OK.

You have now successfully created a three-channel signal, with 64 samples per each frame, using
the Sine Wave block. The rest of this procedure describes how to add these three sinusoids
together.

8 Double-click the Matrix Sum block. Set the Sum over parameter to Specified dimension,
and set the Dimension parameter to 2. Click OK.

9 In the Debug tab of the model toolstrip, select Information Overlays > Signal Dimensions.
10 Run the model.

Your model should now look similar to the following figure. You can also open the model by
typing ex_usingsinwaveblkfb at the MATLAB command line.
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The three signals are summed point-by-point by a Matrix Sum block. Then, they are exported to
the MATLAB workspace.

11 At the MATLAB command line, type plot(yout(1:100)).

Your plot should look similar to the following figure.

This figure represents a portion of the sum of the three sinusoids. You have now added the channels
of a three-channel signal together and displayed the results in a figure window.

Create Signals Using Signal From Workspace Block
Frame-based processing can significantly improve the performance of your model by decreasing the
amount of time it takes your simulation to run. This topic describes how to create a two-channel
signal with a sample period of 1 second, a frame period of 4 seconds, and a frame size of 4 samples
using the Signal From Workspace block.

1 Create a new Simulink model.
2 From the Sources library, click-and-drag a Signal From Workspace block into the model.
3 From the Simulink Sinks library, click-and-drag a To Workspace block into the model.
4 Connect the two blocks.
5 Double-click the Signal From Workspace block, and set the block parameters as follows.

• Signal = [1:10; 1 1 0 0 1 1 0 0 1 1]'
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• Sample time = 1
• Samples per frame = 4
• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a two-channel signal with
a sample period of 1 second, a frame period of 4 seconds, and a frame size of four samples. After
the block outputs the signal, all subsequent outputs have a value of zero. The two channels
contain the following values:

• Channel 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0,...
• Channel 2: 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,...

6 Save these parameters and close the dialog box by clicking OK.
7 In the Debug tab of the model toolstrip, select Information Overlays > Signal Dimensions.
8 Run the model.

The following figure is a graphical representation of the model's behavior during simulation. You
can also open the model by typing ex_usingsfwblkfb at the MATLAB command line.

9 At the MATLAB command line, type yout.

The following is the output displayed at the MATLAB command line.

yout =

     1     1
     2     1
     3     0
     4     0
     5     1
     6     1
     7     0
     8     0
     9     1
    10     1
     0     0
     0     0

Note that zeros were appended to the end of each channel. You have now successfully created a two-
channel signal and exported it to the MATLAB workspace.
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See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Create Signals for Sample-Based Processing” on page 2-9
• “Create Multichannel Signals for Sample-Based Processing” on page 2-18
• “Create Multichannel Signals for Frame-Based Processing” on page 2-23
• “Deconstruct Multichannel Signals for Sample-Based Processing” on page 2-27
• “Deconstruct Multichannel Signals for Frame-Based Processing” on page 2-32
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Create Multichannel Signals for Sample-Based Processing

In this section...
“Multichannel Signals for Sample-Based Processing” on page 2-18
“Create Multichannel Signals by Combining Single-Channel Signals” on page 2-19
“Create Multichannel Signals by Combining Multichannel Signals” on page 2-20

In sample-based processing, blocks process signals one sample at a time. Each element of the input
signal represents one sample in a distinct channel. For example, from a sample-based processing
perspective, the following 3-by-2 matrix contains the first sample in each of six independent channels.

When you configure a block to perform sample-based processing, the block interprets scalar input as
a single-channel signal. Similarly, the block interprets an M-by-N matrix as multichannel signal with
M*N independent channels. For example, in sample-based processing, blocks interpret the following
sequence of 3-by-2 matrices as a six-channel signal.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.

Multichannel Signals for Sample-Based Processing
When you want to perform the same operations on several independent signals, you can group those
signals together as a multichannel signal. For example, if you need to filter each of four independent
signals using the same direct-form II transpose filter, you can combine the signals into a multichannel
signal, and connect the signal to a single Biquad Filter block. The block decides to treat each element
of the input as a channel when you set the block's Input processing parameter to Elements as
channels (sample based). The block then applies the filter to each channel independently.

Multiple independent signals can be combined into a single multichannel signal using the
Concatenate block. In addition, several multichannel signals can be combined into a single
multichannel signal using the same technique.
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Create Multichannel Signals by Combining Single-Channel Signals
You can combine individual signals into a multichannel signal by using the Matrix Concatenate block
in the Simulink Math Operations library:

1 Open the Matrix Concatenate Example 1 model by typing

ex_cmbsnglchsbsigs 

at the MATLAB command line.

2 Double-click the Signal From Workspace block, and set the Signal parameter to 1:10. Click OK.
3 Double-click the Signal From Workspace1 block, and set the Signal parameter to -1:-1:-10.

Click OK.
4 Double-click the Signal From Workspace2 block, and set the Signal parameter to zeros(10,1).

Click OK.
5 Double-click the Signal From Workspace3 block, and set the Signal parameter to

5*ones(10,1). Click OK.
6 Double-click the Matrix Concatenate block. Set the block parameters as follows, and then click

OK:

• Number of inputs = 4
• Mode = Multidimensional array
• Concatenate dimension = 1

7 Double-click the Reshape block. Set the block parameters as follows, and then click OK:

• Output dimensionality = Customize
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• Output dimensions = [2,2]
8 Run the model. In the Simulation tab, click Run.

Four independent signals are combined into a 2-by-2 multichannel matrix signal.

Each 4-by-1 output from the Matrix Concatenate block contains one sample from each of the four
input signals at the same instant in time. The Reshape block rearranges the samples into a 2-by-2
matrix. Each element of this matrix is a separate channel.

Note that the Reshape block works column wise, so that a column vector input is reshaped as
shown below.

The 4-by-1 matrix output by the Matrix Concatenate block and the 2-by-2 matrix output by the
Reshape block in the above model represent the same four-channel signal. In some cases, one
representation of the signal may be more useful than the other.

9 At the MATLAB command line, type dsp_examples_yout.

The four-channel signal is displayed as a series of matrices in the MATLAB Command Window.
Note that the last matrix contains only zeros. This is because every Signal From Workspace block
in this model has its Form output after final data value by parameter set to Setting to
Zero.

Create Multichannel Signals by Combining Multichannel Signals
You can combine existing multichannel signals into larger multichannel signals using the Simulink
Matrix Concatenate block:

1 Open the Matrix Concatenate Example 2 model by typing

ex_cmbmltichsbsigs    

at the MATLAB command line.
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2 Double-click the Signal From Workspace block, and set the Signal parameter to
[1:10;-1:-1:-10]'. Click OK.

3 Double-click the Signal From Workspace1 block, and set the Signal parameter to
[zeros(10,1) 5*ones(10,1)]. Click OK.

4 Double-click the Matrix Concatenate block. Set the block parameters as follows, and then click
OK:

• Number of inputs = 2
• Mode = Multidimensional array
• Concatenate dimension = 1

5 Run the model.

The model combines both two-channel signals into a four-channel signal.

Each 2-by-2 output from the Matrix Concatenate block contains both samples from each of the
two input signals at the same instant in time. Each element of this matrix is a separate channel.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Create Signals for Sample-Based Processing” on page 2-9
• “Create Signals for Frame-Based Processing” on page 2-13
• “Create Multichannel Signals for Frame-Based Processing” on page 2-23
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• “Deconstruct Multichannel Signals for Sample-Based Processing” on page 2-27
• “Deconstruct Multichannel Signals for Frame-Based Processing” on page 2-32
• “Sample- and Frame-Based Concepts” on page 3-2
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Create Multichannel Signals for Frame-Based Processing

In this section...
“Multichannel Signals for Frame-Based Processing” on page 2-24
“Create Multichannel Signals Using Concatenate Block” on page 2-24

In frame-based processing, blocks process data one frame at a time. Each frame of data contains
sequential samples from an independent channel. Each channel is represented by a column of the
input signal. For example, from a frame-based processing perspective, the following 3-by-2 matrix has
two channels, each of which contains three samples.

When you configure a block to perform frame-based processing, the block interprets an M-by-1 vector
as a single-channel signal containing M samples per frame. Similarly, the block interprets an M-by-N
matrix as a multichannel signal with N independent channels and M samples per channel. For
example, in frame-based processing, blocks interpret the following sequence of 3-by-2 matrices as a
two-channel signal with a frame size of 3.

Using frame-based processing is advantageous for many signal processing applications because you
can process multiple samples at once. By buffering your data into frames and processing multisample
frames of data, you can often improve the computational time of your signal processing algorithms.
To perform frame-based processing, you must have a DSP System Toolbox license.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.
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Multichannel Signals for Frame-Based Processing
When you want to perform the same operations on several independent signals, you can group those
signals together as a multichannel signal. For example, if you need to filter each of four independent
signals using the same direct-form II transposed filter, you can combine the signals into a
multichannel signal, and connect the signal to a single Biquad Filter block. The block decides to treat
each column of the input as a channel when you set the block's Input processing parameter to
Columns as channels (frame based). The block then applies the filter to each channel
independently.

A signal with N channels and frame size M is represented by a matrix of size M-by-N. Multiple
individual signals with the same frame rate and frame size can be combined into a single
multichannel signal using the Simulink Matrix Concatenate block. Individual signals can be added to
an existing multichannel signal in the same way.

Create Multichannel Signals Using Concatenate Block
You can combine independent signals into a larger multichannel signal by using the Simulink
Concatenate block. All signals must have the same frame rate and frame size. In this example, a
single-channel signal is combined with a two-channel signal to produce a three-channel signal:

1 Open the Matrix Concatenate Example 3 model by typing

ex_combiningfbsigs

at the MATLAB command line.
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2 Double-click the Signal From Workspace block. Set the block parameters as follows:

• Signal = [1:10;-1:-1:-10]'
• Sample time = 1
• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a signal with a frame size
of four.

3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the Signal From Workspace1 block. Set the block parameters as follows, and then

click OK:

• Signal = 5*ones(10,1)
• Sample time = 1
• Samples per frame = 4

The Signal From Workspace1 block has the same sample time and frame size as the Signal From
Workspace block. To combine single-channel signals into a multichannel signal, the signals must
have the same frame rate and the same frame size.

5 Double-click the Matrix Concatenate block. Set the block parameters as follows, and then click
OK:

• Number of inputs = 2
• Mode = Multidimensional array
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• Concatenate dimension = 2
6 Run the model.

The 4-by-3 matrix output from the Matrix Concatenate block contains all three input channels,
and preserves their common frame rate and frame size.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Create Signals for Sample-Based Processing” on page 2-9
• “Create Signals for Frame-Based Processing” on page 2-13
• “Create Multichannel Signals for Sample-Based Processing” on page 2-18
• “Deconstruct Multichannel Signals for Sample-Based Processing” on page 2-27
• “Deconstruct Multichannel Signals for Frame-Based Processing” on page 2-32
• “Sample- and Frame-Based Concepts” on page 3-2
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Deconstruct Multichannel Signals for Sample-Based Processing
In this section...
“Split Multichannel Signals into Individual Signals” on page 2-27
“Split Multichannel Signals into Several Multichannel Signals” on page 2-29

In sample-based processing, blocks process signals one sample at a time. Each element of the input
signal represents one sample in a distinct channel. For example, from a sample-based processing
perspective, the following 3-by-2 matrix contains the first sample in each of six independent channels.

When you configure a block to perform sample-based processing, the block interprets scalar input as
a single-channel signal. Similarly, the block interprets an M-by-N matrix as multichannel signal with
M*N independent channels. For example, in sample-based processing, blocks interpret the following
sequence of 3-by-2 matrices as a six-channel signal.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.

Split Multichannel Signals into Individual Signals
Multichannel signals, represented by matrices in the Simulink environment, are frequently used in
signal processing models for efficiency and compactness. Though most of the signal processing
blocks can process multichannel signals, you may need to access just one channel or a particular
range of samples in a multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the Selector, Submatrix,
Variable Selector, Multiport Selector, and Submatrix blocks.

You can split a multichannel based signal into single-channel signals using the Multiport Selector
block. This block allows you to select specific rows and/or columns and propagate the selection to a
chosen output port. In this example, a three-channel signal of size 3-by-1 is deconstructed into three
independent signals of sample period 1 second.

1 Open the Multiport Selector Example 1 model by typing ex_splitmltichsbsigsind at the
MATLAB command line.
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2 Double-click the Signal From Workspace block, and set the block parameters as follows:

• Signal = randn(3,1,10)
• Sample time = 1
• Samples per frame = 1

Based on these parameters, the Signal From Workspace block outputs a three-channel signal
with a sample period of 1 second.

3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the Multiport Selector block. Set the block parameters as follows, and then click

OK:

• Select = Rows
• Indices to output = {1,2,3}

Based on these parameters, the Multiport Selector block extracts the rows of the input. The
Indices to output parameter setting specifies that row 1 of the input should be reproduced at
output 1, row 2 of the input should be reproduced at output 2, and row 3 of the input should be
reproduced at output 3.

5 Run the model.
6 At the MATLAB command line, type dsp_examples_yout.

The following is a portion of what is displayed at the MATLAB command line. Because the input
signal is random, your output might be different than the output show here.

dsp_examples_yout(:,:,1) =
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   -0.1199

dsp_examples_yout(:,:,2) =

   -0.5955

dsp_examples_yout(:,:,3) =

   -0.0793

This signal is the first row of the input to the Multiport Selector block. You can view the other
two input rows by typing dsp_examples_yout1 and dsp_examples_yout2, respectively.

You have now successfully created three single-channel signals from a multichannel signal using a
Multiport Selector block.

Split Multichannel Signals into Several Multichannel Signals
Multichannel signals, represented by matrices in the Simulink environment, are frequently used in
signal processing models for efficiency and compactness. Though most of the signal processing
blocks can process multichannel signals, you may need to access just one channel or a particular
range of samples in a multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the Selector, Submatrix,
Variable Selector, Multiport Selector, and Submatrix blocks.

You can split a multichannel signal into other multichannel signals using the Submatrix block. The
Submatrix block is the most versatile of the blocks in the Indexing library because it allows arbitrary
channel selections. Therefore, you can extract a portion of a multichannel signal. In this example, you
extract a six-channel signal from a 35-channel signal (a matrix of size 5-by-7). Each channel contains
one sample.

1 Open the Submatrix Example model by typing ex_splitmltichsbsigsev at the MATLAB
command line.
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2 Double-click the Constant block, and set the block parameters as follows:

• Constant value = rand(5,7)
• Interpret vector parameters as 1–D = Clear this check box
• Sample Time = 1

Based on these parameters, the Constant block outputs a constant-valued signal.
3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the Submatrix block. Set the block parameters as follows, and then click OK:

• Row span = Range of rows
• Starting row = Index
• Starting row index = 3
• Ending row = Last
• Column span = Range of columns
• Starting column = Offset from last
• Starting column offset = 1
• Ending column = Last

Based on these parameters, the Submatrix block outputs rows three to five, the last row of the
input signal. It also outputs the second to last column and the last column of the input signal.

5 Run the model.

The model should now look similar to the following figure.
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Notice that the output of the Submatrix block is equivalent to the matrix created by rows three
through five and columns six through seven of the input matrix.

You have now successfully created a six-channel signal from a 35-channel signal using a Submatrix
block. Each channel contains one sample.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Create Signals for Sample-Based Processing” on page 2-9
• “Create Signals for Frame-Based Processing” on page 2-13
• “Create Multichannel Signals for Sample-Based Processing” on page 2-18
• “Create Multichannel Signals for Frame-Based Processing” on page 2-23
• “Deconstruct Multichannel Signals for Frame-Based Processing” on page 2-32
• “Import and Export Signals for Sample-Based Processing” on page 2-38
• “Import and Export Signals for Frame-Based Processing” on page 2-47
• “Inspect Sample and Frame Rates in Simulink” on page 3-6
• “Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16
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Deconstruct Multichannel Signals for Frame-Based Processing

In this section...
“Split Multichannel Signals into Individual Signals” on page 2-33
“Reorder Channels in Multichannel Signals” on page 2-35

In frame-based processing, blocks process data one frame at a time. Each frame of data contains
sequential samples from an independent channel. Each channel is represented by a column of the
input signal. For example, from a frame-based processing perspective, the following 3-by-2 matrix has
two channels, each of which contains three samples.

When you configure a block to perform frame-based processing, the block interprets an M-by-1 vector
as a single-channel signal containing M samples per frame. Similarly, the block interprets an M-by-N
matrix as a multichannel signal with N independent channels and M samples per channel. For
example, in frame-based processing, blocks interpret the following sequence of 3-by-2 matrices as a
two-channel signal with a frame size of 3.

Using frame-based processing is advantageous for many signal processing applications because you
can process multiple samples at once. By buffering your data into frames and processing multisample
frames of data, you can often improve the computational time of your signal processing algorithms.
To perform frame-based processing, you must have a DSP System Toolbox license.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.
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Split Multichannel Signals into Individual Signals
Multichannel signals, represented by matrices in the Simulink environment, are frequently used in
signal processing models for efficiency and compactness. Though most of the signal processing
blocks can process multichannel signals, you may need to access just one channel or a particular
range of samples in a multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the Selector, Submatrix,
Variable Selector, Multiport Selector, and Submatrix blocks. It is also possible to use the Permute
Matrix block, in the Matrix operations library, to reorder the channels of a frame-based signal.

You can use the Multiport Selector block in the Indexing library to extract the individual channels of a
multichannel signal. These signals form single-channel signals that have the same frame rate and
frame size of the multichannel signal.

The figure below is a graphical representation of this process.

In this example, you use the Multiport Selector block to extract a single-channel signal and a two
channel signal from a multichannel signal. Each channel contains four samples.

1 Open the Multiport Selector Example 2 model by typing ex_splitmltichfbsigsind

at the MATLAB command line.
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2 Double-click the Signal From Workspace block, and set the block parameters as follows:

• Signal = [1:10;-1:-1:-10;5*ones(1,10)]'
• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a three-channel signal
with a frame size of four.

3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the Multiport Selector block. Set the block parameters as follows, and then click

OK:

• Select = Columns
• Indices to output = {[1 3],2}

Based on these parameters, the Multiport Selector block outputs the first and third columns at
the first output port and the second column at the second output port of the block. Setting the
Select parameter to Columns ensures that the block preserves the frame rate and frame size of
the input.

5 Run the model.

The figure below is a graphical representation of how the Multiport Selector block splits one
frame of the three-channel signal into a single-channel signal and a two-channel signal.
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The Multiport Selector block outputs a two-channel signal, comprised of the first and third column of
the input signal, at the first port. It outputs a single-channel comprised of the second column of the
input signal, at the second port.

You have now successfully created a single-channel signal and a two-channel signal from a
multichannel signal using the Multiport Selector block.

Reorder Channels in Multichannel Signals
Multichannel signals, represented by matrices in Simulink, are frequently used in signal processing
models for efficiency and compactness. Though most of the signal processing blocks can process
multichannel signals, you may need to access just one channel or a particular range of samples in a
multichannel signal. You can access individual channels of the multichannel signal by using the blocks
in the Indexing library. This library includes the Selector, Submatrix, Variable Selector, Multiport
Selector, and Submatrix blocks. It is also possible to use the Permute Matrix block, in the Matrix
operations library, to reorder the channels of a frame signal.

Some DSP System Toolbox blocks have the ability to process the interaction of channels. Typically,
DSP System Toolbox blocks compare channel one of signal A to channel one of signal B. However, you
might want to correlate channel one of signal A with channel three of signal B. In this case, in order
to compare the correct signals, you need to use the Permute Matrix block to rearrange the channels
of your signals. This example explains how to accomplish this task.

1 Open the Permute Matrix Example model by typing ex_reordermltichfbsigs at the MATLAB
command line.
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2 Double-click the Signal From Workspace block, and set the block parameters as follows:

• Signal = [1:10;-1:-1:-10;5*ones(1,10)]'
• Sample time = 1
• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a three-channel signal
with a sample period of 1 second and a frame size of 4. The frame period of this block is 4
seconds.

3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the Constant block. Set the block parameters as follows, and then click OK:

• Constant value = [1 3 2]
• Interpret vector parameters as 1–D = Clear this check box
• Sample time = 4

The discrete-time vector output by the Constant block tells the Permute Matrix block to swap the
second and third columns of the input signal. Note that the frame period of the Constant block
must match the frame period of the Signal From Workspace block.

5 Double-click the Permute Matrix block. Set the block parameters as follows, and then click OK:

• Permute = Columns
• Index mode = One-based

Based on these parameters, the Permute Matrix block rearranges the columns of the input signal,
and the index of the first column is now one.

6 Run the model.

The figure below is a graphical representation of what happens to the first input frame during
simulation.
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The second and third channel of the input signal are swapped.
7 At the MATLAB command line, type yout.

You can now verify that the second and third columns of the input signal are rearranged.

You have now successfully reordered the channels of a frame signal using the Permute Matrix block.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Create Signals for Sample-Based Processing” on page 2-9
• “Create Signals for Frame-Based Processing” on page 2-13
• “Create Multichannel Signals for Sample-Based Processing” on page 2-18
• “Create Multichannel Signals for Frame-Based Processing” on page 2-23
• “Deconstruct Multichannel Signals for Sample-Based Processing” on page 2-27
• “Import and Export Signals for Sample-Based Processing” on page 2-38
• “Import and Export Signals for Frame-Based Processing” on page 2-47
• “Inspect Sample and Frame Rates in Simulink” on page 3-6
• “Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16
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Import and Export Signals for Sample-Based Processing
In this section...
“Import Vector Signals for Sample-Based Processing” on page 2-38
“Import Matrix Signals for Sample-Based Processing” on page 2-40
“Export Signals for Sample-Based Processing” on page 2-43

In sample-based processing, blocks process signals one sample at a time. Each element of the input
signal represents one sample in a distinct channel. For example, from a sample-based processing
perspective, the following 3-by-2 matrix contains the first sample in each of six independent channels.

When you configure a block to perform sample-based processing, the block interprets scalar input as
a single-channel signal. Similarly, the block interprets an M-by-N matrix as multichannel signal with
M*N independent channels. For example, in sample-based processing, blocks interpret the following
sequence of 3-by-2 matrices as a six-channel signal.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.

Import Vector Signals for Sample-Based Processing
The Signal From Workspace block generates a vector signal for sample-based processing when the
variable or expression in the Signal parameter is a matrix and the Samples per frame parameter is
set to 1. Each column of the input matrix represents a different channel. Beginning with the first row
of the matrix, the block outputs one row of the matrix at each sample time. Therefore, if the Signal
parameter specifies an M-by-N matrix, the output of the Signal From Workspace block is M 1-by-N
row vectors representing N channels.

The figure below is a graphical representation of this process for a 6-by-4 workspace matrix, A.
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In the following example, you use the Signal From Workspace block to import the vector signal into
your model.

1 Open the Signal From Workspace Example 3 model by typing ex_importsbvectorsigs at the
MATLAB command line.

2 At the MATLAB command line, type A = [1:100;-1:-1:-100]';

The matrix A represents a two column signal, where each column is a different channel.
3 At the MATLAB command line, type B = 5*ones(100,1);

The vector B represents a single-channel signal.
4 Double-click the Signal From Workspace block, and set the block parameters as follows:

• Signal = [A B]
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• Sample time = 1
• Samples per frame = 1
• Form output after final data value = Setting to zero

The Signal expression [A B] uses the standard MATLAB syntax for horizontally concatenating
matrices and appends column vector B to the right of matrix A. The Signal From Workspace block
outputs a signal with a sample period of 1 second. After the block has output the signal, all
subsequent outputs have a value of zero.

5 Save these parameters and close the dialog box by clicking OK.
6 Run the model.

The following figure is a graphical representation of the model's behavior during simulation.

The first row of the input matrix [A B] is output at time t=0, the second row of the input matrix
is output at time t=1, and so on.

You have now successfully imported a vector signal with three channels into your signal processing
model using the Signal From Workspace block.

Import Matrix Signals for Sample-Based Processing
The Signal From Workspace block generates a matrix signal that is convenient for sample-based
processing. Beginning with the first page of the array, the block outputs a single page of the array to
the output at each sample time. Therefore, if the Signal parameter specifies an M-by-N-by-P array,
the output of the Signal From Workspace block is P M-by-N matrices representing M*N channels. The
block receiving this signal does sample-based processing or frame-based processing on the signal
based on the parameters set in the block dialog box.

The following figure is a graphical illustration of this process for a 6-by-4-by-5 workspace array A.
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In the following example, you use the Signal From Workspace block to import a four-channel matrix
signal into a Simulink model.

1 Open the Signal From Workspace Example 4 model by typing ex_importsbmatrixsigs at the
MATLAB command line.

Also, the following variables are loaded into the MATLAB workspace:

Fs 1x1 8 double array
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dsp_examples_A 2x2x100 3200 double array
dsp_examples_sig1 1x1x100 800 double array
dsp_examples_sig12 1x2x100 1600 double array
dsp_examples_sig2 1x1x100 800 double array
dsp_examples_sig3 1x1x100 800 double array
dsp_examples_sig34 1x2x100 1600 double array
dsp_examples_sig4 1x1x100 800 double array
mtlb 4001x1 32008 double array

2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then
click OK:

• Signal = dsp_examples_A
• Sample time = 1
• Samples per frame = 1
• Form output after final data value = Setting to zero

The dsp_examples_A array represents a four-channel signal with 100 samples in each channel.
This is the signal that you want to import, and it was created in the following way:

dsp_examples_sig1 = reshape(1:100,[1 1 100])
dsp_examples_sig2 = reshape(-1:-1:-100,[1 1 100])
dsp_examples_sig3 = zeros(1,1,100)
dsp_examples_sig4 = 5*ones(1,1,100)
dsp_examples_sig12 = cat(2,sig1,sig2)
dsp_examples_sig34 = cat(2,sig3,sig4)
dsp_examples_A = cat(1,sig12,sig34)    % 2-by-2-by-100 array

3 Run the model.

The figure below is a graphical representation of the model's behavior during simulation.
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The Signal From Workspace block imports the four-channel signal from the MATLAB workspace
into the Simulink model one matrix at a time.

You have now successfully imported a 4-channel matrix signal into your model using the Signal From
Workspace block.

Export Signals for Sample-Based Processing
The To Workspace and Triggered To Workspace blocks are the primary blocks for exporting signals of
all dimensions from a Simulink model to the MATLAB workspace.

A signal with M*N channels, is represented in Simulink as a sequence of M-by-N matrices. When the
input to the To Workspace block is a signal created for sample-based processing, the block creates an
M-by-N-by-P array in the MATLAB workspace containing the P most recent samples from each
channel. The number of pages, P, is specified by the Limit data points to last parameter. The
newest samples are added at the end of the array.

The following figure is the graphical illustration of this process using a 6-by-4 signal exported to
workspace array A.

The workspace array always has time running along its third dimension, P. Samples are saved along
the P dimension whether the input is a matrix, vector, or scalar (single channel case).

In the following example you use a To Workspace block to export a matrix signal to the MATLAB
workspace.

1 Open the Signal From Workspace Example 6 model by typing ex_exportsbsigs at the MATLAB
command line.
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Also, the following variables are loaded into the MATLAB workspace:

dsp_examples_A 2x2x100 3200 double array
dsp_examples_sig1 1x1x100 800 double array
dsp_examples_sig12 1x2x100 1600 double array
dsp_examples_sig2 1x1x100 800 double array
dsp_examples_sig3 1x1x100 800 double array
dsp_examples_sig34 1x2x100 1600 double array
dsp_examples_sig4 1x1x100 800 double array

In this model, the Signal From Workspace block imports a four-channel matrix signal called
dsp_examples_A. This signal is then exported to the MATLAB workspace using a To Workspace
block.

2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then
click OK:

• Signal = dsp_examples_A
• Sample time = 1
• Samples per frame = 1
• Form output after final data value = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a signal with a sample
period of 1 second. After the block has output the signal, all subsequent outputs have a value of
zero.

3 Double-click the To Workspace block. Set the block parameters as follows, and then click OK:
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• Variable name = dsp_examples_yout
• Limit data points to last parameter to inf
• Decimation = 1

Based on these parameters, the To Workspace block exports its input signal to a variable called
dsp_examples_yout in the MATLAB workspace. The workspace variable can grow indefinitely
large in order to capture all of the input data. The signal is not decimated before it is exported to
the MATLAB workspace.

4 Run the model.
5 At the MATLAB command line, type dsp_examples_yout.

The four-channel matrix signal, dsp_examples_A, is output at the MATLAB command line. The
following is a portion of the output that is displayed.

dsp_examples_yout(:,:,1) =

     1    -1
     0     5

dsp_examples_yout(:,:,2) =

     2    -2
     0     5

dsp_examples_yout(:,:,3) =

     3    -3
     0     5

dsp_examples_yout(:,:,4) =

     4    -4
     0     5

Each page of the output represents a different sample time, and each element of the matrices is in a
separate channel.

You have now successfully exported a four-channel matrix signal from a Simulink model to the
MATLAB workspace using the To Workspace block.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Create Signals for Sample-Based Processing” on page 2-9
• “Create Signals for Frame-Based Processing” on page 2-13
• “Create Multichannel Signals for Sample-Based Processing” on page 2-18
• “Create Multichannel Signals for Frame-Based Processing” on page 2-23
• “Deconstruct Multichannel Signals for Sample-Based Processing” on page 2-27
• “Deconstruct Multichannel Signals for Frame-Based Processing” on page 2-32
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• “Import and Export Signals for Frame-Based Processing” on page 2-47
• “Inspect Sample and Frame Rates in Simulink” on page 3-6
• “Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16
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Import and Export Signals for Frame-Based Processing

In this section...
“Import Signals for Frame-Based Processing” on page 2-48
“Export Frame-Based Signals” on page 2-50

In frame-based processing, blocks process data one frame at a time. Each frame of data contains
sequential samples from an independent channel. Each channel is represented by a column of the
input signal. For example, from a frame-based processing perspective, the following 3-by-2 matrix has
two channels, each of which contains three samples.

When you configure a block to perform frame-based processing, the block interprets an M-by-1 vector
as a single-channel signal containing M samples per frame. Similarly, the block interprets an M-by-N
matrix as a multichannel signal with N independent channels and M samples per channel. For
example, in frame-based processing, blocks interpret the following sequence of 3-by-2 matrices as a
two-channel signal with a frame size of 3.

Using frame-based processing is advantageous for many signal processing applications because you
can process multiple samples at once. By buffering your data into frames and processing multisample
frames of data, you can often improve the computational time of your signal processing algorithms.
To perform frame-based processing, you must have a DSP System Toolbox license.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.
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Import Signals for Frame-Based Processing
The Signal From Workspace block creates a multichannel signal for frame-based processing when the
Signal parameter is a matrix, and the Samples per frame parameter, M, is greater than 1.
Beginning with the first M rows of the matrix, the block releases M rows of the matrix (that is, one
frame from each channel) to the output port every M*Ts seconds. Therefore, if the Signal parameter
specifies a W-by-N workspace matrix, the Signal From Workspace block outputs a series of M-by-N
matrices representing N channels. The workspace matrix must be oriented so that its columns
represent the channels of the signal.

The figure below is a graphical illustration of this process for a 6-by-4 workspace matrix, A, and a
frame size of 2.

Note Although independent channels are generally represented as columns, a single-channel signal
can be represented in the workspace as either a column vector or row vector. The output from the
Signal From Workspace block is a column vector in both cases.

In the following example, you use the Signal From Workspace block to create a three-channel frame
signal and import it into the model:

1 Open the Signal From Workspace Example 5 model by typing

ex_importfbsigs

at the MATLAB command line.

dsp_examples_A = [1:100;-1:-1:-100]';  % 100-by-2 matrix
dsp_examples_B = 5*ones(100,1);         % 100-by-1 column vector

The variable called dsp_examples_A represents a two-channel signal with 100 samples, and the
variable called dsp_examples_B represents a one-channel signal with 100 samples.

Also, the following variables are defined in the MATLAB workspace:
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2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then
click OK:

• Signal parameter to [dsp_examples_A dsp_examples_B]
• Sample time parameter to 1
• Samples per frame parameter to 4
• Form output after final data value parameter to Setting to zero

Based on these parameters, the Signal From Workspace block outputs a signal with a frame size
of 4 and a sample period of 1 second. The signal's frame period is 4 seconds. The Signal
parameter uses the standard MATLAB syntax for horizontally concatenating matrices to append
column vector dsp_examples_B to the right of matrix dsp_examples_A. After the block has
output the signal, all subsequent outputs have a value of zero.

3 Run the model.

The figure below is a graphical representation of how your three-channel frame signal is
imported into your model.

You have now successfully imported a three-channel frame signal into your model using the Signal
From Workspace block.
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Export Frame-Based Signals
The To Workspace and Triggered To Workspace blocks are the primary blocks for exporting signals of
all dimensions from a Simulink model to the MATLAB workspace.

A signal with N channels and frame size M is represented by a sequence of M-by-N matrices. When
this signal is input to the To Workspace block, the block creates a P-by-N array in the MATLAB
workspace containing the P most recent samples from each channel. The number of rows, P, is
specified by the Limit data points to last parameter. The newest samples are added at the bottom
of the matrix.

The following figure is a graphical illustration of this process for three consecutive frames of a signal
with a frame size of 2 that is exported to matrix A in the MATLAB workspace.

In the following example, you use a To Workspace block to export a three-channel signal with four
samples per frame to the MATLAB workspace.

1 Open the Signal From Workspace Example 7 model by typing ex_exportfbsigs at the MATLAB
command line.
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Also, the following variables are defined in the MATLAB workspace:

The variable called dsp_examples_A represents a two-channel signal with 100 samples, and the
variable called dsp_examples_B represents a one-channel signal with 100 samples.

dsp_examples_A = [1:100;-1:-1:-100]';    % 100-by-2 matrix
dsp_examples_B = 5*ones(100,1);            % 100-by-1 column vector

2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then
click OK:

• Signal = [dsp_examples_A dsp_examples_B]
• Sample time = 1
• Samples per frame = 4
• Form output after final data value = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a signal with a frame size
of 4 and a sample period of 1 second. The signal's frame period is 4 seconds. The Signal
parameter uses the standard MATLAB syntax for horizontally concatenating matrices to append
column vector dsp_examples_B to the right of matrix dsp_examples_A. After the block has
output the signal, all subsequent outputs have a value of zero.

3 Double-click the To Workspace block. Set the block parameters as follows, and then click OK:

• Variable name = dsp_examples_yout
• Limit data points to last = inf
• Decimation = 1
• Frames = Concatenate frames (2-D array)

Based on these parameters, the To Workspace block exports its input signal to a variable called
dsp_examples_yout in the MATLAB workspace. The workspace variable can grow indefinitely
large in order to capture all of the input data. The signal is not decimated before it is exported to
the MATLAB workspace, and each input frame is vertically concatenated to the previous frame to
produce a 2-D array output.
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4 Run the model.

The following figure is a graphical representation of the model's behavior during simulation.

5 At the MATLAB command line, type dsp_examples_yout.

The output is shown below:

dsp_examples_yout =

     1    -1     5
     2    -2     5
     3    -3     5
     4    -4     5
     5    -5     5
     6    -6     5
     7    -7     5
     8    -8     5
     9    -9     5
    10   -10     5
    11   -11     5
    12   -12     5

The frames of the signal are concatenated to form a two-dimensional array.

You have now successfully output a frame signal to the MATLAB workspace using the To Workspace
block.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Create Signals for Sample-Based Processing” on page 2-9
• “Create Signals for Frame-Based Processing” on page 2-13
• “Create Multichannel Signals for Sample-Based Processing” on page 2-18
• “Create Multichannel Signals for Frame-Based Processing” on page 2-23
• “Deconstruct Multichannel Signals for Sample-Based Processing” on page 2-27
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• “Deconstruct Multichannel Signals for Frame-Based Processing” on page 2-32
• “Import and Export Signals for Sample-Based Processing” on page 2-38
• “Inspect Sample and Frame Rates in Simulink” on page 3-6
• “Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16
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Data and Signal Management

Learn concepts such as sample- and frame-based processing, sample rate, delay and latency.

• “Sample- and Frame-Based Concepts” on page 3-2
• “Inspect Sample and Frame Rates in Simulink” on page 3-6
• “Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16
• “Convert Sample and Frame Rates in Simulink Using Frame Rebuffering Blocks” on page 3-23
• “Buffering and Frame-Based Processing” on page 3-29
• “Delay and Latency” on page 3-40
• “Variable-Size Signal Support DSP System Objects” on page 3-51
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Sample- and Frame-Based Concepts
In this section...
“Sample- and Frame-Based Signals” on page 3-2
“Model Sample- and Frame-Based Signals in MATLAB and Simulink” on page 3-2
“What Is Sample-Based Processing?” on page 3-3
“What Is Frame-Based Processing?” on page 3-3

Sample- and Frame-Based Signals
Sample-based signals are the most basic type of signal and are the easiest to construct from a real-
world (physical) signal. You can create a sample-based signal by sampling a physical signal at a given
sample rate, and outputting each individual sample as it is received. In general, most Digital-to-
Analog converters output sample-based signals.

You can create frame-based signals from sample-based signals. When you buffer a batch of N
samples, you create a frame of data. You can then output sequential frames of data at a rate that is
1/N times the sample rate of the original sample-based signal. The rate at which you output the
frames of data is also known as the frame rate of the signal.

Frame-based data is a common format in real-time systems. Data acquisition hardware often operates
by accumulating a large number of signal samples at a high rate. The hardware then propagates
those samples to the real-time system as a block of data. Doing so maximizes the efficiency of the
system by distributing the fixed process overhead across many samples. The faster data acquisition is
suspended by slower interrupt processes after each frame is acquired, rather than after each
individual sample. See “Benefits of Frame-Based Processing” on page 3-4 for more information.

DSP System Toolbox Source
Blocks

Create Sample-Based
Signals

Create Frame-Based Signals

Chirp X X
Constant X X
Colored Noise X X
Discrete Impulse X X
From Multimedia File X X
Identity Matrix X  
Multiphase Clock X X
N-Sample Enable X X
Random Source X  
Signal From Workspace X X
Sine Wave X X
UDP Receive X  

Model Sample- and Frame-Based Signals in MATLAB and Simulink
When you process signals using DSP System Toolbox software, you can do so in either a sample- or
frame-based manner. When you are working with blocks in Simulink, you can specify, on a block-by-
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block basis, which type of processing the block performs. In most cases, you specify the processing
mode by setting the Input processing parameter. When you are using System objects in MATLAB,
only frame-based processing is available. The following table shows the common parameter settings
you can use to perform sample- and frame-based processing in MATLAB and Simulink.

 Sample-Based Processing Frame-Based Processing
Simulink — Blocks Input processing = Elements

as channels (sample
based)

Input processing = Columns
as channels (frame
based)

What Is Sample-Based Processing?
In sample-based processing, blocks process signals one sample at a time. Each element of the input
signal represents one sample in a distinct channel. For example, from a sample-based processing
perspective, the following 3-by-2 matrix contains the first sample in each of six independent channels.

When you configure a block to perform sample-based processing, the block interprets scalar input as
a single-channel signal. Similarly, the block interprets an M-by-N matrix as multichannel signal with
M*N independent channels. For example, in sample-based processing, blocks interpret the following
sequence of 3-by-2 matrices as a six-channel signal.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.

What Is Frame-Based Processing?
In frame-based processing, blocks process data one frame at a time. Each frame of data contains
sequential samples from an independent channel. Each channel is represented by a column of the
input signal. For example, from a frame-based processing perspective, the following 3-by-2 matrix has
two channels, each of which contains three samples.
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When you configure a block to perform frame-based processing, the block interprets an M-by-1 vector
as a single-channel signal containing M samples per frame. Similarly, the block interprets an M-by-N
matrix as a multichannel signal with N independent channels and M samples per channel. For
example, in frame-based processing, blocks interpret the following sequence of 3-by-2 matrices as a
two-channel signal with a frame size of 3.

Using frame-based processing is advantageous for many signal processing applications because you
can process multiple samples at once. By buffering your data into frames and processing multisample
frames of data, you can often improve the computational time of your signal processing algorithms.
To perform frame-based processing, you must have a DSP System Toolbox license.

For more information about the recent changes to frame-based processing, see the “Frame-based
processing changes” section of the DSP System Toolbox Release Notes.

Benefits of Frame-Based Processing

Frame-based processing is an established method of accelerating both real-time systems and model
simulations.

Accelerate Real-Time Systems

Frame-based data is a common format in real-time systems. Data acquisition hardware often operates
by accumulating a large number of signal samples at a high rate, and then propagating those samples
to the real-time system as a block of data. This type of propagation maximizes the efficiency of the
system by distributing the fixed process overhead across many samples; the faster data acquisition is
suspended by slower interrupt processes after each frame is acquired, rather than after each
individual sample is acquired.
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The following figure illustrates how frame-based processing increases throughput. The thin blocks
each represent the time elapsed during acquisition of a sample. The thicker blocks each represent the
time elapsed during the interrupt service routine (ISR) that reads the data from the hardware.

In this example, the frame-based operation acquires a frame of 16 samples between each ISR. Thus,
the frame-based throughput rate is many times higher than the sample-based alternative.

Be aware that frame-based processing introduces a certain amount of latency into a process due to
the inherent lag in buffering the initial frame. In many instances, however, you can select frame sizes
that improve throughput without creating unacceptable latencies. For more information, see “Delay
and Latency” on page 3-40.

Accelerate Model Simulations

The simulation of your model also benefits from frame-based processing. In this case, you reduce the
overhead of block-to-block communications by propagating frames of data rather than individual
samples.

See Also

Related Examples
• Frame-Based Processing in Simulink

More About
• “Inspect Sample and Frame Rates in Simulink” on page 3-6
• “Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16
• “Convert Sample and Frame Rates in Simulink Using Frame Rebuffering Blocks” on page 3-23
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Inspect Sample and Frame Rates in Simulink
In this section...
“Sample Rate and Frame Rate” on page 3-6
“Inspect Signal Rates Using Color Coding” on page 3-7
“Use Model Data Editor or Probe to Inspect Signals” on page 3-15

Simulink enables you to model single-rate and multirate discrete systems. In a single-rate system, all
the blocks in the model operate at the same rate. In a multirate system, different blocks operate at
different rates. You can control the rate of block execution in a model by specifying the sample time
(Simulink) (inverse of sample rate) at the block level. The sample time of a block indicates when the
block generates outputs or updates its internal state. For more details on block execution rates, see
“Sample Time” (Simulink). You can access sample time information interactively using tools such as
Timing Legend and Model Data Editor.

This topic starts by defining basic concepts such as samples and frames, sample time (also known as
sample period), sample rate, frame period, and frame rate, all in the context of a Simulink model. The
topic then explains how to inspect sample rates and frame rates in a Simulink model using color
coding and Timing Legend.

Sample Rate and Frame Rate
Samples and Frames

Sample is a value or a set of values of a signal at a given time instant. A frame can be a vector or
matrix of samples of consecutive times stacked together. For more details on samples and frames, see
“Sample- and Frame-Based Concepts” on page 3-2.

Sample Time (or Sample Period)

Sample time Ts of a block is the parameter that indicates when the block during simulation produces
outputs and, if appropriate, updates its internal state. Sample time is the time interval between
individual samples in a frame.

Sample Rate

The sample rate of a signal is the reciprocal of the sample time (or sample period) Ts. Mathematically,
the sample rate can be represented using 1/Ts.

In most cases, when you build a Simulink model, you need to set sample rates for only the source
blocks. Simulink automatically computes the appropriate sample rates for the blocks connected to the
source blocks.

Frame Period and its Relationship to the Sample Period

The frame period Tf is given by the product of the sample time Ts and the frame size M, and it is
represented using the following equation:

Frame Rate

The frame rate of a signal is the reciprocal of the frame period Tf and can be represented using 1/Tf .
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This diagram shows a single-channel signal with a frame size M of 4 and a frame period Tf of 1
second. The sample period Ts is therefore 1/4 or 0.25 seconds.

In most cases, the sequence sample time Ts is more important, while the frame rate is simply a
consequence of the frame size that you choose for the signal. For a sequence with a given sample
time, a larger frame size corresponds to a slower frame rate and vice versa.

Input and Output Sample and Frame Period

In Simulink, blocks can have different rates for their inputs and outputs (rate conversion blocks). The
frame period and frame rate at the input and output of the block is calculated based on the sample
time and the signal frame size. In most cases, when you build a Simulink model, you need to set
sample rates for only the source blocks. Simulink automatically computes the appropriate sample
rates for the blocks connected to the source blocks.

The input frame period (Tfi) of a signal is the time interval between consecutive frame inputs to a
block. Similarly, the output frame period (Tfo) is the time at which the block updates the frame vector
or matrix value at the output port.

More specifically, the sample time of inputs (Tsi) and outputs (Tso) are related to their respective
frame periods by the following equations:

where Mi and Mo are the input and output frame sizes, respectively.

Mathematically, the input frame rate is given by 1/Tf i and the output frame rate is given by 1/Tf o.

The block decides whether to process the signal one sample at a time or one frame at a time
depending on the settings in the block dialog box. For example, a Biquad Filter block with the Input
processing parameter set to Columns as channels (frame based) treats a 3-by-2 input signal
as a two-frame signal with three samples in each frame. If the Input processing parameter is set to
Elements as channels (sample based), the 3-by-2 input signal is treated as a six-channel
signal with one sample in each channel. For more details, see “Sample- and Frame-Based Concepts”
on page 3-2.

Inspect Signal Rates Using Color Coding
You can inspect the sample rate and frame rate of signals in a Simulink model using color coding.
When you enable color coding, each sample time type (Simulink) in your model has one or more
colors associated with it. Furthermore, you can annotate these signals based on their sample time
and show this data in a Timing Legend. The Timing Legend contains the sample time color,
annotation, and value for each sample time in the model. For more details, see “View Sample Time
Information” (Simulink).
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The following two models enable you to inspect sample rate and frame rate of signals using the color
coding technique.

View Signal Sample Rate Using Sample Time Color Coding

Open the model 'ex_color_tut1'. In this model, the input signal is upsampled by a factor of 5
using the Upsample block, and the signal downsampled by a factor of 2 using the Downsample block.
The overall rate conversion factor is 5/2. The Signal From Workspace block that generates the input
signal has the Sample time parameter set to 2 seconds, and the Samples per frame parameter is
set to 1. The Input processing parameter in the Upsample and the Downsample blocks is set to
Elements as channels (sample based). This setting enables the blocks to treat each sample
they receive as an independent channel.

Enable Sample Time Color Coding

To enable sample time color coding in this model, on the Debug tab, select Information Overlays >
Colors. This selection turns on sample time color coding. Simulink now assigns each sample time in
the model a different color. In addition, to enable annotation for all sample times, select Information
Overlays > Text. Selecting both Colors and Text displays both the colors and the annotations. Run
the model. Every signal in this model has a different sample rate. Therefore, each signal is assigned a
different color.
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Inspect Sample Time Using Timing Legend

You can view the information on the sample time color, annotations, and the value of each sample
time in the model using a Timing Legend. To enable this legend, select Information Overlays >
Timing Legend. Simulink updates the model diagram and opens the Timing Legend. The Timing
Legend shows the values of the frame period of the signal. In this example, because the Upsample
and Downsample blocks treat each sample as an independent channel, and the Samples per frame
parameter of the source block is set to 1 and the frame period of the signal is the same as the sample
period (sample time) of the signal.

As you can see from the frame period values in the timing legend, signal D3 originating from the
source block is the slowest with a sample time of 2 seconds. The Upsample block increases the
sample rate of the signal by a factor of 5. As a result, the sample time reduces by a factor of 5 and
becomes 0.4 seconds. Furthermore, the signal is downsampled by a factor of 2, making the sample
time of the output signal D2 0.8 seconds.
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The legend provides two highlighting options:

• Highlighting the blocks and signals that the sample time originates from.
• Highlighting all the blocks and signals that contain the selected sample time.

To enable highlighting the origin of the sample times, click the Origin option from the Highlight
menu. Select a specific sample time from the list (D3 in this case) to see the source of this sample
time.

You can also click the type of the sample time to highlight all sources of a particular type of sample
time.
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To enable highlighting of all the blocks that contain a selected sample time, click the All option from
the Highlight menu.

The None option from the Highlight menu clears current highlighting.
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You can also display the sample rate (1/sample period) of the signal by clicking on the 1/p button. The
timing legend displays 1/period values.

View Signal Frame Rate Using Sample Time Color Coding

Open the model 'ex_color_tut2'. The Signal From Workspace block has the Sample time
parameter set to 1, and the Samples per frame parameter is set to 16. Each frame in the generated
signal contains 16 samples. The Input processing parameter in the Upsample and the Downsample
blocks is set to Columns as channels (frame based) and the Rate options parameter is set to
Allow multirate processing. This setting enables the Upsample and Downsample blocks to
operate in the multirate mode and treat data as frames of size 16.
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Enable Sample Time Color Coding

On the Debug tab, select Information Overlays > Colors and Text. This selection turns on sample
time color coding and annotations. Run the model. Simulink assigns each frame rate a different color.

Inspect Frame Rate Using Timing Legend

Enable the Timing Legend by selecting Information Overlays > Timing Legend. Simulink updates
the model and opens the Timing Legend. You can view the value of the frame period for each signal in
the model, the color associated with the frame period, and the corresponding annotation. For
example, the frame period of the input signal (denoted by D3 in the Timing Legend) is given by

 or , which equals 16 seconds. The D1 signal is upsampled by a factor of 5. As a result,
the frame period of D1 is 16/5 or 3.2 seconds. The signal D2 that follows is downsampled by 2, and
the resultant frame period is 3.2 x 2 = 6.4 seconds.
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Because the Rate options parameter in the Upsample and Downsample blocks is set to Allow
multirate processing, each of these blocks changes the frame rate. Therefore, each frame signal
in the model is assigned a different color.

You can view the frame rate of the signal by clicking the 1/p button in the timing legend.

Double-click on the Upsample block and the Downsample block, and change the Rate options
parameter to Enforce single-rate processing.

Run the model. Every signal now has the same frame period and is therefore coded with the same
color.
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Use Model Data Editor or Probe to Inspect Signals
There are two other techniques that you can use to inspect signals in your model: Model Data Editor
and Probe blocks.

Model Data Editor

The Model Data Editor (on the Modeling tab, click Model Data Editor) shows information about
model data (signals, parameters, and states) in a sortable, searchable table. The Sample Time
column shows the sample time specified for each signal in a model. After you update the block
diagram, the column also shows the specific sample that each signal uses (for example, for signals
where you specify inherited sample time, the column value is -1). You can also use this column to
specify sample times.

Probe blocks

You can connect Probe blocks to the signal that you want to inspect. The Probe blocks show signal
parameters such as signal width, sample time, signal complexity, and signal dimensions.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “View Sample Time Information” (Simulink)
• “Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16
• “Convert Sample and Frame Rates in Simulink Using Frame Rebuffering Blocks” on page 3-23
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Convert Sample and Frame Rates in Simulink Using Rate
Conversion Blocks

In this section...
“Rate Conversion Blocks” on page 3-16
“Rate Conversion by Frame-Rate Adjustment” on page 3-17
“Rate Conversion by Frame-Size Adjustment” on page 3-20

Rate Conversion Blocks
There are two common types of operations that impact the frame and sample rates of a signal: direct
rate conversion and frame rebuffering. Direct rate conversions such as upsampling and
downsampling can be implemented by altering either the frame rate or the frame size of a signal.
Frame rebuffering, which is used to alter the frame size of a signal in order to improve simulation
throughput, usually also changes either the sample rate or the frame rate of the signal. For more
details on the frame rebuffering technique, see “Convert Sample and Frame Rates in Simulink Using
Frame Rebuffering Blocks” on page 3-23.

This topic contains two models that show how to change the sample rate of a signal using the direct
rate conversion blocks. The following is a list of rate conversion blocks in DSP System Toolbox that
are not based on filters.

• Downsample
• Repeat
• Upsample

Note that the upsampling and downsampling operations can introduce imaging and aliasing in the
frequency domain, respectively. To prevent that from happening, use direct rate conversion blocks
that are filter-based. For a list of the direct rate conversion blocks and the topics that show how to
use these blocks, see “Multirate and Multistage Filters”.

Direct Rate Conversion Using the Rate options Parameter

In certain rate conversion blocks, the Rate options parameter determines whether the block
operates in the single-rate mode or the multirate mode.

When Rate options parameter is set to:

• Enforce single-rate processing: The block operates in the single-rate mode. The input and
output sample rates of the block remain the same. However, the signal frame size changes
according to the rate conversion factor specified in the block dialog box.

• Allow multirate processing: The block operates in the multirate mode. The input and
output frame sizes of the block remain the same. However, the signal frame rate changes
according to the rate conversion factor specified in the block dialog box.

When a Simulink model contains signals with various frame rates, the model is called multirate.
For more information on multirate models, see “Excess Algorithmic Delay (Tasking Latency)” on
page 3-45. Also see “Time-Based Scheduling and Code Generation” (Simulink Coder).
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The following two sections show how to change the sample rate of a signal using the two rate
conversion modes in the Downsample block.

Rate Conversion by Frame-Rate Adjustment
Adjust the frame rate of the signal by setting the Rate options parameter of the rate conversion
block to Allow multirate processing. In this mode, the sample rate of the signal changes by
changing the frame rate of the signal while keeping the frame size constant.

•

•

where,

•  is the output frame rate.
•  is the input frame rate.
•  is the output frame size.
•  is the input frame size.

The sample rate of the output signal  is given by the following equation:

The 'ex_downsample_tut1' model shows rate conversion by frame-rate adjustment.

Open the model. In this model, the input signal is downsampled by a factor of 2 using the
Downsample block. The Signal From Workspace block that generates the input signal has the
Sample time parameter set to 0.125 seconds and the Samples per frame parameter set to 8.
Therefore, the data generated by the block has a sample time of 0.125 seconds and a frame size of 8.
The Input processing parameter in the Downsample block is set to Columns as channels
(frame based), and the Rate options parameter is set to Allow multirate processing. This
setting enables the Downsample block to operate in the multirate mode and treat data as frames of
size 8.

In the Debug tab, select Information Overlays > Signal Dimensions. When you run the model,
the dimensions of the signals appear next to the lines connecting the blocks. The signal dimensions in
the model confirm that the frame size of the signal remains the same between the input and output of
the Downsample block.
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To see the change in frame rate, enable sample time color coding by selecting Information Overlays
> Colors.
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Furthermore, to enable the annotation and Timing Legend, select Information Overlays > Text and
Timing Legend. In the Timing Legend, you can view the value of the frame period for each signal in
the model, the color associated with the frame period, and the corresponding annotation. For
example, the frame period of the input signal (denoted by D1 in the Timing Legend) is given by

 or , which equals 1 second.
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The Timing Legend in the model verifies that the output from the Downsample block has a frame
period  of 2 seconds, which is twice the frame period of the input . However, because the frame
rate of the input  is 1 frame per second, and the frame rate of the output  is 0.5 frames per
second, the Downsample block actually downsampled the original signal to half its original rate. As a
result, the output sample period,  is doubled to 0.25 seconds without any change to the
frame size.

Rate Conversion by Frame-Size Adjustment
Adjust the frame size of the signal by setting the Rate options parameter of the rate conversion
block to Enforce single-rate processing. In this mode, the sample rate of the signal changes
by changing the frame size of the signal while keeping the frame rate constant.

•

•

where,

•  is the output frame size.
•  is the input frame size.
•  is the output frame rate.
•  is the input frame rate.

The sample rate of the output signal  is given by the following equation:

The 'ex_downsample_tut2' model shows rate conversion by frame-size adjustment.

Open the model. In this model, the input signal is downsampled by a factor of 2 using the
Downsample block. The Signal From Workspace block that generates the input signal has the
Sample time parameter set to 0.125 seconds, and the Samples per frame parameter is set to 8.
Therefore, the data generated by the block has a sample time of 0.125 seconds and a frame size of 8.
The Input processing parameter in the Downsample block is set to Columns as channels
(frame based), and the Rate options parameter is set to Enforce single-rate processing.
This setting enables the Downsample block to operate in the single-rate mode.

In the Debug tab, select Information Overlays > Signal Dimensions. When you run the model,
the dimensions of the signals appear next to the lines connecting the blocks. The signal dimensions in
the model confirm that the frame size of the signal decreases by a factor of 2 between the input and
output of the Downsample block.

3 Data and Signal Management

3-20



To see the effect on the frame rate, enable sample time color coding by selecting Information
Overlays > Colors. You can see that all the blocks and signals are in the same color because they are
operating at the same rate.

Furthermore, to enable the annotation and Timing Legend, select Information Overlays > Text and
Timing Legend. In the Timing Legend, you can view the value of the frame period for each signal in
the model, the color associated with the frame period, and the corresponding annotation. For
example, the frame period of the input signal (denoted by D1 in the Timing Legend) is given by

 or , which equals 1 second. Therefore, the input frame rate  is also 1
frame per second.
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The Downsample block downsampled the input signal to half its original frame size. The signal
dimensions of the output of the Downsample block confirm that the downsampled output has a frame
size of 4, which is half the frame size of the input. As a result, the sample period of the output,

 is 1/4 or 0.25 seconds. This process occurs without any change to the frame rate
.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Inspect Sample and Frame Rates in Simulink” on page 3-6
• “Convert Sample and Frame Rates in Simulink Using Frame Rebuffering Blocks” on page 3-23
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Convert Sample and Frame Rates in Simulink Using Frame
Rebuffering Blocks

Frame Rebuffering Blocks
There are two common types of operations that impact the frame and sample rates of a signal: Frame
rebuffering and direct rate conversion. Frame rebuffering, which is used to alter the frame size of a
signal in order to improve simulation throughput, usually also changes either the sample rate or the
frame rate of the signal. Direct rate conversions such as upsampling and downsampling can be
implemented by altering either the frame rate or the frame size of a signal. For more details on the
direct rate conversion technique, see “Convert Sample and Frame Rates in Simulink Using Rate
Conversion Blocks” on page 3-16.

This topic contains two models that show how to change the sample rate of a signal using the frame
rebuffering blocks. The following is a list of frame rebuffering blocks in DSP System Toolbox.

• Buffer
• Delay Line
• Unbuffer
• Variable Selector

Sometimes you might need to rebuffer a signal to a new frame size at some point in a model. For
example, your data acquisition hardware may internally buffer the sampled signal to a frame size that
is not optimal for the signal processing algorithm in the model. In this case, you can rebuffer the
signal to a frame size more appropriate for the intended operations without introducing any change
to the data or sample rate.

Blocks for Frame Rebuffering with Preservation of the Signal

Buffering operations provide another mechanism for rate changes in signal processing models. The
purpose of many buffering operations is to adjust the frame size of the signal M without altering the
sample rate of the signal Ts. This operation usually results in a change to the frame rate of the signal
Tf according to the following equation:

However, this equation is true only if no samples are added to or deleted from the original signal.
Therefore, this equation does not apply to buffering operations that generate overlapping frames,
that only partially unbuffer frames, or that alter the data sequence by adding or deleting samples.

There are two blocks in the Buffers library that can be used to change a signal frame size without
altering the signal itself:

• Buffer — Redistributes signal samples to a larger or smaller frame size
• Unbuffer — Unbuffers a signal with frame size M and frame period Tf to a signal with frame size 1

and frame period Ts

The Buffer block preserves the signal data and sample period only when its Buffer overlap
parameter is set to 0. The output frame period Tfo is given by the following equation:

where Tfi is the input frame period, Mi is the input frame size, and Mo is the output frame size
specified by the Output buffer size (per channel) parameter.
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The Unbuffer block unbuffers a frame signal and always preserves the signal data and sample period.

where Tfi and Mi are the period and size, respectively, of the frame signal.

Both the Buffer and Unbuffer blocks preserve the sample period of the sequence in the conversion
(Tso = Tsi).

Blocks for Frame Rebuffering with Alteration of the Signal

Some forms of buffering alter the signal data or sample period in addition to adjusting the frame size.
This type of buffering is desirable when you want to create sliding windows by overlapping
consecutive frames of a signal, or when you want to select a subset of samples from each input frame
for processing.

The following blocks alter a signal by adjusting its frame size. In this list, Tsi is the input sequence
sample period, and Tfi and Tfo are the input and output frame periods, respectively:

• Buffer –– The Buffer block adds duplicate samples to a sequence when the Buffer overlap
parameter L is set to a nonzero value. The output frame period is related to the input sample
period by the following equation:

where Mo is the output frame size specified by the Output buffer size (per channel) parameter.
As a result, the new output sample period is

• Delay Line –– The Delay Line block adds duplicate samples to the sequence when the Delay line
size parameter Mo is greater than 1. The output and input frame periods are the same and equal
the input sample period, Tfo = Tfi  = Tsi. The new output sample period is:

• Variable Selector –– The Variable Selector block can remove, add, and rearrange samples in the
input frame when Select is set to Rows. The output and input frame periods are the same,
Tfo = Tfi, and the new output sample period is:

where Mo is the length of the block output, determined by the Elements vector.

In all of these cases, the sample period of the output sequence is not equal to the sample period of
the input sequence.

Buffer Signals by Preserving Sample Period
In this example, the Buffer block rebuffers the signal to a larger frame size. The Unbuffer block
unbuffers the input frame into a sequence of scalar values.

A signal with a sample period of 0.125 seconds is rebuffered from a frame size of 8 to a frame size of
16. This rebuffering process doubles the frame period from 1 to 2 seconds, but does not change the
sample period of the signal, . The signal is then unbuffered into a sequence of
sample outputs using the Unbuffer block. The frame period then changes to 0.125 seconds, which is
equal to the value of the sample period of the signal.

This process does not add or delete samples from the original signal.

Open the model 'ex_buffer_tut1'.
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The Signal From Workspace block has the Sample time parameter set to 0.125, and the Samples
per frame parameter is set to 8. Each frame in the generated signal contains 8 samples and has a
sample period of 0.125 seconds.

The Buffer block has the Output buffer size (per channel) parameter set to 16, and the Buffer
overlap parameter is set to 0. The Buffer block rebuffers the signal from a frame size of 8 to a frame
size of 16.

In the Debug tab, select Information Overlays > Signal Dimensions. When you run the model,
the dimensions of the signals appear next to the lines connecting the blocks. The signal dimensions in
the model confirm the following:

• Buffer block changes the frame size of the signal from 8 to 16.
• Unbuffer block unbuffers the signal into a sequence of scalar outputs.

To view the effect on the frame period of the signal, enable color coding, annotations, and timing
legend by selecting Information Overlays > Colors, Text, Timing Legend. In the Timing Legend,
you can view the value of the frame period for each signal in the model, the color associated with the
frame period, and the corresponding annotation.
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As you can see, the input frame period of the signal (denoted by D2 in the model), is given by
 or  and equals 1 second. The Buffer block doubles the frame period from 1

to 2 seconds. The Unbuffer block that follows unbuffers the signal into a sequence of scalar outputs.
The frame period of the unbuffered sequence equals 0.125 seconds, which matches the sample period
of the signal.

Buffer Signals by Altering the Sample Period
In this example, the Buffer block rebuffers the signal to a larger frame size while overlapping 4
samples per frame.

Some forms of buffering alter the signal data or sample period in addition to adjusting the frame size.
In the following example, a signal with a sample period of 0.125 seconds is rebuffered from a frame
size of 8 to a frame size of 16 with a buffer overlap of 4 samples.

Open the model 'ex_buffer_tut2'.

The Signal From Workspace block has the Sample time parameter set to 0.125, and the Samples
per frame parameter is set to 8. Each frame in the generated signal contains 8 samples and has a
sample period of 0.125 seconds.

The Buffer block has the Output buffer size (per channel) parameter set to 16, and the Buffer
overlap parameter is set to 4. The Buffer block rebuffers the signal from a frame size of 8 to a frame
size of 16. After the initial output, the first four samples of each output frame are made up of the last
four samples from the previous output frame.
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In the Debug tab, select Information Overlays > Signal Dimensions. When you run the model,
the dimensions of the signals appear next to the lines connecting the blocks. The signal dimensions in
the model confirm the following:

• Buffer block changes the frame size of the signal from 8 to 16.
• Unbuffer block unbuffers the signal into a sequence of scalar outputs.

To view the effect on the frame period of the signal, enable color coding, annotations, and timing
legend by selecting Information Overlays > Colors, Text, Timing Legend. In the Timing Legend,
you can view the value of the frame period for each signal in the model, the color associated with the
frame period, and the corresponding annotation.
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Accounting for the overlap, the output frame period  of the Buffer block is given by the following
equation:

where  is the output frame size and equals 16,  is the overlap and equals 4, and  is the input
sample period and equals 0.125 seconds. Substituting these values, the output frame period of the
Buffer block  becomes  or  seconds. The corresponding sample period of the
signal  equals  or  seconds. When you unbuffer the signal into a sequence
of sample outputs, the frame period of the signal (shown as D2 in the model) matches the sample
period value of 0.0938 seconds. Thus, both the data and the sample period of the signal have been
altered by the buffering operation.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Inspect Sample and Frame Rates in Simulink” on page 3-6
• “Convert Sample and Frame Rates in Simulink Using Rate Conversion Blocks” on page 3-16
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Buffering and Frame-Based Processing
In this section...
“Buffer Input into Frames” on page 3-29
“Buffer Signals into Frames with Overlap” on page 3-31
“Buffer Frame Inputs into Other Frame Inputs” on page 3-33
“Buffer Delay and Initial Conditions” on page 3-35
“Unbuffer Frame Signals into Sample Signals” on page 3-36

Buffer Input into Frames
Multichannel signals of frame size 1 can be buffered into multichannel signals of frame size L using
the Buffer block. L is greater than 1.

The following figure is a graphical representation of a signal with frame size 1 being converted into a
signal of frame size L by the Buffer block.

In the following example, a two-channel 1 sample per frame signal is buffered into a two-channel 4
samples per frame signal using a Buffer block:

1 At the MATLAB command prompt, type ex_buffer_tut.

The Buffer Example model opens.
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2 Double-click the Signal From Workspace block. The Source Block Parameters: Signal From
Workspace dialog box opens.

3 Set the parameters as follows:

• Signal = [1:10;-1:-1:-10]'
• Sample time = 1
• Samples per frame = 1
• Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a signal with a frame
length of 1 and a sample period of 1 second. Because you set the Samples per frame parameter
setting to 1, the Signal From Workspace block outputs one two-channel sample at each sample
time.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Buffer block. The Function Block Parameters: Buffer dialog box opens.
6 Set the parameters as follows:

• Output buffer size (per channel) = 4
• Buffer overlap = 0
• Initial conditions = 0

Because you set the Output buffer size parameter to 4, the Buffer block outputs a frame signal
with frame size 4.

7 Run the model.

The figure below is a graphical interpretation of the model behavior during simulation.
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Note Alternatively, you can set the Samples per frame parameter of the Signal From Workspace
block to 4 and create the same signal shown above without using a Buffer block. The Signal From
Workspace block performs the buffering internally, in order to output a two-channel frame.

Buffer Signals into Frames with Overlap
In some cases it is useful to work with data that represents overlapping sections of an original signal.
For example, in estimating the power spectrum of a signal, it is often desirable to compute the FFT of
overlapping sections of data. Overlapping buffers are also needed in computing statistics on a sliding
window, or for adaptive filtering.

The Buffer overlap parameter of the Buffer block specifies the number of overlap points, L. In the
overlap case (L > 0), the frame period for the output is (Mo-L)*Tsi, where Tsi is the input sample
period and Mo is the Buffer size.

Note Set the Buffer overlap parameter to a negative value to achieve output frame rates slower
than in the nonoverlapping case. The output frame period is still Tsi*(Mo-L), but now with L < 0. Only
the Mo newest inputs are included in the output buffers. The previous L inputs are discarded.

In the following example, a four-channel signal with frame length 1 and sample period 1 is buffered to
a signal with frame size 3 and frame period 2. Because of the buffer overlap, the input sample period
is not conserved, and the output sample period is 2/3:

1 At the MATLAB command prompt, type ex_buffer_tut3.

The Buffer Example T3 model opens.
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Also, the variable sp_examples_src is loaded into the MATLAB workspace. This variable is
defined as follows:
sp_examples_src=[1 1 5 -1; 2 1 5 -2; 3 0 5 -3; 4 0 5 -4; 5 1 5 -5; 6 1 5 -6];

2 Double-click the Signal From Workspace block. The Source Block Parameters: Signal From
Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = sp_examples_src
• Sample time = 1
• Samples per frame = 1
• Form output after final data value by = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a signal with a sample
period of 1 second. Because you set the Samples per frame parameter setting to 1, the Signal
From Workspace block outputs one four-channel sample at each sample time.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Buffer block. The Function Block Parameters: Buffer dialog box opens.
6 Set the block parameters as follows, and then click OK:

• Output buffer size (per channel) = 3
• Buffer overlap = 1
• Initial conditions = 0

Because you set the Output buffer size parameter to 3, the Buffer block outputs a signal with
frame size 3. Also, because you set the Buffer overlap parameter to 1, the last sample from the
previous output frame is the first sample in the next output frame.

7 Run the model.

The following figure is a graphical interpretation of the model behavior during simulation.
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8 At the MATLAB command prompt, type sp_examples_yout.

The following is displayed in the MATLAB Command Window.

sp_examples_yout =

     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     1     1     5    -1
     2     1     5    -2
     2     1     5    -2
     3     0     5    -3
     4     0     5    -4
     4     0     5    -4
     5     1     5    -5
     6     1     5    -6
     6     1     5    -6
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0

Notice that the inputs do not begin appearing at the output until the fifth row, the second row of
the second frame. This is due to the block latency.

See “Excess Algorithmic Delay (Tasking Latency)” on page 3-45 for general information about
algorithmic delay. For instructions on how to calculate buffering delay, see “Buffer Delay and Initial
Conditions” on page 3-35.

Buffer Frame Inputs into Other Frame Inputs
In the following example, a two-channel signal with frame size 4 is rebuffered to a signal with frame
size 3 and frame period 2. Because of the overlap, the input sample period is not conserved, and the
output sample period is 2/3:
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1 At the MATLAB command prompt, type ex_buffer_tut4.

The Buffer Example T4 model opens.

Also, the variable sp_examples_src is loaded into the MATLAB workspace. This variable is
defined as

sp_examples_src = [1 1; 2 1; 3 0; 4 0; 5 1; 6 1; 7 0; 8 0]
2 Double-click the Signal From Workspace block. The Source Block Parameters: Signal From

Workspace dialog box opens.
3 Set the block parameters as follows:

• Signal = sp_examples_src
• Sample time = 1
• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a two-channel frame
signal with a sample period of 1 second and a frame size of 4.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Buffer block. The Function Block Parameters: Buffer dialog box opens.
6 Set the block parameters as follows, and then click OK:

• Output buffer size (per channel) = 3
• Buffer overlap = 1
• Initial conditions = 0

Based on these parameters, the Buffer block outputs a two-channel frame signal with a frame
size of 3.
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7 Run the model.

The following figure is a graphical representation of the model behavior during simulation.

Note that the inputs do not begin appearing at the output until the last row of the third output
matrix. This is due to the block latency.

See “Excess Algorithmic Delay (Tasking Latency)” on page 3-45 for general information about
algorithmic delay. For instructions on how to calculate buffering delay, and see “Buffer Delay and
Initial Conditions” on page 3-35.

Buffer Delay and Initial Conditions
In the examples “Buffer Signals into Frames with Overlap” on page 3-31 and “Buffer Frame Inputs
into Other Frame Inputs” on page 3-33, the input signal is delayed by a certain number of samples.
The initial output samples correspond to the value specified for the Initial condition parameter. The
initial condition is zero in both examples mentioned above.

Under most conditions, the Buffer and Unbuffer blocks have some amount of delay or latency. This
latency depends on both the block parameter settings and the Simulink tasking mode. You can use
the rebuffer_delay function to determine the length of the block latency for any combination of
frame size and overlap.

The syntax rebuffer_delay(f,n,v) returns the delay, in samples, introduced by the buffering and
unbuffering blocks during multitasking operations, where f is the input frame size, n is the Output
buffer size parameter setting, and v is the Buffer overlap parameter setting.

For example, you can calculate the delay for the model discussed in the “Buffer Frame Inputs into
Other Frame Inputs” on page 3-33 using the following command at the MATLAB command line:

d = rebuffer_delay(4,3,1)
d = 8

This result agrees with the block output in that example. Notice that this model was simulated in
Simulink multitasking mode.

For more information about delay, see “Excess Algorithmic Delay (Tasking Latency)” on page 3-45.
For delay information about a specific block, see the “Latency” section of the block reference page.
For more information about the rebuffer_delay function, see rebuffer_delay.
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Unbuffer Frame Signals into Sample Signals
You can unbuffer multichannel signals of frame length greater than 1 into multichannel signals of
frame length equal to 1 using the Unbuffer block. The Unbuffer block performs the inverse operation
of the Buffer block's buffering process, where signals with frame length 1 are buffered into a signal
with frame length greater than 1. The Unbuffer block generates an N-channel output containing one
sample per frame from an N-channel input containing multiple channels per frame. The first row in
each input matrix is always the first output.

The following figure is a graphical representation of this process.

The sample period of the output, Tso, is related to the input frame period, Tfi, by the input frame
size, Mi.

Tso = Tf i/Mi

The Unbuffer block always preserves the signal sample period (Tso =  Tsi). See “Convert Sample and
Frame Rates in Simulink Using Frame Rebuffering Blocks” on page 3-23 for more information about
rate conversions.

In the following example, a two-channel signal with four samples per frame is unbuffered into a two-
channel signal with one sample per frame:

1 At the MATLAB command prompt, type ex_unbuffer_tut.

The Unbuffer Example model opens.
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2 Double-click the Signal From Workspace block. The Source Block Parameters: Signal From
Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = [1:10;-1:-1:-10]'
• Sample time = 1
• Samples per frame = 4
• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a two-channel signal with
frame size 4.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Unbuffer block. The Function Block Parameters: Unbuffer dialog box opens.
6 Set the Initial conditions parameter to 0, and then click OK.

The Unbuffer block unbuffers a two-channel signal with four samples per frame into a two-
channel signal with one sample per frame.

7 Run the model.

The following figures is a graphical representation of what happens during the model simulation.
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Note The Unbuffer block generates initial conditions not shown in the figure below with the
value specified by the Initial conditions parameter. See the Unbuffer reference page for
information about the number of initial conditions that appear in the output.

8 At the MATLAB command prompt, type sp_examples_yout.

The following is a portion of the output.

sp_examples_yout(:,:,1) =

     0     0

sp_examples_yout(:,:,2) =

     0     0

sp_examples_yout(:,:,3) =

     0     0

sp_examples_yout(:,:,4) =

     0     0

sp_examples_yout(:,:,5) =

     1    -1

sp_examples_yout(:,:,6) =

     2    -2

sp_examples_yout(:,:,7) =

     3    -3

The Unbuffer block unbuffers the signal into a two-channel signal. Each page of the output
matrix represents a different sample time.
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See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Delay and Latency” on page 3-40
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Delay and Latency
In this section...
“Computational Delay” on page 3-40
“Algorithmic Delay” on page 3-41
“Zero Algorithmic Delay” on page 3-41
“Basic Algorithmic Delay” on page 3-43
“Excess Algorithmic Delay (Tasking Latency)” on page 3-45
“Predict Tasking Latency” on page 3-46

Computational Delay
The computational delay of a block or subsystem is related to the number of operations involved in
executing that block or subsystem. For example, an FFT block operating on a 256-sample input
requires Simulink software to perform a certain number of multiplications for each input frame. The
actual amount of time that these operations consume depends heavily on the performance of both the
computer hardware and underlying software layers, such as the MATLAB environment and the
operating system. Therefore, computational delay for a particular model can vary from one computer
platform to another.

The simulation time represented on a model status bar, which can be accessed via the Simulink
Digital Clock block, does not provide any information about computational delay. For example,
according to the Simulink timer, the FFT mentioned above executes instantaneously, with no delay
whatsoever. An input to the FFT block at simulation time t=25.0 is processed and output at
simulation time t=25.0, regardless of the number of operations performed by the FFT algorithm. The
Simulink timer reflects only algorithmic delay, not computational delay.

Reduce Computational Delay

There are a number of ways to reduce computational delay without actually running the simulation on
faster hardware. To begin with, you should familiarize yourself with “Manual Performance
Optimization” (Simulink) which describes some basic strategies. The following information discusses
several options for improving performance.

A first step in improving performance is to analyze your model, and eliminate or simplify elements
that are adding excessively to the computational load. Such elements might include scope displays
and data logging blocks that you had put in place for debugging purposes and no longer require. In
addition to these model-specific adjustments, there are a number of more general steps you can take
to improve the performance of any model:

• Use frame-based processing wherever possible. It is advantageous for the entire model to be
frame based. See “Benefits of Frame-Based Processing” on page 3-4 for more information.

• Use the DSP Simulink model templates to tailor Simulink for digital signal processing modeling.
For more information, see Configure the Simulink Environment for Signal Processing Models.

• Turn off the Simulink status bar. In the Modeling tab, deselect Environment > Status Bar.
Simulation speed will improve, but the time indicator will not be visible.

• Run your simulation from the MATLAB command line by typing

sim(gcs)
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This method of starting a simulation can greatly increase the simulation speed, but also has
several limitations:

• You cannot interact with the simulation (to tune parameters, for instance).
• You must press Ctrl+C to stop the simulation, or specify start and stop times.
• There are no graphics updates in MATLAB S-functions.

• Use Simulink Coder code generation software to generate generic real-time (GRT) code targeted
to your host platform, and run the model using the generated executable file. See the Simulink
Coder documentation for more information.

Algorithmic Delay
Algorithmic delay is delay that is intrinsic to the algorithm of a block or subsystem and is
independent of CPU speed. In this guide, the algorithmic delay of a block is referred to simply as the
block delay. It is generally expressed in terms of the number of samples by which a block output lags
behind the corresponding input. This delay is directly related to the time elapsed on the Simulink
timer during the execution of the block.

The algorithmic delay of a particular block may depend on both the block parameter settings and the
general Simulink settings. To simplify matters, it is helpful to categorize block delay using the
following categories:

• “Zero Algorithmic Delay” on page 3-41
• “Basic Algorithmic Delay” on page 3-43
• “Excess Algorithmic Delay (Tasking Latency)” on page 3-45

The following topics explain the different categories of delay, and how the simulation and parameter
settings can affect the level of delay that a particular block experiences.

Zero Algorithmic Delay
The FFT block is an example of a component that has no algorithmic delay. The Simulink timer does
not record any passage of time while the block computes the FFT of the input, and the transformed
data is available at the output in the same time step that the input is received. There are many other
blocks that have zero algorithmic delay, such as the blocks in the Matrices and Linear Algebra
libraries. Each of those blocks processes its input and generates its output in a single time step.

The Normalization block is an example of a block with zero algorithmic delay:

1 At the MATLAB command prompt, type ex_normalization_tut.

The Normalization Example T1 model opens.
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2 Double-click the Signal From Workspace block. The Source Block Parameters: Signal From
Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = 1:100
• Sample time = 1/4
• Samples per frame = 4

4 Save these parameters and close the dialog box by clicking OK.
5 Run the model.

The model prepends the current value of the Simulink timer output from the Digital Clock block
to each output frame.

The Signal From Workspace block generates a new frame containing four samples once every
second (Tfo = π*4). The first few output frames are:

(t=0)        [ 1  2  3  4]'
(t=1)        [ 5  6  7  8]'
(t=2)        [ 9 10 11 12]'
(t=3)        [13 14 15 16]'
(t=4)        [17 18 19 20]'

6 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'.

The normalized output, dsp_examples_yout, is converted to an easier-to-read matrix format.
The result, ans, is shown in the following figure:

ans =

         0    0.0333    0.0667    0.1000    0.1333
    1.0000    0.0287    0.0345    0.0402    0.0460
    2.0000    0.0202    0.0224    0.0247    0.0269
    3.0000    0.0154    0.0165    0.0177    0.0189
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    4.0000    0.0124    0.0131    0.0138    0.0146
    5.0000    0.0103    0.0108    0.0113    0.0118

The first column of ans is the Simulink time provided by the Digital Clock block. You can see that
the squared 2-norm of the first input,

[1 2 3 4]' ./ sum([1 2 3 4]'.^2)

appears in the first row of the output (at time t=0), the same time step that the input was
received by the block. This indicates that the Normalization block has zero algorithmic delay.

Zero Algorithmic Delay and Algebraic Loops

When several blocks with zero algorithmic delay are connected in a feedback loop, Simulink may
report an algebraic loop error and performance may generally suffer. You can prevent algebraic loops
by injecting at least one sample of delay into a feedback loop , for example, by including a Delay block
with Delay > 0. For more information, see “Algebraic Loop Concepts” (Simulink).

Basic Algorithmic Delay
The Variable Integer Delay block is an example of a block with algorithmic delay. In the following
example, you use this block to demonstrate this concept:

1 At the MATLAB command prompt, type ex_variableintegerdelay_tut.

The Variable Integer Delay Example T1 opens.

2 Double-click the Signal From Workspace block. The Source Block Parameters: Signal From
Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = 1:100
• Sample time = 1
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• Samples per frame = 1
4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Constant block. The Source Block Parameters: Constant dialog box opens.
6 Set the block parameters as follows:

• Constant value = 3
• Interpret vector parameters as 1–D = Clear this check box
• Sample time = 1

Click OK to save these parameters and close the dialog box.

The input to the Delay port of the Variable Integer Delay block specifies the number of sample
periods that should elapse before an input to the In port is released to the output. This value
represents the algorithmic delay of the block. In this example, since the input to the Delay port
is 3, and the sample period at the In and Delay ports is 1, then the sample that arrives at the In
port of the block at time t = 0 is released to the output at time t = 3.

7 Double-click the Variable Integer Delay block. The Function Block Parameters: Variable
Integer Delay dialog box opens.

8 Set the Initial conditions parameter to -1, and then click OK.
9 In the Debug tab, select Information Overlays > Signal Dimensions and Nonscalar Signals.
10 Run the model.

The model should look similar to the following figure.

11 At the MATLAB command prompt, type dsp_examples_yout

The output is shown below:

dsp_examples_yout =
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     0    -1
     1    -1
     2    -1
     3     1
     4     2
     5     3

The first column is the Simulink time provided by the Digital Clock block. The second column is
the delayed input. As expected, the input to the block at t=0 is delayed three samples and
appears as the fourth output sample, at t=3. You can also see that the first three outputs from the
Variable Integer Delay block inherit the value of the block Initial conditions parameter, -1. This
period of time, from the start of the simulation until the first input is propagated to the output, is
sometimes called the initial delay of the block.

Many DSP System Toolbox blocks have some degree of fixed or adjustable algorithmic delay. These
include any blocks whose algorithms rely on delay or storage elements, such as filters or buffers.
Often, but not always, such blocks provide an Initial conditions parameter that allows you to specify
the output values generated by the block during the initial delay. In other cases, the initial conditions
are internally set to 0.

Consult the block reference pages for the delay characteristics of specific DSP System Toolbox
blocks.

Excess Algorithmic Delay (Tasking Latency)
Under certain conditions, Simulink may force a block to delay inputs longer than is strictly required
by the block algorithm. This excess algorithmic delay is called tasking latency, because it arises from
synchronization requirements of the Simulink tasking mode. The overall algorithmic delay of a block
is the sum of its basic delay and tasking latency.

Algorithmic delay = Basic algorithmic delay + Tasking latency

The tasking latency for a particular block may be dependent on the following block and model
characteristics:

• “Simulink Tasking Mode” on page 3-45
• “Block Rate Type” on page 3-46
• “Model Rate Type” on page 3-46
• “Block Input Processing Mode” on page 3-46

Simulink Tasking Mode

Simulink has two tasking modes:

• Single-tasking
• Multitasking

In the Modeling tab, click Model Settings. In the Solver pane, select Type > Fixed-step. Expand
Solver details. To specify multitasking mode, select Treat each discrete rate as a separate task.
To specify single-tasking mode, clear Treat each discrete rate as a separate task.
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Note Many multirate blocks have reduced latency in the Simulink single-tasking mode. Check the
“Latency” section of a multirate block reference page for details. Also see “Time-Based Scheduling
and Code Generation” (Simulink Coder).

Block Rate Type

A block is called single-rate when all of its input and output ports operate at the same frame rate. A
block is called multirate when at least one input or output port has a different frame rate than the
others.

Many blocks are permanently single-rate. This means that all input and output ports always have the
same frame rate. For other blocks, the block parameter settings determine whether the block is
single-rate or multirate. Only multirate blocks are subject to tasking latency.

Note Simulink may report an algebraic loop error if it detects a feedback loop composed entirely of
multirate blocks. To break such an algebraic loop, insert a single-rate block with nonzero delay, such
as a Unit Delay block. For more information, see “Algebraic Loop Concepts” (Simulink).

Model Rate Type

When all ports of all blocks in a model operate at a single frame rate, the model is called single-rate.
When the model contains blocks with differing frame rates, or at least one multirate block, the model
is called multirate. Note that Simulink prevents a single-rate model from running in multitasking
mode by generating an error.

Block Input Processing Mode

Many blocks can operate in either sample-based or frame-based processing modes. To choose, you
can set the Input processing parameter of the block to Columns as channels (frame based)
or Elements as channels (sample based).

Predict Tasking Latency
The specific amount of tasking latency created by a particular combination of block parameter and
simulation settings is discussed in the “Latency” section of a block reference page. In this topic, you
use the Upsample block reference page to predict the tasking latency of a model:

1 At the MATLAB command prompt, type ex_upsample_tut1.

The Upsample Example T1 model opens.
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2 In the Modeling tab, click Model Settings.
3 In the Solver pane, from the Type list, select Fixed-step. From the Solver list, select

discrete (no continuous states).
4 Expand Solver details. Select Treat each discrete rate as a separate task and click OK.

Most multirate blocks experience tasking latency only in the Simulink multitasking mode.
5 Double-click the Signal From Workspace block. The Source Block Parameters: Signal From

Workspace dialog box opens.
6 Set the block parameters as follows, and then click OK:

• Signal = 1:100
• Sample time = 1/4
• Samples per frame = 4
• Form output after final data value by = Setting to zero

7 Double-click the Upsample block. The Function Block Parameters: Upsample dialog box
opens.

8 Set the block parameters as follows, and then click OK:

• Upsample factor, L = 4
• Sample offset (0 to L-1) = 0
• Input processing = Columns as channels (frame based)
• Rate options = Allow multirate processing
• Initial condition = -1

The Rate options parameter makes the model multirate, since the input and output frame rates
will not be equal.
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9 Double-click the Digital Clock block. The Source Block Parameters: Digital Clock dialog box
opens.

10 Set the Sample time parameter to 0.25, and then click OK.

This matches the sample period of the Upsample block output.
11 Run the model.

The model should now look similar to the following figure.

The model prepends the current value of the Simulink timer, from the Digital Clock block, to each
output frame.

In the example, the Signal From Workspace block generates a new frame containing four
samples once every second (Tfo = π*4). The first few output frames are:

(t=0)        [ 1  2  3  4]
(t=1)        [ 5  6  7  8]
(t=2)        [ 9 10 11 12]
(t=3)        [13 14 15 16]
(t=4)        [17 18 19 20]

The Upsample block upsamples the input by a factor of 4, inserting three zeros between each
input sample. The change in rates is confirmed by the Probe blocks in the model, which show a
decrease in the frame period from Tfi = 1 to Tfo = 0.25.

12 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'.

The output from the simulation is displayed in a matrix format. The first few samples of the
result, ans, are:
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“Latency and Initial Conditions” in the Upsample block reference page indicates that when
Simulink is in multitasking mode, the first sample of the block input appears in the output as
sample MiL+D+1, where Mi is the input frame size, L is the Upsample factor, and D is the
Sample offset. This formula predicts that the first input in this example should appear as output
sample 17 (that is, 4*4+0+1).

The first column of the output is the Simulink time provided by the Digital Clock block. The four
values to the right of each time are the values in the output frame at that time. You can see that
the first sample in each of the first four output frames inherits the value of the Upsample block
Initial conditions parameter. As a result of the tasking latency, the first input value appears as
the first sample of the 5th output frame (at t=1). This is sample 17.

Now try running the model in single-tasking mode.
13 In the Modeling tab, click Model Settings.
14 In the Solver pane, from the Type list, select Fixed-step. From the Solver list, select

Discrete (no continuous states).
15 Clear the Treat each discrete rate as a separate task parameter.
16 Run the model.

The model now runs in single-tasking mode.
17 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'.

The first few samples of the result, ans, are:

“Latency and Initial Conditions” in the Upsample block reference page indicates that the block
has zero latency for all multirate operations in the Simulink single-tasking mode.
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The first column of the output is the Simulink time provided by the Digital Clock block. The four
values to the right of each time are the values in the output frame at that time. The first input
value appears as the first sample of the first output frame (at t=0). This is the expected behavior
for the zero-latency condition. For the particular parameter settings used in this example,
running upsample_tut1 in single-tasking mode eliminates the 17-sample delay that is present
when you run the model in multitasking mode.

You have now successfully used the Upsample block reference page to predict the tasking latency of a
model.

See Also

More About
• “Sample- and Frame-Based Concepts” on page 3-2
• “Buffering and Frame-Based Processing” on page 3-29
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Variable-Size Signal Support DSP System Objects
In this section...
“Variable-Size Signal Support Example” on page 3-51
“DSP System Toolbox System Objects That Support Variable-Size Signals” on page 3-51

Several DSP System Toolbox System objects support variable-size input signals. In these System
objects, you can change the frame size (number of rows) of the input matrix even when the object is
locked. The number of channels (number of columns) of the input matrix must remain constant. The
System object locks when you call the object to run its algorithm.

Variable-Size Signal Support Example
Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Create a dsp.FIRHalfbandDecimator System object™. The input signal contains 10 channels, with
1000 samples in each channel.

FIRHalfband = dsp.FIRHalfbandDecimator;
input = randn(1000,10);

Lock the object by running the algorithm.

FIRHalfband(input);
isLocked(FIRHalfband)

ans = logical
   1

Change the frame size of the input to 800 without releasing the object.

input = randn(800,10);
FIRHalfband(input);

The System object runs without error.

DSP System Toolbox System Objects That Support Variable-Size
Signals
Sources
dsp.UDPReceiver
Sinks
spectrumAnalyzer
dsp.UDPSender
Adaptive Filters
dsp.AdaptiveLatticeFilter
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dsp.AffineProjectionFilter
dsp.FastTransversalFilter
dsp.FilteredXLMSFilter
dsp.FrequencyDomainAdaptiveFilter
dsp.LMSFilter
dsp.RLSFilter
Filter Designs
dsp.Channelizer
dsp.ChannelSynthesizer
dsp.Differentiator
dsp.FilterCascade (if the cascaded filters support variable-size signals)
dsp.FIRHalfbandDecimator
dsp.FIRHalfbandInterpolator
dsp.HampelFilter
dsp.HighpassFilter
dsp.IIRHalfbandDecimator
dsp.IIRHalfbandInterpolator
dsp.LowpassFilter
dsp.NotchPeakFilter
dsp.VariableBandwidthFIRFilter
dsp.VariableBandwidthIIRFilter
Filter Implementations
dsp.AllpassFilter
dsp.AllpoleFilter
dsp.BiquadFilter
dsp.CoupledAllpassFilter
dsp.FIRFilter
Multirate Filters
dsp.FIRDecimator
dsp.FIRInterpolator
Transforms
dsp.FFT
dsp.IFFT
Measurements and Statistics
dsp.MovingAverage
dsp.MovingMaximum
dsp.MovingMinimum
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dsp.MovingRMS
dsp.MovingStandardDeviation
dsp.MovingVariance
dsp.MedianFilter
dsp.PeakToRMS
Signal Operations
dsp.DCBlocker
dsp.Delay
dsp.VariableFractionalDelay
dsp.PhaseExtractor
Signal Management
dsp.AsyncBuffer

For a list of DSP System Toolbox blocks that support variable-size signals, open the block data type
support table from the MATLAB command prompt:

showsignalblockdatatypetable

See the blocks with an X in the Variable-Size Support column of the block data type support table.
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DSP System Toolbox Featured Examples

• “Wavelet Denoising” on page 4-3
• “LPC Analysis and Synthesis of Speech” on page 4-7
• “Streaming Signal Statistics” on page 4-12
• “High Resolution Spectral Analysis in MATLAB” on page 4-16
• “High Resolution Spectral Analysis in Simulink” on page 4-32
• “Zoom FFT” on page 4-38
• “Outlier Removal Techniques with ECG Signals” on page 4-48
• “Sigma-Delta A/D Conversion” on page 4-52
• “GSM Digital Down Converter in Simulink” on page 4-54
• “Overlap-Add/Save” on page 4-60
• “Designing Lowpass FIR Filters” on page 4-63
• “Classic IIR Filter Design” on page 4-78
• “Efficient Narrow Transition-Band FIR Filter Design” on page 4-86
• “IIR Filter Design Given a Prescribed Group Delay” on page 4-93
• “FIR Nyquist (L-th band) Filter Design” on page 4-102
• “FIR Halfband Filter Design” on page 4-109
• “Arbitrary Magnitude Filter Design” on page 4-128
• “Design of Peaking and Notching Filters” on page 4-141
• “Fractional Delay Filters Using Farrow Structures” on page 4-151
• “Least Pth-Norm Optimal FIR Filter Design” on page 4-159
• “Least Pth-Norm Optimal IIR Filter Design” on page 4-169
• “Multistage Rate Conversion” on page 4-177
• “Complex Bandpass Filter Design” on page 4-191
• “Design of Fractional Delay FIR Filters” on page 4-197
• “Time Delay and Scaling in Multirate DSP Filters” on page 4-212
• “Design of Decimators and Interpolators” on page 4-229
• “Multistage Halfband IIR Filter Design” on page 4-247
• “Efficient Sample Rate Conversion Between Arbitrary Factors” on page 4-252
• “Reconstruction Through Two-Channel Filter Banks” on page 4-258
• “Adaptive Line Enhancer (ALE)” on page 4-265
• “Adaptive Noise Canceling (ANC) Applied to Fetal Electrocardiography” on page 4-273
• “Adaptive Noise Cancellation Using RLS Adaptive Filtering” on page 4-276
• “System Identification Using RLS Adaptive Filtering” on page 4-281
• “Acoustic Noise Cancellation (LMS)” on page 4-287
• “Adaptive Filter Convergence” on page 4-289
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• “Noise Canceler (RLS)” on page 4-292
• “Time-Delay Channel Estimation Through Adaptive Filtering” on page 4-295
• “Time Scope Measurements” on page 4-298
• “Spectrum Analyzer Measurements” on page 4-307
• “Generate a Multithreaded MEX File from a MATLAB Function Using Unfolding” on page 4-314
• “Generate Standalone Executable and Interact with it Using UDP” on page 4-323
• “Code Generation for Parametric Audio Equalizer” on page 4-326
• “Generate DSP Applications with MATLAB Compiler” on page 4-334
• “Optimized Fixed-Point FIR Filters” on page 4-340
• “Floating-Point to Fixed-Point Conversion of IIR Filters” on page 4-348
• “GSM Digital Down Converter in MATLAB” on page 4-366
• “Cochlear Implant Speech Processor” on page 4-375
• “Three-Channel Wavelet Transmultiplexer” on page 4-380
• “Arbitrary Magnitude and Phase Filter Design” on page 4-386
• “G.729 Voice Activity Detection” on page 4-403
• “IF Subsampling with Complex Multirate Filters” on page 4-407
• “Design and Analysis of a Digital Down Converter” on page 4-417
• “Comparison of LDM, CVSD, and ADPCM” on page 4-424
• “Digital Up and Down Conversion for Family Radio Service” on page 4-429
• “Parametric Audio Equalizer” on page 4-442
• “Envelope Detection” on page 4-446
• “DTMF Generator and Receiver” on page 4-454
• “WWV Digital Receiver - Synchronization and Detection” on page 4-457
• “Real-Time ECG QRS Detection” on page 4-464
• “Internet Low Bitrate Codec (iLBC) for VoIP” on page 4-470
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Wavelet Denoising
This example shows how to use the dsp.DyadicAnalysisFilterBank and
dsp.DyadicSynthesisFilterBank System objects to remove noise from a signal.

Introduction

Wavelets have an important application in signal denoising. After wavelet decomposition, the high
frequency subbands contain most of the noise information and little signal information. In this
example, soft thresholding is applied to the different subbands. The threshold is set to higher values
for high frequency subbands and lower values for low frequency subbands.

Initialization

Creating and initializing the System objects before they are used in a processing loop is critical in
obtaining optimal performance.

load dspwlets; % load wavelet coefficients and noisy signal
Threshold = [3 2 1 0];

Create a dsp.SignalSource System object™ to output the noisy signal.

signalGenerator = dsp.SignalSource(noisdopp.', 64);

Create and configure a DyadicAnalysisFilterBank System object for wavelet decomposition of
the signal.

dyadicAnalysis = dsp.DyadicAnalysisFilterBank( ...
    'CustomLowpassFilter', lod, ...
    'CustomHighpassFilter', hid, ...
    'NumLevels', 3);

Create three Delay System objects to compensate for the system delay introduced by the wavelet
components.

delay1 = dsp.Delay(3*(length(lod)-1));
delay2 = dsp.Delay(length(lod)-1);
delay3 = dsp.Delay(7*(length(lod)-1));

Create and configure a DyadicSynthesisFilterBank System object for wavelet reconstruction of
the signal.

dyadicSynthesis = dsp.DyadicSynthesisFilterBank( ...
    'CustomLowpassFilter', lor, ...
    'CustomHighpassFilter', hir, ...
    'NumLevels', 3);

Create a timescope System object to plot the original, denoised and residual signals.

scope = timescope('Name', 'Wavelet Denoising', ...
  'SampleRate', fs, ...
  'TimeSpan', 13, ...
  'NumInputPorts', 3, ...
  'LayoutDimensions',[3 1], ...
  'TimeAxisLabels', 'Bottom', ...
  'TimeSpanOverrunAction', 'Scroll');
pos = scope.Position;
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scope.Position = [pos(1) pos(2)-(0.5*pos(4)) 0.9*pos(3) 2*pos(4)];

% Set properties for each display
scope.ActiveDisplay = 1;
scope.Title = 'Input Signal';

scope.ActiveDisplay = 2;
scope.Title = 'Denoised Signal';

scope.ActiveDisplay = 3;
scope.Title = 'Residual Signal';

Stream Processing Loop

Create a processing loop to denoise the input signal. This loop uses the System objects you
instantiated above.

for ii = 1:length(noisdopp)/64
    sig = signalGenerator();      % Input noisy signal
    S = dyadicAnalysis(sig);      % Dyadic analysis
    
    % separate into four subbands
    S1 = S(1:32);  S2 = S(33:48);  S3 = S(49:56);  S4 = S(57:64);

    % Delay to compensate for the dyadic analysis filters
    S1 = delay1(S1);
    S2 = delay2(S2);

    S1 = dspDeadZone(S1, Threshold(1));
    S2 = dspDeadZone(S2, Threshold(2));
    S3 = dspDeadZone(S3, Threshold(3));
    S4 = dspDeadZone(S4, Threshold(4));
    
    % Dyadic synthesis (on concatenated subbands)
    S = dyadicSynthesis([S1; S2; S3; S4]);

    sig_delay = delay3(sig);   % Delay to compensate for analysis/synthesis.
    Error = sig_delay - S;

    % Plot the results
    scope(sig_delay, S, Error);
end
release(scope);
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Summary

This example used signal processing System objects such as the DyadicAnalysisFilterBank and
DyadicSynthesisFilterBank to denoise a noisy signal using user-specified thresholds. The Input
Signal window shows the original noisy signal, the Denoised Signal window shows the signal after
suppression of noise, and the Residue Signal window displays the error between the original and
denoised signal.
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LPC Analysis and Synthesis of Speech
This example shows how to implement a speech compression technique known as Linear Prediction
Coding (LPC) using DSP System Toolbox™ functionality available at the MATLAB® command line.

Introduction

In this example you implement LPC analysis and synthesis (LPC coding) of a speech signal. This
process consists of two steps: analysis and synthesis. In the analysis section, you extract the
reflection coefficients from the signal and use it to compute the residual signal. In the synthesis
section, you reconstruct the signal using the residual signal and reflection coefficients. The residual
signal and reflection coefficients require less number of bits to code than the original speech signal.

The block diagram below shows the system you will implement.

In this simulation, the speech signal is divided into frames of size 3200 samples, with an overlap of
1600 samples. Each frame is windowed using a Hamming window. Twelfth-order autocorrelation
coefficients are found, and then the reflection coefficients are calculated from the autocorrelation
coefficients using the Levinson-Durbin algorithm. The original speech signal is passed through an
analysis filter, which is an all-zero filter with coefficients as the reflection coefficients obtained above.
The output of the filter is the residual signal. This residual signal is passed through a synthesis filter
which is the inverse of the analysis filter. The output of the synthesis filter is the original signal.

Initialization

Here you initialize some of the variables like the frame size and also instantiate the System objects
used in your processing. These objects also pre-compute any necessary variables or tables resulting
in efficient processing calls later inside a loop.

Initialize variables.

frameSize = 1600;
fftLen = 2048;
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Here you create a System object™ to read from an audio file and determine the file's audio sampling
rate.

audioReader = dsp.AudioFileReader('SamplesPerFrame', frameSize, ...
            'OutputDataType', 'double');

fileInfo = info(audioReader);
Fs = fileInfo.SampleRate;

Create an FIR digital filter System object used for pre-emphasis.

preEmphasisFilter = dsp.FIRFilter(...        
        'Numerator', [1 -0.95]);

Create a buffer System object and set its properties such that you get an output of twice the length of
the frameSize with an overlap length of frameSize.

signalBuffer = dsp.AsyncBuffer(2*frameSize);

Create an FIR digital filter System object used for analysis. Also create two all-pole digital filter
System objects used for synthesis and de-emphasis.

analysisFilter = dsp.FIRFilter(...
                    'Structure','Lattice MA',...
                    'ReflectionCoefficientsSource', 'Input port');

synthesisFilter = dsp.AllpoleFilter('Structure','Lattice AR');

deEmphasisFilter = dsp.AllpoleFilter('Denominator',[1 -0.95]);

Create a System object to play the resulting audio.

audioWriter = audioDeviceWriter('SampleRate', Fs);

% Setup plots for visualization.
scope = spectrumAnalyzer('SampleRate', Fs, ...
    'PlotAsTwoSidedSpectrum', false, 'YLimits', [-140, 0], ...
    'Title', 'Linear Prediction of Speech', ...
    'ShowLegend', true, 'ChannelNames', {'Signal', 'LPC'});

Stream Processing Loop

Here you call your processing loop where you do the LPC analysis and synthesis of the input audio
signal using the System objects you have instantiated.

The loop is stopped when you reach the end of the input file, which is detected by the
AudioFileReader System object.

while ~isDone(audioReader)
    % Read audio input
    sig = audioReader();                         
    
    % Analysis
    % Note that the filter coefficients are passed in as an argument to the
    % analysisFilter System object.    
    sigpreem   = preEmphasisFilter(sig);        
    write(signalBuffer,sigpreem);
    sigbuf     = read(signalBuffer,2*frameSize, frameSize);
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    hammingwin = hamming(2*frameSize);
    sigwin     = hammingwin.*sigbuf;

    % Autocorrelation sequence on [0:13]
    sigacf = xcorr(sigwin, 12, 'biased');
    sigacf = sigacf(13:end);
    
    % Compute the reflection coefficients from auto-correlation function
    % using the Levinson-Durbin recursion. The function outputs both
    % polynomial coefficients and reflection coefficients. The polynomial
    % coefficients are used to compute and plot the LPC spectrum.
    [sigA, ~, sigK] = levinson(sigacf); % Levinson-Durbin
    siglpc          = analysisFilter(sigpreem, sigK);

    % Synthesis
    synthesisFilter.ReflectionCoefficients = sigK.';
    sigsyn = synthesisFilter(siglpc);          
    sigout = deEmphasisFilter(sigsyn);         
    
    % Play output audio
    audioWriter(sigout);

    % Update plots
    sigA_padded = zeros(size(sigwin), 'like', sigA.'); % Zero-padded to plot
    sigA_padded(1:size(sigA.',1), :) = sigA.';
    scope([sigwin, sigA_padded]);
end

 LPC Analysis and Synthesis of Speech

4-9



Release

Here you call the release method on the System objects to close any open files and devices.

release(audioReader);
pause(10*audioReader.SamplesPerFrame/audioReader.SampleRate); % Wait until audio finishes playing
release(audioWriter);
release(scope);
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Conclusion

You have seen here the implementation of speech compression technique using Linear Prediction
Coding. The implementation used the DSP System Toolbox functionality available at the MATLAB
command line. The code involves only calling of the successive System objects with appropriate input
arguments. This involves no error prone manual state tracking which may be the case for instance for
a MATLAB implementation of Buffer.
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Streaming Signal Statistics
This example shows how to perform statistical measurements on an input data stream using DSP
System Toolbox™ functionality available at the MATLAB® command line. Compute the signal
statistics minimum, maximum, mean, variance and peak-to-RMS and the signal power spectrum
density and plot them.

Introduction

This example computes signal statistics using DSP System Toolbox System objects. These objects
handle their states automatically reducing the amount of hand code needed to update states reducing
the possible chance of coding errors.

These System objects pre-compute many values used in the processing. This is very useful when you
are processing signals of same properties in a loop. For example, in computing an FFT in a spectrum
estimation application, the values of sine and cosine can be computed and stored once you know the
properties of the input and these values can be reused for subsequent calls. Also the objects check
only whether the input properties are of same type as previous inputs in each call.

Initialization

Here you initialize some of the variables used in the code and instantiate the System objects used in
your processing. These objects also pre-compute any necessary variables or tables resulting in
efficient processing calls later inside a loop.

frameSize = 1024; % Size of one chunk of signal to be processed in one loop
Fs = 48e3;        % Sample rate
numFrames = 100;  % number of frames to process

The input signal in this example is white Gaussian noise passed through a lowpass FIR filter. Create
the FIR Filter System object™ used to filter the noise signal:

fir = dsp.FIRFilter('Numerator',fir1(32,.3));

Create a Spectrum Estimator System object to estimate the power spectrum density of the input.

spect = dsp.SpectrumEstimator('SampleRate',Fs,...
                              'SpectrumType','Power density',...
                              'FrequencyRange','onesided',...
                              'Window','Kaiser');

Create System objects to calculate mean, variance, peak-to-RMS, minimum and maximum and set
them to running mode. These objects are a subset of statistics System objects available in the
product. In running mode, you compute the statistics of the input for its entire length in the past
rather than the statistics for just the current input.

runMean       = dsp.MovingAverage('SpecifyWindowLength', false);
runVar        = dsp.MovingVariance('SpecifyWindowLength', false);
runPeaktoRMS  = dsp.PeakToRMS('RunningPeakToRMS',true);
runMin        = dsp.MovingMinimum('SpecifyWindowLength', false);
runMax        = dsp.MovingMaximum('SpecifyWindowLength', false);

Initialize scope System objects, used to visualize statistics and spectrum

meanScope = timescope('SampleRate',Fs,...
                      'TimeSpanSource','property',...
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                      'TimeSpan',numFrames*frameSize/Fs,...
                      'Title','Running Mean',...
                      'YLabel','Mean',...
                      'YLimits',[-0.1 .1],...
                      'Position',[43   308   420   330]);
p2rmsScope = timescope('SampleRate',Fs,...
                       'TimeSpanSource','property',...                           
                       'TimeSpan',numFrames*frameSize/Fs,...
                       'Title','Running Peak-To-RMS',...
                       'YLabel','Peak-To-RMS',...
                       'YLimits',[0 5],...
                       'Position',[480   308   420   330]);
minmaxScope = timescope('SampleRate',Fs,...
                        'TimeSpanSource','property', ...                         
                        'TimeSpan',numFrames*frameSize/Fs,...
                        'ShowGrid',true,...
                        'Title',...
                            'Signal with Running Minimum and Maximum',...
                        'YLabel','Signal Amplitude',...
                        'YLimits',[-3 3],...
                        'Position',[43   730   422   330]);
spectrumScope = dsp.ArrayPlot('SampleIncrement',...
                             .5 * Fs/(frameSize/2 + 1 ),...
                             'PlotType','Line',...
                             'Title','Power Spectrum Density',...
                             'XLabel','Frequency (Hz)',...
                             'YLabel','Power/Frequency (dB/Hz)',...
                             'YLimits',[-120 -30],...
                             'Position',[475 730 420 330]);

Stream Processing Loop

Here you call your processing loop which filters white Gaussian noise and calculates its mean,
variance, peak-to-RMS, min, max and spectrum using the System objects.

Note that the System objects are called inside the loop. Since the input data properties do not
change, the objects are reused leading to the usage of less memory.

for i=1:numFrames
    % Pass white Gaussian noise through FIR Filter
    sig = fir(randn(frameSize,1));

    % Compute power spectrum density
    ps = spect(sig);
   
    % The runMean System object keeps track of the information about past
    % samples and gives you the mean value reached until now. The same is
    % true for runMin and runMax System objects.
    meanval  = runMean(sig);
    variance = runVar( sig);
    peak2rms = runPeaktoRMS(sig);
    minimum  = runMin( sig);
    maximum  = runMax(sig);

    % Plot the data you have processed
    minmaxScope([sig,minimum,maximum]);
    spectrumScope(10*log10(ps));
    meanScope(meanval);
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    p2rmsScope(peak2rms);
end
release(minmaxScope);

release(spectrumScope);

release(meanScope);
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release(p2rmsScope);

Conclusion

You have seen visually that the code involves just calling successive System objects with appropriate
input arguments and does not involve maintaining any more variables like indices or counters to
compute the statistics. This technique helps in quicker and error free coding. Pre-computation of
constant variables inside the objects generally leads to faster processing time.
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High Resolution Spectral Analysis in MATLAB
This example shows how to perform high resolution spectral analysis in MATLAB® using an efficient
filter bank sometimes referred to as a channelizer. For comparison purposes, a traditional averaged
modified periodogram (Welch's) method is also shown. For a similar example in Simulink™, see “High
Resolution Spectral Analysis in Simulink” on page 4-32.

Resolution in Spectral Analysis

Resolution in this context refers to the ability to distinguish between two spectral components that lie
in the vicinity of each other. Resolution depends on the length of the time-domain segment used to
compute the spectrum. When windowing is used on the time-domain segment as is the case with
modified periodograms, the type of window used also affects the resolution.

The classical tradeoff with different windows is one of resolution vs. sidelobe attenuation.
Rectangular windows provide the highest resolution but very poor (~14 dB) sidelobe attenuation.
Poor sidelobe attenuation can result in spectral components being buried by the windowing operation
and thus is undesirable. Hann windows provide good sidelobe attenuation at the expense of lower
frequency resolution. Parameterizable windows such as Kaiser allow to control the tradeoff by
changing the window parameter.

Instead of using averaged modified periodograms (Welch's method), a higher resolution estimate can
be achieved by using a filter bank approach that emulates how analog spectrum analyzers work. The
main idea is to divide the signal into different frequency bins using a filter bank and computing the
average power of each subband signal.

Filter Bank-Based Spectrum Estimation

For this example, 512 different bandpass filters need to be used to get the same resolution afforded
by the rectangular window. In order to implement the 512 bandpass filters efficiently, a polyphase
analysis filter bank (a.k.a. channelizer) is used. This works by taking a prototype lowpass filter with a
bandwidth of Fs/N where N the desired frequency resolution (512 in this example), and implementing
the filter in polyphase form much like an FIR decimator is implemented. Instead of adding the results
of all the branches as in the decimator case, each branch is used as an input to an N-point FFT. It can
be shown that each output of the FFT corresponds a modulated version of a lowpass filter, thus
implementing a bandpass filter. The main drawback of the filter bank approach is increased
computation due to the polyphase filter as well as slower adaptation to changing signals due to the
states of that filter. More details can be found in the book 'Multirate Signal Processing for
Communications Systems' by fredric j. harris. Prentice Hall PTR, 2004.

In this example, 100 averages of the spectrum estimate are used throughout. The sampling frequency
is set to 1 MHz. It is assumed that we are working with frames of 64 samples which will need to be
buffered in order to perform the spectrum estimation.

NAvg = 100;
Fs = 1e6;
FrameSize = 64;
NumFreqBins = 512;
filterBankRBW = Fs/NumFreqBins;

spectrumAnalyzer implements a filter bank-based spectrum estimator when Method is set
accordingly. Internally, it uses dsp.Channelizer which implements the polyphase filtering plus FFT
(and can be used for other applications besides spectrum analysis, e.g. multicarrier communications).
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filterBankSA = spectrumAnalyzer(...
    'SampleRate',Fs,...
    'RBWSource','property',...
    'RBW',filterBankRBW,...
    'AveragingMethod','exponential', ...
    'ForgettingFactor',0.001, ...
    'PlotAsTwoSidedSpectrum',false,...
    'YLimits',[-150 50],...
    'YLabel','Power',...
    'Title','Filter bank Power Spectrum Estimate',...
    'Position',[50 375 800 450]);

Test Signal

In this example, the test signal is acquired in 64-sample frames. For spectral analysis purposes, the
larger the frame, the better the resolution.

The test signal consists of two sine waves plus white Gaussian noise. Changing the number of
frequency bins, amplitude, frequency, and noise power values is instructive and encouraged.

sinegen = dsp.SineWave('SampleRate',Fs,...
    'SamplesPerFrame',FrameSize);

Initial Test Case

To start, compute the filter bank spectral estimate for sine waves of amplitude 1 and 2 and
frequencies of 200 kHz and 250 kHz, respectively. The white Gaussian noise has an average power
(variance) of 1e-12. Note that the onesided noise floor of -114 dBm is accurately shown in the spectral
estimate.

release(sinegen)
sinegen.Amplitude = [1 2];
sinegen.Frequency = [200000 250000];

noiseVar = 1e-12;
% -114 dBm onesided
noiseFloor = 10*log10((noiseVar/(NumFreqBins/2))/1e-3); 
fprintf('Noise Floor\n');

Noise Floor

fprintf('Filter bank noise floor = %.2f dBm\n\n',noiseFloor);

Filter bank noise floor = -114.08 dBm

timesteps = 10 * ceil(NumFreqBins / FrameSize);
for t = 1:timesteps
    x = sum(sinegen(),2) + sqrt(noiseVar)*randn(FrameSize,1);
    filterBankSA(x);
end

release(filterBankSA)
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Numerical Computation Using Spectrum Estimator

dsp.SpectrumEstimator can be used to compute the filter bank spectrum estimates.

In order to feed the spectrum estimator a longer frame, a buffer gathers 512 samples before
computing the spectral estimate. Although not used in this example, the buffer allows for overlapping
which can be used to increase the number of averages obtained from a given set of data.

filterBankEstimator = dsp.SpectrumEstimator(...
    'Method','Filter bank',...
    'AveragingMethod','Exponential', ...
    'ForgettingFactor',0.7, ...
    'SampleRate',Fs,...
    'FrequencyRange','onesided',...
    'PowerUnits','dBm');

buff    = dsp.AsyncBuffer;

release(sinegen)

timesteps = 10 * ceil(NumFreqBins / FrameSize);
for t = 1:timesteps 
    x     = sum(sinegen(),2) + sqrt(noiseVar)*randn(FrameSize,1);
    write(buff,x);      % Buffer data
    if buff.NumUnreadSamples >= NumFreqBins
        xbuff = read(buff,NumFreqBins);
        Pfbse = filterBankEstimator(xbuff);
    end
end
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Compare Spectrum Estimates Using Different Methods

Compute the welch and the filter bank spectral estimate for sine waves of amplitude 1 and 2 and
frequencies of 200 kHz and 250 kHz, respectively. The white Gaussian noise has an average power
(variance) of 1e-12.

release(sinegen)
sinegen.Amplitude = [1 2];
sinegen.Frequency = [200000 250000];

filterBankSA.RBWSource = 'auto';
filterBankSA.ForgettingFactor = 0.7;
filterBankSA.Position = [50 375 400 450];

welchSA = spectrumAnalyzer(...
    'Method','welch',...
    'SampleRate',Fs,...
    'PlotAsTwoSidedSpectrum',false,...
    'YLimits',[-150 50],...
    'YLabel','Power',...
    'Title','Welch Power Spectrum Estimate',...
    'Position',[450 375 400 450]);

noiseVar = 1e-12;

timesteps = 500 * ceil(NumFreqBins / FrameSize);
for t = 1:timesteps
    x = sum(sinegen(),2) + sqrt(noiseVar)*randn(FrameSize,1);
    filterBankSA(x);
    welchSA(x);
end
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release(filterBankSA)
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RBW = 488.28;
hannNENBW = 1.5;

welchNSamplesPerUpdate = Fs*hannNENBW/RBW;
filterBankNSamplesPerUpdate = Fs/RBW;

fprintf('Samples/Update\n');

Samples/Update

fprintf('Welch Samples/Update = %.3f Samples\n',...
    welchNSamplesPerUpdate);

Welch Samples/Update = 3072.008 Samples

fprintf('Filter bank Samples/Update = %.3f Samples\n\n',...
    filterBankNSamplesPerUpdate);

Filter bank Samples/Update = 2048.005 Samples

welchNoiseFloor = 10*log10((noiseVar/(welchNSamplesPerUpdate/2))/1e-3);
filterBankNoiseFloor = 10*log10((noiseVar/(filterBankNSamplesPerUpdate/2))/1e-3);

fprintf('Noise Floor\n');
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Noise Floor

fprintf('Welch noise floor       = %.2f dBm\n',welchNoiseFloor);

Welch noise floor       = -121.86 dBm

fprintf('Filter bank noise floor = %.2f dBm\n\n',filterBankNoiseFloor);

Filter bank noise floor = -120.10 dBm

Both Welch and Filter bank-based spectrum estimate detected the two tones at 200 kHz and 250 kHz.
Filter bank-based spectrum estimate has better isolation of tones. For the same Resolution Bandwidth
(RBW), averaged modified periodogram (Welch's) method requires 3073 samples to compute the
spectrum compared to 2048 required by filter bank-based estimate. Note that the onesided noise
floor of -120 dBm is accurately shown in the filter bank spectral estimate.

Compare Modified Periodograms Using Different Windows

Consider two spectrum analyzers in which the only difference is the window used: rectangular or
Hann.

rectRBW = Fs/NumFreqBins;
hannNENBW = 1.5;
hannRBW = Fs*hannNENBW/NumFreqBins;

rectangularSA = spectrumAnalyzer(...
    'Method','welch', ...
    'SampleRate',Fs,...
    'Window','rectangular',...
    'RBWSource','property',...
    'RBW',rectRBW,...
    'PlotAsTwoSidedSpectrum',false,...
    'YLimits',[-50 50],...
    'YLabel','Power',...
    'Title','Welch Power Spectrum Estimate using Rectangular window',...
    'Position',[50 375 400 450]);

hannSA = spectrumAnalyzer(...
    'Method','welch', ...
    'SampleRate',Fs,...
    'Window','hann',...
    'RBWSource','property',...
    'RBW',hannRBW,...
    'PlotAsTwoSidedSpectrum',false,...
    'YLimits',[-150 50],...
    'YLabel','Power',...
    'Title','Welch Power Spectrum Estimate using Hann window',...
    'Position',[450 375 400 450]);

release(sinegen)
sinegen.Amplitude = [1 2]; % Try [0 2] as well
sinegen.Frequency = [200000 250000];

noiseVar = 1e-12;
timesteps = 10 * ceil(NumFreqBins / FrameSize);
for t = 1:timesteps 
    x = sum(sinegen(),2) + sqrt(noiseVar)*randn(FrameSize,1);
    rectangularSA(x);
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    hannSA(x);
end
release(rectangularSA)

release(hannSA)
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The rectangular window provides a narrow mainlobe at the expense of low sidelobe attenuation. In
contrast, the Hann window provides a broader mainlobe in exchange for the much larger sidelobe
attenuation. The broader mainlobe is particularly noticeable at 250 kHz. Both windows exhibit large
rolloffs around the frequencies at which the sine waves lie. This can mask low power signals of
interest above the noise floor. That problem is virtually non-existent in the filter bank case.

Changing the amplitudes to [0 2] rather than [1 2] effectively means there is a single sine wave of 250
kHz along with noise. This case is interesting because the rectangular window behaves particularly
well when the 200 kHz sine wave is not interfering. The reason is that 250 kHz is one of the 512
frequencies that divide 1 MHz evenly. In that case, the time domain replicas introduced by the
frequency sampling inherent in the FFT make a perfect periodic extension of the time-limited data
segment used for the power spectrum computation. In general, for sine waves with arbitrary
frequencies, this is not the case. This dependence on the frequency of the sine wave along with the
susceptibility to signal interference is another drawback of the modified periodogram approach.

Resolution Bandwidth (RBW)

The resolution bandwidth for each analyzer can be computed once the input length is known. The
RBW indicates the bandwidth over which the power component is computed. That is to say, each
element of the power spectrum estimate represents the power in Watts, dBW, or dBm across a
bandwidth of width RBW centered around the frequency corresponding to the element of the
estimate. The power value of each element in the power spectrum estimate is found by integrating
the power-density over the frequency band spanned by the RBW value. A lower RBW indicates a
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higher resolution since the power is computed over a finer grid (a smaller bandwidth). Rectangular
windows have the highest resolution of all windows. In the case of the Kaiser window, the RBW
depends on the sidelobe attenuation used.

fprintf('RBW\n')

RBW

fprintf('Welch-Rectangular  RBW = %.3f Hz\n',rectRBW);

Welch-Rectangular  RBW = 1953.125 Hz

fprintf('Welch-Hann         RBW = %.3f Hz\n',hannRBW);

Welch-Hann         RBW = 2929.688 Hz

fprintf('Filter bank        RBW = %.3f Hz\n\n',filterBankRBW);

Filter bank        RBW = 1953.125 Hz

In the case of setting the amplitudes to [0 2], i.e. the case in which there is a single sine wave at 250
kHz, it is interesting to understand the relation between the RBW and the noise floor. The expected
noise floor is 10*log10((noiseVar/(NumFreqBins/2))/1e-3) or about -114 dBm. The spectral estimate
corresponding to the rectangular window has the expected noise floor, but the spectral estimate
using the Hann window has a noise floor that is about 2 dBm higher than expected. The reason for
this is that the spectral estimate is compute at 512 frequency points but the power spectrum is
integrated over the RBW of the particular window. For the rectangular window, the RBW is exactly 1
MHz/512 so that the spectral estimate contains independent estimates of the power for each
frequency bin. For the Hann window, the RBW is larger, so that the spectral estimate contains
overlapping power from one frequency bin to the next. This overlapping power increases the power
value in each bin and elevates the noise floor. The amount can be computed analytically as follows:

hannNoiseFloor = 10*log10((noiseVar/(NumFreqBins/2)*hannRBW/rectRBW)/1e-3);
fprintf('Noise Floor\n');

Noise Floor

fprintf('Hann noise floor = %.2f dBm\n\n',hannNoiseFloor);

Hann noise floor = -112.32 dBm

Sinusoids in Close Proximity to Each Other

To illustrate the resolution issue consider the following case. The sinusoid frequencies are changed to
200 kHz and 205 kHz. The filter bank estimate remains accurate. Focusing on the window-based
estimators, because of the broader mainlobe in the Hann window, the two sinusoids are harder to
distinguish when compared to the rectangular window estimate. The fact is that neither of the two
estimates is particularly accurate. Note that 205 kHz is basically at the limit of what we can
distinguish from 200 kHz. For closer frequencies, all three estimators will fail to separate the two
spectral components. The only way to separate closer components is to have larger frame sizes and
therefore a larger number of NumFrequencyBands in the case of the filter bank estimator.

release(sinegen)
sinegen.Amplitude = [1 2];
sinegen.Frequency = [200000 205000];

filterBankSA.RBWSource = 'property';
filterBankSA.RBW       =  filterBankRBW;
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filterBankSA.Position  = [850 375 400 450];

noiseVar = 1e-10;
noiseFloor = 10*log10((noiseVar/(NumFreqBins/2))/1e-3); % -94 dBm onesided
fprintf('Noise Floor\n');

Noise Floor

fprintf('Noise floor = %.2f dBm\n\n',noiseFloor);

Noise floor = -94.08 dBm

timesteps = 500 * ceil(NumFreqBins / FrameSize);
for t = 1:timesteps 
    x  = sum(sinegen(),2) + sqrt(noiseVar)*randn(FrameSize,1);
    filterBankSA(x);
    rectangularSA(x);
    hannSA(x);
end

release(filterBankSA)

release(rectangularSA)
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release(hannSA)
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Detecting Low Power Sinusoidal Components

Next, re-run the previous scenario but add a third sinusoid at 170 kHz with a very small amplitude.
This third sinusoid is missed completely by the rectangular window estimate and the Hann window
estimate. The filter bank estimate provides both better resolution and better isolation of tones, so that
the three sine waves are clearly visible.

release(sinegen)
sinegen.Amplitude = [1e-5 1 2];
sinegen.Frequency = [170000 200000 205000];

noiseVar = 1e-11;
noiseFloor = 10*log10((noiseVar/(NumFreqBins/2))/1e-3); % -104 dBm onesided
fprintf('Noise Floor\n');

Noise Floor

fprintf('Noise floor = %.2f dBm\n\n',noiseFloor);

Noise floor = -104.08 dBm

timesteps = 500 * ceil(NumFreqBins / FrameSize);
for t = 1:timesteps 
    x  = sum(sinegen(),2) + sqrt(noiseVar)*randn(FrameSize,1);
    filterBankSA(x);
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    rectangularSA(x);
    hannSA(x);
end

release(filterBankSA)

release(rectangularSA)

 High Resolution Spectral Analysis in MATLAB

4-29



release(hannSA)
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See Also

Related Examples
• “High Resolution Spectral Analysis in Simulink” on page 4-32
• “High Resolution Filter-Bank-Based Power Spectrum Estimation” on page 16-7
• “Streaming Power Spectrum Estimation Using Welch's Method” on page 17-65

External Websites
• Filter Bank Method: A Better Approach to Spectral Analysis
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High Resolution Spectral Analysis in Simulink
This example shows how to perform high resolution spectral analysis in Simulink® using the
Spectrum Analyzer block and the Spectrum Estimator block.

For comparison purposes, a traditional averaged modified periodogram (Welch's) method is also
shown. For a similar example in MATLAB®, see “High Resolution Spectral Analysis in MATLAB” on
page 4-16.

Using Spectrum Analyzer

The SpectrumAnalyzerFilterBank model illustrates the high resolution capabilities of filter bank-
based spectral estimation compared to the Welch's method. The filter bank-based spectral estimation
has lower noise floor.

Consider the following case. Three sinusoids at 170 kHz, 200 kHz and 205kHz with the amplitudes
[1e-5 1 2]. The first sinusoid is completely missed by the rectangular window estimate. The filter bank
estimate provides better resolution and better isolation of three tones.

Open and simulate the SpectrumAnalyzerFilterBank model.

open_system('SpectrumAnalyzerFilterBank');
sim('SpectrumAnalyzerFilterBank');
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Close the model.

bdclose('SpectrumAnalyzerFilterBank');

Using Spectrum Estimator

Numerical computations for high resolution spectral estimation shown above can also be modeled in
Simulink using the Spectrum Estimator block. The SpectrumEstimatorFilterBank model
illustrates the high resolution capabilities of filter bank-based spectrum estimation and lower noise
floor compared to the Welch's method, using Simulink. Array plot is used to visualize the results.
Array plot provides a convenient way of plotting the spectrum estimates. Values are shown in dBm,
but Watts or dBW could easily be used instead.

Open and simulate the SpectrumEstimatorFilterBank model.

open_system('SpectrumEstimatorFilterBank');
sim('SpectrumEstimatorFilterBank');
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Close the model.
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bdclose('SpectrumEstimatorFilterBank');

See Also

Related Examples
• “High Resolution Spectral Analysis in MATLAB” on page 4-16
• “High Resolution Filter-Bank-Based Power Spectrum Estimation” on page 16-7
• “Streaming Power Spectrum Estimation Using Welch's Method” on page 17-65

External Websites
• Filter Bank Method: A Better Approach to Spectral Analysis
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Zoom FFT
This example showcases zoom FFT, which is a signal processing technique used to analyze a portion
of a spectrum at a high resolution. The DSP System Toolbox™ offers this functionality in MATLAB®
through the dsp.ZoomFFT System object™, and in Simulink® through the Zoom FFT library block.

The Limitation of Standard DFT/FFT

A digital signal's spectral resolution is determined (hence bounded) by its length. We will illustrate
this fact with a simple example. Consider a signal formed by the sum of two sine waves:

L   = 32;       % Frame size
Fs  = 128;      % Sample rate
res = Fs/L;     % Frequency resolution
f1  = 40;       % First sine wave frequency
f2  = f1 + res; % Second sine wave frequency
 
sn1 = dsp.SineWave(Frequency=f1, SampleRate=Fs, SamplesPerFrame=L);
sn2 = dsp.SineWave(Frequency=f2, SampleRate=Fs, SamplesPerFrame=L, Amplitude=2);

x = sn1() + sn2();

Compute the FFT of x and plot the magnitude of the FFT. Note that the two sine waves are in
adjacent samples of the FFT. This means that you cannot discriminate between frequencies closer
than 

Fs
L .

X = fft(x);
stem(Fs/L*(0:length(X)-1)-Fs/2, abs(fftshift(X))/L)
axis([-Fs/2, Fs/2, -0.1 1.1])
grid on;
xlabel('Frequency (Hz)')
ylabel('Magnitude')
title('Two-sided spectrum')
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Zoom FFT

Suppose you have an application for which you are only interested in a sub-band of the Nyquist
interval. The idea behind zoom FFT is to retain the same resolution you would achieve with a full size
FFT on your original signal by computing a small FFT on a shorter signal. The shorter signal comes
from decimating the original signal. The savings come from being able to compute a much shorter
FFT while achieving the same resolution. This is intuitive: for a decimation factor of D, the new
sampling rate is Fsd =

Fs
D , and the new frame size (and FFT length) is Ld = L

D , so the resolution of the

decimated signal is 
Fsd
Ld

=
Fs
L .

The DSP System Toolbox offers zoom FFT functionality for MATLAB and Simulink, through the
dsp.ZoomFFT System object and the zoom FFT library block, respectively. The next sections will
discuss the zoom FFT algorithm in more detail.

The Mixer Approach

Before discussing the algorithm used in dsp.ZoomFFT, we present the mixer approach, which is a
popular zoom FFT method.

For the example here, assume you are only interested in the interval [16 Hz, 48 Hz].

BWOfInterest = 48 - 16;
Fc           = (16 + 48)/2; % Center frequency of bandwidth of interest

The achievable decimation factor is:
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BWFactor = floor(Fs/BWOfInterest)

BWFactor = 4

The mixer approach consists of first shifting the band of interest down to DC using a mixer, followed
by lowpass filtering and decimation by a factor of BWFactor.

Design the decimation filter's coefficients using the designMultirateFIR function. The
dsp.FIRDecimator System object implements the lowpass and downsampling using an efficient
polyphase FIR decimation structure.

B = designMultirateFIR(1, BWFactor);
D = dsp.FIRDecimator(BWFactor, B);

Now, mix the signal down to DC, and filter it through the FIR decimator:

% Run several input frames to eliminate the FIR transient response
for k = 1:10
    % Grab a frame of the input signal
    x = sn1()+sn2();

    % Downmix to DC
    indVect = (0:numel(x)-1).' + (k-1) * size(x,1);
    y = x .* exp(-2*pi*indVect*Fc*1j/Fs);

    % Filter through FIR decimator
    xd = D(y);    
end

Now take the FFT of the filtered signal (note that the FFT length is reduced by BWFactor, or the
decimation length, compared to regular FFT, while maintaining the same resolution):

fftlen = length(xd);
Xd  = fft(xd);

figure
Ld  = L/BWFactor;
Fsd = Fs/BWFactor;
F   = Fc + Fsd/fftlen*(0:fftlen-1)-Fsd/2;
stem(F, abs(fftshift(Xd))/Ld)
grid on
xlabel('Frequency (Hz)')
ylabel('Magnitude')
title('Zoom FFT Spectrum. Mixer Approach.')
axis([F(1)-1 F(end)+1 -0.1 1.1])
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The complex-valued mixer adds an extra multiplication for each high-rate sample, which is not
efficient. The next section presents an alternative, more efficient, zoom FFT approach.

Bandpass Sampling

An alternative zoom FFT method takes advantage of a known result from bandpass filtering (also
sometimes called under-sampling): Assume we are interested in the band F1, F2 ,of a signal with
sampling rate Fs. If we pass the signal through a complex (one-sided) bandpass filter centered at

Fc =
F1 + F2

2  and with bandwidth BW = F2− F1, and then downsample it by a factor of D = ⌊
Fs
BW ⌋, we

will bring down the desired band to baseband.

In general, if Fc cannot be expressed in the form k
Fs
D  (where K is an integer), then the shifted,

decimated spectrum will not be centered at DC. In fact, the center frequency Fc will be translated to
[2]:

Fd = Fc−
Fs
D ⌊

D ⋅ Fc + Fs/2
Fs

⌋

In this case, we can use a mixer (running at the low sample rate of the decimated signal) to center
the desired band to zero Hertz.

Using the example from the previous section, we obtain the coefficients of the complex bandpass
filter by modulating the coefficients of the designed lowpass filter:

 Zoom FFT

4-41



N   = length(D.Numerator);
Bbp = B .*exp(1j*(Fc / Fs)*2*pi*(0:N-1));
Dbp = dsp.FIRDecimator(BWFactor, Bbp);

Now perform the filtering and the FFT:

for k = 1:10
    % Run a few times to eliminate transient in filter
    x = sn1()+sn2();
    xd = Dbp(x);    
end
Xd = fft(xd);
figure
stem(F,abs(fftshift(Xd))/Ld)
grid on
xlabel('Frequency (Hz)')
ylabel('Magnitude')
title('Zoom FFT Spectrum. Bandpass Sampling Approach.')
axis([F(1)-1 F(end)+1 -0.1 1.1])

Using a Multirate, Multistage Bandpass Filter

The FIR decimator used in the previous section is a single-stage multirate filter. We can reduce the
computational complexity of the filter by using a multistage design instead (in fact, this is the
approach utilized in dsp.ZoomFFT). See “Multistage Rate Conversion” on page 4-177 for more
details.
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Consider the following example, where the input sample rate is 48 KHz, and the bandwidth of interest
is the interval [1500,2500] Hz. The achievable decimation factor is then ⌊48000

1000 ⌋ = 48.

First, design a single-stage decimator:

Fs       = 48e3;
Fc       = 2000; % Bandpass filter center frequency
BW       = 1e3;  % Bandwidth of interest
Ast      = 80;   % Stopband attenuation
P        = 12;   % Polyphase length
BWFactor = floor(Fs/BW);
B        = designMultirateFIR(1,BWFactor,P,Ast);
N        = length(B);
Bbp      = B .*exp(1j*(Fc / Fs)*2*pi*(0:N-1));
D_single_stage = dsp.FIRDecimator(BWFactor, Bbp);

Now, implement the same decimator using a multistage design, while maintaining the same stopband
attenuation and transition bandwidth as the single-stage case (see kaiserord for details on the
transition width computation):

tw = (Ast - 7.95) / ( N * 2.285);
D_multi_stage = designMultistageDecimator(BWFactor, Fs, tw*Fs/(2*pi), Ast);
fprintf('Number of filter stages: %d\n', getNumStages(D_multi_stage) );

Number of filter stages: 5

for ns=1:D_multi_stage.getNumStages
    stgn = D_multi_stage.(['Stage' num2str(ns)]);
    fprintf('Stage %i: Decimation factor = %d , FIR length = %d\n',...
            ns, stgn.DecimationFactor,...
            length(stgn.Numerator));
end

Stage 1: Decimation factor = 2 , FIR length = 7
Stage 2: Decimation factor = 2 , FIR length = 7
Stage 3: Decimation factor = 2 , FIR length = 11
Stage 4: Decimation factor = 2 , FIR length = 15
Stage 5: Decimation factor = 3 , FIR length = 75

Note that D_multi_stage is a five-stage multirate lowpass filter. We transform it to a bandpass filter by
performing a frequency shift on the coefficients of each stage, while taking the cumulative decimation
factor into account:

Mn = 1; % Cumulative decimation factor entring stage n
for ns=1:D_multi_stage.getNumStages
    stgn = D_multi_stage.(['Stage' num2str(ns)]);
    num  = stgn.Numerator;
    N    = length(num);
    num  = num .*exp(1j*(Fc * Mn/ Fs)*2*pi*(0:N-1));
    stgn.Numerator = num;
    Mn   = Mn*stgn.DecimationFactor;
end

Comparing the cost of the single-stage and multistage filters, the latter is significantly more
computationally efficient.

For the single-stage filter, this cost is:
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cost(D_single_stage)

ans = struct with fields:
                  NumCoefficients: 1129
                        NumStates: 1104
    MultiplicationsPerInputSample: 23.5208
          AdditionsPerInputSample: 23.5000

Whereas the multistage filter has the cost:

cost(D_multi_stage)

ans = struct with fields:
                  NumCoefficients: 77
                        NumStates: 108
    MultiplicationsPerInputSample: 6.2500
          AdditionsPerInputSample: 5.2917

Next, compare the frequency response of the two filters, and verify they have the same passband
characteristics. The differences in the stopband are negligible.

vis = fvtool(D_single_stage,D_multi_stage,DesignMask='off',legend='on');
legend(vis,'Single-stage','Multistage')

Finally, use the multistage filter to perform zoom FFT:

4 DSP System Toolbox Featured Examples

4-44



fftlen = 32;
L      = BWFactor * fftlen;
tones  = [1625 2000 2125]; % sine wave tones
sn     = dsp.SineWave(SampleRate=Fs, Frequency=tones, SamplesPerFrame=L);
Fsd    = Fs / BWFactor;
% Frequency points at which FFT is computed
F      = Fc + Fsd/fftlen*(0:fftlen-1)-Fsd/2;

% Step through the bandpass-decimator 
for k=1:100
    x = sum(sn(),2) +  1e-2 * randn(L,1);
    y = D_multi_stage(x);
end 

% Plot the spectral output
ap = dsp.ArrayPlot(XDataMode='Custom',...
                   CustomXData=F,...
                   YLabel='Magnitude',...
                   XLabel='Frequency (Hz)',...
                   YLimits=[0 1],...
                   Title=sprintf ('Zoom FFT. Resolution = %f Hz',(Fs/BWFactor)/fftlen));

z = fft(y,fftlen,1);
z = fftshift(z);

ap( abs(z)/fftlen )
release(ap)
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Using dsp.ZoomFFT

dsp.ZoomFFT is a System object that implements zoom FFT based on the multirate multistage
bandpass filter described in the previous section. You specify the desired center frequency and
decimation factor, and dsp.ZoomFFT will design the filter and apply it to the input signal.

Use dsp.ZoomFFT to zoom into the sine tones from the previous section's example:

zfft = dsp.ZoomFFT(BWFactor,Fc,Fs);
for k=1:100
    x = sum(sn(),2) + 1e-2 * randn(L,1);
    z = zfft(x);
end 

z = fftshift(z);
ap( abs(z)/fftlen)

release(ap)
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Zoom FFT Simulink Block

The zoom FFT block brings the functionality of dsp.ZoomFFT to Simulink. In the model dspzoomfft,
we use the zoom FFT block to inspect the frequency band [800 Hz, 1600 Hz] of an input signal
sampled at 44100 Hz.

References
[1] Multirate Signal Processing - Harris (Prentice Hall).

[2] Computing Translated Frequencies in digitizing and Downsampling Analog Bandpass - Lyons
(https://www.dsprelated.com/showarticle/523.php)
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Outlier Removal Techniques with ECG Signals
This example explores different outlier removal filters and uses an electrocardiogram (ECG) signal as
input.

Introduction

There are many different outlier removal techniques because a rigid definition of an outlier does not
exist.

The three techniques explored in this example are:

• dsp.MovingAverage
• dsp.MedianFilter
• dsp.HampelFilter

ECG Signal Source

The ECG signal used in this example is taken from the MIT-BIH Arrhythmia Database. The signal is
sampled at 360 Hz. The signal was shifted and scaled to convert it from the raw 12-bit ADC values to
real-world values.

For more information on ECG signals, please see the example “Real-Time ECG QRS Detection” on
page 4-464.

Setup

First, create a stream from the ECG signal using the dsp.MatFileReader. Next, create a scope to
visualize the raw and filtered signals.

Fs = 360;
frameSize = 500;
fileName = 'ecgsig.mat';
winLen = 13; % Window length for the filters.

fileReader = dsp.MatFileReader('Filename',fileName, ...
    'VariableName','ecgsig','SamplesPerFrame',frameSize);
scope = timescope('SampleRate',Fs,'TimeSpanOverrunAction','Scroll', ...
    'TimeSpan',2,'YLimits',[-1.5 1.5],'ShowGrid',true, ...
    'NumInputPorts',2,'LayoutDimensions',[2 1]);
scope.ActiveDisplay = 1;
scope.Title = 'Raw Signal';
scope.ActiveDisplay = 2;
scope.Title = 'Filtered Signal';

Outlier Removal Performance of Moving Average Filter

The moving average filter calculates a running mean on the specified window length. This is a
relatively simple calculation compared to the other two filters. However, this will smooth both the
signal and the outliers. This causes the peak in the ECG signal to be smoothed to roughly a third of its
original magnitude.

movAvg = dsp.MovingAverage(winLen);
while ~isDone(fileReader)
    x = fileReader();
    y = movAvg(x);
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    scope(x,y);
end

% Clean up
release(scope);

reset(fileReader);
reset(scope);

Outlier Removal Performance of Median Filter

The Median Filter is sometimes a better choice since it is less sensitive to outliers than the Moving
Average Filter. However, as can be seen in the scope below, it can cause "steps" to appear at extremes
in the signal where the local median does not change. This means that the window length of the filter
must be carefully considered.

medFilt = dsp.MedianFilter(winLen);
while ~isDone(fileReader)
    x = fileReader();
    y = medFilt(x);
    scope(x,y);
end

% Clean up
release(scope);
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reset(fileReader);
reset(scope);

Outlier Removal Performance of Hampel Filter

The Hampel Filter has an additional threshold parameter that can be set. Below, it is set to one,
meaning that any sample that is more than one standard deviation away from the local median will be
classified as an outlier. Both the threshold and the window length can be changed to remove outliers
from the input signal without distorting the original signal.

thres = 1;
hampFilt = dsp.HampelFilter(winLen,thres);
while ~isDone(fileReader)
    x = fileReader();
    y = hampFilt(x);
    scope(x,y);
end

% Clean up
release(scope);
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reset(fileReader);
reset(scope);

Conclusion

All three of the above filters can be used for outlier removal. The noise distribution of the outliers and
the window length both effect the filter's performance. This must be taken into consideration when
selecting a filter for outlier removal in a specific application.

References
[1] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB,

Peng C-K, Stanley HE. "PhysioBank, PhysioToolkit, and PhysioNet: Components of a New
Research Resource for Complex Physiologic Signals." Circulation 101(23):e215-e220, 2000.

[2] https://circ.ahajournals.org/cgi/content/full/101/23/e215

[3] Moody GB, Mark RG. "The impact of the MIT-BIH Arrhythmia Database." IEEE Eng in Med and
Biol 20(3):45-50 (May-June 2001).
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Sigma-Delta A/D Conversion
This example shows how to model analog-to-digital conversion using a sigma-delta algorithm
implementation.

Floating-point Example Model

Fixed-point Example Model

Exploring the Example

The Oversampled Sigma-Delta A/D Converter is a noise-shaping quantizer. The main purpose of noise-
shaping is to reshape the spectrum of quantization noise so that most of the noise is filtered out of the
relevant frequency band, for example, the audio band for speech applications. The main objective is
to trade bits for samples; that is, to increase the sampling rate but reduce the number of bits per
sample. The resulting increase in quantization noise is compensated by a noise-shaping quantizer.
This quantizer pushes the added quantization noise out of the relevant frequency band and thereby
preserves a desired level of signal quality. This reduction in the number of bits simplifies the
structure of A/D and D/A converters.
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As seen in this example, the analog input is prefiltered by an antialiasing prefilter whose structure is
simplified because of oversampling. The input signal is oversampled by a factor of 64. The Integrator,
1-Bit Quantizer, and Zero-Order Hold blocks comprise a two-level analog to digital converter (ADC).
The output of the Zero-Order Hold is then subtracted from the analog input. The feedback, or
approximation, loop causes the quantization noise generated by the ADC to be highpass filtered,
pushing its energy towards the higher frequencies (64*fs/2) and away from the relevant signal
band. The decimation stage reduces the sampling rate back to 8 KHz. During this process, it removes
the high frequency quantization noise that was introduced by the feedback loop and removes any
undesired frequency components beyond fs/2 (4 KHz) that were not removed by the simple analog
prefilter.

Decimator Design

The example versions illustrate two possible decimator design solutions.

The floating-point version model uses a cascade of three polyphase FIR decimators. This approach
reduces computation and memory requirements as compared to a single decimator by using lower-
order filters. Each decimator stage reduces the sampling rate by a factor of four. The latency
introduced by the filters is used to set the appropriate 'Time Delay' in the 'Transport Delay' block.
The three FIR Decimation filters each introduce a latency of 16 samples, due to the group delay of the
filter (the actual value of 15.5 is rounded up to the nearest integer number of samples). Due to the
decimation operation the total latency introduced by the three filters is as follows: 16 (first filter) +
4*16 (second filter) + 16*16 (third filter) to give a final total delay of 336. The denominator of the
'Time delay' parameter is the base rate of the model (512 kHz).

The fixed-point version uses a five-section CIC decimator to reduce the sampling rate by the same
factor of 64. While not as flexible as a FIR decimator, the CIC decimator has the advantage of not
requiring any multiply operations. It is implemented using only additions, subtractions, and delays.
Therefore, it is a good choice for a hardware implementation where computational resources are
limited. The CIC Decimator introduces a latency of 158 samples, which is the group delay of the filter
(157.5) rounded up to the nearest integer. This is the value used in 'Time Delay' parameter of the
'Multistage CIC Processing Delay' block.

Available Example Versions

Floating-point version: dspsdadc

Fixed-point version: dspsdadc_fixpt

References
[1] Orfanidis, S. J. Introduction To Signal Processing, Prentice Hall, 1996.
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GSM Digital Down Converter in Simulink
This example shows how to simulate steady-state behavior of a fixed-point digital down converter for
GSM (Global System for Mobile) baseband conversions. The example model uses blocks from
Simulink® and the DSP System Toolbox™ to emulate the operation of the TI GC4016 Quad Digital
Down Converter (DDC).

The DDC performs:

• Digital mixing (down conversion) of the input signal
• Narrow band low-pass filtering and decimation
• Gain adjustment and final resampling of the data stream

In this model, the DDC accepts a high sample-rate (69.333 MSPS) bandpass signal. The DDC
produces a low sample-rate (270.83 KSPS) baseband signal, ready for demodulation.
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Changing the GSM Source

You can switch between a chirp and a sinusoid signal using the GSM Source block in the example
model. You can replace this block with a different source to model your application, however you will
have to adjust the parameters of the downstream mixer subsystems.

Adjusting the Normalized Tuning Frequency and Phase Offset Values

To assure that your GSM source signal gets received and mixed down with minimum error, you
should adjust the Normalized Tuning Freq Register Value and Normalized Phase Offset
Register Value.

Since this example is simulating the TI GC4016 Quad Digital Down Converter, these values must be
entered in a particular format. The Normalized Tuning Freq Register Value should be a
signed twos-complement 32-bit integer, representing a normalized range between 0 and the sampling
frequency. Use positive frequency values for down conversion. The Normalized Phase Offset
Register Value should be an unsigned 16-bit integer, also representing a normalized range. For
more details, please refer to the TI GC4016 Quad Digital Down Converter documentation and the
DSP System Toolbox NCO library block reference documentation.
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Comparing the NCO-based and CORDIC-based Mixer Implementations

View the Digital Mixer Real Output scope and Mixer Output Comparison scope to compare the NCO-
based Mixer implementation outputs to the CORDIC-based Mixer implementation outputs. Both
implementations can be made to produce similar output values, however the implementation choice is
based largely on available hardware resources and performance constraints. In general, NCO-based
approaches trade off lookup table size (read-only memory resources) with speed performance,
whereas CORDIC-based approaches may trade off speed performance for smaller memory resources,
based on the number of CORDIC kernel iterations needed.

Adjusting the NCO-based Mixer Parameters

Look at the output of the NCO Cosine Spectrum Analyzer block to observe the effects of tuning NCO-
based Mixer subsystem block parameters.

Dithering

To spread the spurious frequencies throughout the available bandwidth, you can add a dither signal
to the accumulator phase values. In this example, the dither signal is generated by a PN Sequence
Generator consisting binary shift registers and exclusive-or gates (internal to the NCO block). The
number of dither bits is automatically determined by

number of dither bits = accumulator word length - table address word length

When you increase the number of dither bits beyond the optimal value, the noise floor begins to rise.
When you decrease the number of dither bits below the optimal value, the appearance of spurious
frequencies will decrease the spurious free dynamic range of the NCO system.

For more information, please see the DSP System Toolbox NCO library block reference documentation.

Adjusting the CORDIC-based Mixer Parameters

Look at the output of the CORDIC Cosine Spectrum Analyzer block to observe the effects of tuning
CORDIC-based Mixer subsystem block parameters.

Phase Accumulator with Dither Generator

The Phase Accumulator with Dither Generator subsystem computes the angle Theta input of the
CORDIC Complex Rotate function. Look at the output of the CORDIC Cosine Spectrum Analyzer block
to observe the effects of tuning the Phase Accumulator with Dither Generator subsystem parameters.

As in the NCO-based Mixer described above, you can add a dither signal to the phase accumulator
values to spread the spurious frequencies throughout the available bandwidth. The dither signal is
generated by a PN Sequence Generator consisting of binary shift registers and exclusive-or gates
(internal to the Phase Accumulator with Dither Generator). The number of dither bits was chosen to
be 15 to closely match the cosine spectrum performance of the NCO-based Mixer.

CORDIC Complex Rotate

The CORDIC Complex Rotate computes u * exp(j*theta) using a CORDIC rotation algorithm.
Refer to the Fixed-Point Designer™ documentation to learn about the CORDICROTATE function. Also
please refer to the references listed below for more information on using CORDIC-based digital mixer
approaches.
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Adjusting Decimation Filter Parameters

The CIC Decimator, Compensation FIR, and Programmable FIR blocks are used together to achieve:

• A high decimation ratio
• Aliasing attenuation
• Application-specific filtering

You can use Filter Designer to visualize and analyze the filters. Refer to the Signal Processing
Toolbox™ documentation to learn about Filter Designer.

Double-clicking on the CIC Decimator block in the example model lets you see the implementation of
the filter. To customize the DDC, you can change the CIC filter by editing the CIC Decimation block
parameters.

CIC Decimation filters are implemented using integer overflow "wrap" arithmetic to perform the
decimation filtering within their cascaded integrator-comb structures. This type of filter is economical
for implementation on hardware such as FPGAs and ASICs, because the only arithmetic operation
required is summing; no multiplies are required. For more information on CIC filters please refer to
the references below.

The Compensation FIR block adjusts for roll-off of the CIC passband, and the Programmable FIR
block filters the signal to meet the requirements of the GSM baseband spectral mask. You can adjust
the gain and coefficients of these filters.

The input gain to Compensation FIR filter is set through the COARSE gain parameter. The TI GC4016
Quad Digital Down Converter requires input from a COARSE parameter to shift the output of the CIC
filter by 0 - 7 bits, according to 2^COARSE. Thus, you may enter 0 - 7 for the COARSE gain parameter
in the Coarse Gain block mask.

The gain at the output of the Programmable FIR block is set through the FINE gain parameter. The TI
GC4016 Quad Digital Down Converter requires input from a FINE parameter to shift the signal by 1 -
4 bits, according to FINE/1024. Thus, you may enter 1 to 16383 for the FINE gain parameter in the
Fine Gain block mask.

Adjusting Rate Conversion Block Parameters

This final stage of the DDC can be used to change the rate of the output of the DDC to match the
baseband frequency of your particular system's demodulator input. The Rate Conversion block is a
fixed-point filter that acts similarly to the FIR Rate Conversion block in the DSP System Toolbox. The
Rate Conversion block's NDELAY parameter is the interpolation factor, and the NDEC parameter is the
decimation factor.

Analyzing the DDC

You can use scopes and the Fixed-Point Tool to observe and analyze the results of your simulation.

Scopes

Double-click on the Scopes block in the example model to gain access to the following scopes:

• NCO Cosine Spectrum
• CORDIC Cosine Spectrum
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• Digital Mixer Real Output
• Mixer Output Comparison
• CIC Decimator Output
• Compensation FIR Output
• Programmable FIR Output
• Resampler Output

Fixed-Point Tool

Invoke the Fixed-Point Tool interface for the example by going to the Analysis menu and selecting
Fixed-Point Tool. This interface allows you to see the maximum values, minimum values, and
overflows for fixed-point blocks in any subsystem in the example model. Refer to the Simulink and
Fixed-Point Designer™ documentation for more information on the Fixed-Point Tool.
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[1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation,"
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Overlap-Add/Save
This example shows how to filter a sinusoid with the Overlap-Add and Overlap-Save FFT methods
using the Frequency-Domain FIR filter block.

Open and run the model.
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The overlap-add algorithm [1] filters the input signal in the frequency domain. The input is divided
into non-overlapping blocks which are linearly convolved with the FIR filter coefficients. The linear
convolution of each block is computed by multiplying the discrete Fourier transforms (DFTs) of the
block and the filter coefficients, and computing the inverse DFT of the product. For filter length M and
FFT size N, the last M-1 samples of the linear convolution are added to the first M-1 samples of the
next input sequence. The first N-M+1 samples of each summation result are output in sequence.

The overlap-save algorithm [2] also filters the input signal in the frequency domain. The input is
divided into overlapping blocks which are circularly convolved with the FIR filter coefficients. The
circular convolution of each block is computed by multiplying the DFTs of the block and the filter
coefficients, and computing the inverse DFT of the product. For filter length M and FFT size N, the
first M-1 points of the circular convolution are invalid and discarded. The output consists of the
remaining N-M+1 points, which are equivalent to the true convolution.
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Overlap-save and overlap-add introduce a processing latency of N-M+1 samples. You can reduce this
latency by partitioning the numerator into shorter segments, applying overlap-add or overlap-save
over the partitions, and then combining the results to obtain the filtered output [3]. The latency is
reduced to the partition length, at the expense of additional computation compared to traditional
overlap-save/overlap-add (though still numerically more efficient than time-domain filtering for long
filters). In this model, we use a partition length of 30, which reduces the latency from 213 samples for
traditional overlap-add/overlap-save to 30 samples.

References
[1] Overlap-Add Algorithm: Proakis and Manolakis, Digital Signal Processing, 3rd ed, Prentice-

Hall, Englewood Cliffs, NJ, 1996, pp. 430 - 433.

[2] Overlap-Save Algorithm: Oppenheim and Schafer, Discrete-Time Signal Processing, Prentice-
Hall, Englewood Cliffs, NJ, 1989, pp. 558 - 560.

[3] T. G. Stockham Jr., "High-speed convolution and correlation", Proc. 1966 Spring Joint Computer
Conf., AFIPS, Vol 28, 1966, pp. 229-233.
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Designing Lowpass FIR Filters
This example shows how to design lowpass FIR filters. Many of the concepts presented here can be
extended to other responses such as highpass, bandpass, etc.

FIR filters are widely used due to the powerful design algorithms that exist for them, their inherent
stability when implemented in non-recursive form, the ease with which one can attain linear phase,
their simple extensibility to multirate cases, and the ample hardware support that exists for them
among other reasons. This example showcases functionality in the DSP System Toolbox™ for the
design of lowpass FIR filters with a variety of characteristics.

Obtaining Lowpass FIR Filter Coefficients

“Lowpass Filter Design in MATLAB” on page 1-12 provides an overview on designing lowpass filters
with DSP System Toolbox. To summarize, two functions are presented that return a vector of FIR
filter coefficients: firceqrip and firgr. The firceqrip is used when the filter order (equivalently
the filter length) is known and fixed.

N   = 100;        % FIR filter order
Fp  = 20e3;       % 20 kHz passband-edge frequency
Fs  = 96e3;       % 96 kHz sampling frequency
Rp  = 0.00057565; % Corresponds to 0.01 dB peak-to-peak ripple
Rst = 1e-4;       % Corresponds to 80 dB stopband attenuation

eqnum = firceqrip(N,Fp/(Fs/2),[Rp Rst],'passedge'); % eqnum = vec of coeffs
fvtool(eqnum,'Fs',Fs,'Color','White') % Visualize filter
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The choice of a filter order of 100 was arbitrary. In general, a larger order results in a better
approximation to ideal at the expense of a more costly implementation. Doubling the order roughly
reduces the filter's transition width in half (assuming all other parameters remain the same).

N2 = 200; % Change filter order from 100 to 200
eqNum200 = firceqrip(N2,Fp/(Fs/2),[Rp Rst],'passedge'); 
fvt = fvtool(eqnum,1,eqNum200,1,'Fs',Fs,'Color','White'); 
legend(fvt,'FIR filter; Order = 100','FIR filter. Order = 200')

Minimum-Order Lowpass Filter Design

Instead of specifying the filter order, firgr can be used to determine the minimum-order required to
meet the design specifications. In order to do so, it is necessary to specify the width of the transition
region. This is done by setting the stopband edge frequency.

Fst = 23e3;  % Transition Width = Fst - Fp
numMinOrder = firgr('minorder',[0,Fp/(Fs/2),Fst/(Fs/2),1],[1 1 0 0],...
    [Rp Rst]);
fvt = fvtool(eqnum,1,eqNum200,1,numMinOrder,1,'Fs',Fs,'Color','White'); 
legend(fvt,'FIR filter; Order = 100','FIR filter. Order = 200',...
    'FIR filter. Order = 133')
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It is also possible to design filters of minimum even order ('mineven') or minimum odd order
('minodd') through the firgr function.

Implementing the Lowpass FIR Filter

Once the filter coefficients have been obtained, the filter can be implemented with dsp.FIRFilter.
This supports double/single precision floating-point data as well as fixed-point data. It also supports C
and HDL code generation as well as optimized code generation for ARM® Cortex® M and ARM
Cortex A.

lowpassFIR = dsp.FIRFilter('Numerator',eqnum); %or eqNum200 or numMinOrder
fvtool(lowpassFIR,'Fs',Fs,'Color','White')
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In order to perform the actual filtering, call the FIR directly like a function. The following code filters
Gaussian white noise and shows the resulting filtered signal in a spectrum analyzer for 10 seconds.

scope  = spectrumAnalyzer('SampleRate',Fs,'AveragingMethod','exponential','ForgettingFactor',0.5);
show(scope);
tic
while toc < 10
    x = randn(256,1);
    y = lowpassFIR(x);
    scope(y);
end
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Designing and Implementing the Filter in One Step

As a convenience, designing and implementing the filter can be done in a single step using
dsp.LowpassFilter. This also supports floating-point, fixed-point, C code generation, and ARM
Cortex M and ARM Cortex A optimizations.

lowpassFilt = dsp.LowpassFilter('DesignForMinimumOrder',false, ...
    'FilterOrder',N,'PassbandFrequency',Fp,'SampleRate',Fs,...
    'PassbandRipple',0.01, 'StopbandAttenuation',80);
tic
while toc < 10
    x = randn(256,1);
    y = lowpassFilt(x);
    scope(y);
end
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Notice that as a convenience, specifications are entered directly using dB values. The passband ripple
can be examined by selecting the "View" menu in FVTool and then selecting "Passband".
dsp.LowpassFilter can also be used for IIR (biquad) designs.

fvtool(lowpassFilt,'Fs',Fs,'Color','White')
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Obtaining the Filter Coefficients

The filter coefficients can be extracted from dsp.LowpassFilter by using the tf function.

eqnum = tf(lowpassFilt);

Tunable Lowpass FIR Filters

Lowpass FIR filters in which the cutoff frequency can be tuned at run-time can be implemented using
the 'dsp.VariableBandwidthFIRFilter' object. These filters do not provide the same granularity
of control over the filter's response characteristic, but they do allow for dynamic frequency response.

vbwFilter = dsp.VariableBandwidthFIRFilter('CutoffFrequency',1e3);
tic
told = 0;
while toc < 10
    t = toc;
    if floor(t) > told
        % Add 1 kHz every second
        vbwFilter.CutoffFrequency = vbwFilter.CutoffFrequency + 1e3;  
    end
    x = randn(256,1);
    y = vbwFilter(x);
    scope(y);
    told = floor(t);
end
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Advanced Design Options: Optimal Non-Equiripple Lowpass Filters

So far all designs used have been optimal equiripple designs. Equiripple designs achieve optimality
by distributing the deviation from the ideal response uniformly. This has the advantage of minimizing
the maximum deviation (ripple). However, the overall deviation, measured in terms of its energy
tends to be large. This may not always be desirable. When lowpass filtering a signal, this implies that
remnant energy of the signal in the stopband may be relatively large. When this is a concern, least-
squares methods provide optimal designs that minimize the energy in the stopband.
fdesign.lowpass can be used to design least-squares and other kinds of lowpass filters. The
following code compares a least-squares FIR design to an FIR equiripple design with the same filter
order and transition width:

lowpassSpec = fdesign.lowpass('N,Fp,Fst',133,Fp,Fst,Fs);
lsFIR = design(lowpassSpec,'firls','SystemObject',true);
LP_MIN = dsp.FIRFilter('Numerator',numMinOrder); 
fvt = fvtool(LP_MIN,lsFIR,'Fs',Fs,'Color','White');
legend(fvt,'Equiripple design','Least-squares design')
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Notice how the attenuation in the stopband increases with frequency for the least-squares designs
while it remains constant for the equiripple design. The increased attenuation in the least-squares
case minimizes the energy in that band of the signal to be filtered.

Equiripple Designs with Increasing Stopband Attenuation

An often undesirable effect of least-squares designs is that the ripple in the passband region close to
the passband edge tends to be large. For lowpass filters in general, it is desirable that passband
frequencies of a signal to be filtered are affected as little as possible. To this extent, an equiripple
passband is generally preferable. If it is still desirable to have an increasing attenuation in the
stopband, equiripple design options provide a way to achieve this.

FIR_eqrip_slope = design(lowpassSpec,'equiripple','StopbandShape','1/f',...
    'StopbandDecay',4,'SystemObject',true);
fvt = fvtool(lsFIR,FIR_eqrip_slope,'Fs',Fs,'Color','White');
legend(fvt,'Least-squares design',...
    'Equiripple design with stopband decaying as (1/f)^4')
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Notice that the stopbands are quite similar. However the equiripple design has a significantly smaller
passband ripple in the vicinity of the passband-edge frequency, 20 kHz:

mls = measure(lsFIR);
meq = measure(FIR_eqrip_slope);
mls.Apass

ans = 0.0121

meq.Apass

ans = 0.0046

Yet another possibility is to use an arbitrary magnitude specification and select two bands (one for
the passband and one for the stopband). Then, by using weights for the second band, it is possible to
increase the attenuation throughout the band. For more information on this and other arbitrary
magnitude designs see “Arbitrary Magnitude Filter Design” on page 4-128.

B   = 2; % Number of bands
F   = [0 Fp linspace(Fst,Fs/2,40)];
A   = [1 1 zeros(1,length(F)-2)];
W   = linspace(1,100,length(F)-2);
lowpassArbSpec = fdesign.arbmag('N,B,F,A',N,B,F(1:2),A(1:2),F(3:end), ...
    A(3:end),Fs);
lpfilter = design(lowpassArbSpec,'equiripple','B2Weights',W, ...
    'SystemObject',true);
fvtool(lpfilter,'Fs',Fs,'Color','White');
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Minimum-Phase Lowpass Filter Design

So far, we have only considered linear-phase designs. Linear phase is desirable in many applications.
Nevertheless, if linear phase is not a requirement, minimum-phase designs can provide significant
improvements over linear phase counterparts. However, minimum-phase designs are not always
numerically robust. Always check the design with FVTool.

As an example of the advantages of minimum-phase designs, consider the comparison of a linear-
phase design with a minimum-phase design that meets the same design specifications:

Fp  = 20e3;
Fst = 22e3;    
Fs  = 96e3;
Ap  = 0.06;   
Ast = 80;     
lowpassSpec = fdesign.lowpass('Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast,Fs);
linphaseSpec =  design(lowpassSpec,'equiripple','SystemObject',true);
eqripSpec =  design(lowpassSpec,'equiripple','minphase',true,...
    'SystemObject',true);
fvt = fvtool(linphaseSpec,eqripSpec,'Fs',Fs,...
    'Color','White');
legend(fvt,...
    'Linear-phase equiripple design',...
    'Minimum-phase equiripple design')
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Notice that the number of coefficients has been reduced from 173 to 141. The group-delay plot also
reveals advantages of the minimum-phase design. Notice how the group-delay is much smaller (in
particular in the passband region).

fvt = fvtool(linphaseSpec,eqripSpec,'Fs',Fs,...
    'Analysis','grpdelay','Color','White');
legend(fvt,...
    'Linear-phase equiripple design',...
    'Minimum-phase equiripple design')
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Minimum-Order Lowpass Filter Design Using Multistage Techniques

A different approach to minimizing the number of coefficients that does not involve minimum-phase
designs is to use multistage techniques. Here we show an interpolated FIR (IFIR) approach. This
approach breaks down the design problem into designing two filters in cascade. For this example, the
design requires 151 coefficients rather than 173. For more information on this, see “Efficient Narrow
Transition-Band FIR Filter Design” on page 4-86.

Fp  = 20e3;
Fst = 22e3;
Fs  = 96e3;
Ap  = 0.06;
Ast = 80;
lowpassSpec = fdesign.lowpass('Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast,Fs);
interpFilter = design(lowpassSpec,'ifir','SystemObject',true);
cost(interpFilter)

ans = struct with fields:
                  NumCoefficients: 151
                        NumStates: 238
    MultiplicationsPerInputSample: 151
          AdditionsPerInputSample: 149

fvt = fvtool(linphaseSpec,interpFilter,'Fs',Fs,'Color','White');
legend(fvt,...
    'Linear-phase equiripple design',...
    'Interpolated FIR equiripple design (two stages)')
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In this case, the group-delay plot reveals disadvantages of the IFIR design. While IFIR designs do
provide linear phase, the group delay is in general larger than a comparable single-stage design.

fvt = fvtool(linphaseSpec,interpFilter,'Fs',Fs,'Analysis','grpdelay',...
    'Color','White');
legend(fvt,...
    'Linear-phase equiripple design',...
    'Interpolated FIR equiripple design (two stages)')
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Lowpass Filter Design for Multirate Applications

Lowpass filters are extensively used in the design of decimators and interpolators. For more
information, see “Design of Decimators and Interpolators” on page 4-229. For more information on
multistage techniques that result in very efficient implementations, see “Multistage Rate Conversion”
on page 4-177.
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Classic IIR Filter Design
This example shows how to design classic IIR filters. The initial focus is on the situation for which the
critical design parameter is the cutoff frequency at which the filter's power decays to half (-3 dB) the
nominal passband value.

The example illustrates how easy it is to replace a Butterworth design with either a Chebyshev or an
elliptic filter of the same order and obtain a steeper rolloff at the expense of some ripple in the
passband and/or stopband of the filter. After this, minimum-order designs are explored.

Lowpass Filters

Let's design an 8th order filter with a normalized cutoff frequency of 0.4pi. First, we design a
Butterworth filter which is maximally flat (no ripple in the passband or in the stopband):

N = 8; 
F3dB = .4;
d = fdesign.lowpass('N,F3dB',N,F3dB);
Hbutter = design(d,'butter','SystemObject',true)

Hbutter = 
  dsp.BiquadFilter with properties:

                   Structure: 'Direct form II'
             SOSMatrixSource: 'Property'
                   SOSMatrix: [4x6 double]
                 ScaleValues: [5x1 double]
           InitialConditions: 0
    OptimizeUnityScaleValues: true

  Show all properties

A Chebyshev Type I design allows for the control of ripples in the passband. There are still no ripples
in the stopband. Larger ripples enable a steeper rolloff. Here, we specify peak-to-peak ripples of
0.5dB:

Ap = .5;
setspecs(d,'N,F3dB,Ap',N,F3dB,Ap);
Hcheby1 = design(d,'cheby1','SystemObject',true);
hfvt = fvtool(Hbutter,Hcheby1);
legend(hfvt,'Butterworth','Chebyshev Type I');
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A Chebyshev Type II design allows for the control of the stopband attenuation. There are no ripples in
the passband. A smaller stopband attenuation enables a steeper rolloff. In this example, we specify a
stopband attenuation of 80 dB:

Ast = 80;
setspecs(d,'N,F3dB,Ast',N,F3dB,Ast);
Hcheby2 = design(d,'cheby2','SystemObject',true);
hfvt = fvtool(Hbutter,Hcheby2);
legend(hfvt,'Butterworth','Chebyshev Type II');

 Classic IIR Filter Design

4-79



Finally, an elliptic filter can provide the steeper rolloff compared to previous designs by allowing
ripples both in the stopband and the passband. To illustrate that, we reuse the same passband and
stopband characteristic as above:

setspecs(d,'N,F3dB,Ap,Ast',N,F3dB,Ap,Ast);
Hellip = design(d,'ellip','SystemObject',true);
hfvt = fvtool(Hbutter,Hcheby1,Hcheby2,Hellip);
legend(hfvt, ...
    'Butterworth','Chebyshev Type I','Chebyshev Type II','Elliptic');
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By zooming in the passband, we verify that all filters have the same -3dB frequency point and that
only Butterworth and Chebyshev Type II designs have a perfectly flat passband.

Phase Consideration

If phase is an issue, it is useful to notice that Butterworth and Chebyshev Type II designs are also the
ones introducing a lesser distortion (their group delay is flatter):

hfvt.Analysis = 'grpdelay';
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Minimum Order Designs

In cases where the 3dB cutoff frequency is not of primary interest but instead both the passband and
stopband are fully specified in terms of frequencies and the amount of tolerable ripples, we can use a
minimum order design technique:

Fp = .1; 
Fst = .3; 
Ap = 1;
Ast = 60;
setspecs(d,'Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast);
Hbutter = design(d,'butter','SystemObject',true);
Hcheby1 = design(d,'cheby1','SystemObject',true);
Hcheby2 = design(d,'cheby2','SystemObject',true);
Hellip = design(d,'ellip','SystemObject',true);
hfvt = fvtool(Hbutter,Hcheby1,Hcheby2,Hellip, 'DesignMask', 'on');
legend(hfvt, ...
    'Butterworth','Chebyshev Type I','Chebyshev Type II','Elliptic');
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A 7th order filter is necessary to meet the specification with a Butterworth design whereas a 5th
order is sufficient with either Chebyshev techniques. The order of the filter can even be reduced to 4
with an elliptic design:

order(Hbutter)

ans = 7

order(Hcheby1)

ans = 5

order(Hcheby2)

ans = 5

order(Hellip)

ans = 4

Matching Exactly the Passband or Stopband Specifications

With minimum-order designs, the ideal order needs to be rounded to the next integer. This additional
fractional order allows the algorithm to actually exceed the specifications. We can use the
MatchExactly flag to constraint the design algorithm to match exactly one band. The other band
will exceed its specifications. By default, Chebyshev Type I designs match the passband, Butterworth
and Chebyshev Type II match the stopband and the attenuations of both bands are matched by the
elliptic design (while the stopband edge frequency is exceeded):
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Hellipmin1    = design(d, 'ellip', 'MatchExactly', 'passband',...
    'SystemObject',true);
Hellipmin2 = design(d, 'ellip', 'MatchExactly', 'stopband',...
    'SystemObject',true);
hfvt = fvtool(Hellip, Hellipmin1, Hellipmin2, 'DesignMask', 'on');
legend(hfvt, 'Matched passband and stopband', ...
    'Matched passband', 'Matched stopband', ...
    'Location', 'Northeast')

Zoom in the passband to compare passband edges. The matched passband and matched both designs
have an attenuation of exactly 1 dB at Fpass = 0.1 .

We verify that the resulting order of the filters did not change:

order(Hellip)

ans = 4

order(Hellipmin1)

ans = 4

order(Hellipmin2)

ans = 4
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Highpass, Bandpass and Bandstop Filters

The results presented above can be extended to highpass, bandpass and bandstop response types.
For example, here are minimum order bandpass filters:

d = fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...
    .35,.45,.55,.65,60,1,60);

Hbutter = design(d,'butter','SystemObject',true);
Hcheby1 = design(d,'cheby1','SystemObject',true);
Hcheby2 = design(d,'cheby2','SystemObject',true);
Hellip = design(d,'ellip','SystemObject',true);
hfvt = fvtool(Hbutter,Hcheby1,Hcheby2,Hellip, 'DesignMask', 'on');
legend(hfvt, ...
    'Butterworth','Chebyshev Type I','Chebyshev Type II','Elliptic',...
    'Location', 'Northwest')
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Efficient Narrow Transition-Band FIR Filter Design
This example shows how to design efficient FIR filters with very narrow transition-bands using
multistage techniques. The techniques can be extended to the design of multirate filters. See
“Multistage Rate Conversion” on page 4-177 for an example of that.

Design of a Lowpass Filter with Narrow Transition Bandwidth

One of the drawbacks of using FIR filters is that the filter order tends to grow inversely proportional
to the transition bandwidth of the filter. Consider the following design specifications (where the
ripples are given in linear units):

Fpass = 2866.5;  % Passband edge
Fstop = 3087;    % Stopband edge
Apass = 0.0174;  % Passband ripple, 0.0174 dB peak to peak
Astop = 66.0206; % Stopband ripple, 66.0206 dB of minimum attenuation
Fs    = 44.1e3;

lowpassSpec = fdesign.lowpass(Fpass,Fstop,Apass,Astop,Fs);

A regular linear-phase equiripple design that meets the specs can be designed with:

eqripFilter = design(lowpassSpec,'equiripple','SystemObject',true);
cost(eqripFilter)

ans = struct with fields:
                  NumCoefficients: 695
                        NumStates: 694
    MultiplicationsPerInputSample: 695
          AdditionsPerInputSample: 694

The filter length required turns out to be 694 taps.

Interpolated FIR (IFIR) Design

The IFIR design algorithm achieves an efficient design for the above specifications in the sense that it
reduces the total number of multipliers required. To do this, the design problem is broken into two
stages, a filter which is upsampled to achieve the stringent specifications without using many
multipliers, and a filter which removes the images created when upsampling the previous filter.

interpFilter = design(lowpassSpec,'ifir','SystemObject',true);

Apparently we have made things worse. Instead of a single filter with 694 multipliers, we now have
two filters with a total of 804 multipliers. However, close examination of the second stage shows that
only about one multiplier in 5 is non-zero. The actual total number of multipliers has been reduced
from 694 to 208.

cost(interpFilter)

ans = struct with fields:
                  NumCoefficients: 208
                        NumStates: 802
    MultiplicationsPerInputSample: 208
          AdditionsPerInputSample: 206

Let's compare the responses of the two designs:
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fvt = fvtool(eqripFilter,interpFilter,'Color','White');
legend(fvt,'Equiripple design', 'IFIR design','Location','Best')

Manually Controlling the Upsampling Factor

In the previous example, we automatically determined the upsampling factor used such that the total
number of multipliers was minimized. It turned out that for the given specifications, the optimal
upsampling factor was 5. However, if we examine the design options:

opts = designopts(lowpassSpec,'ifir')

opts = struct with fields:
      FilterStructure: 'dffir'
     UpsamplingFactor: 'auto'
    JointOptimization: 0
         SystemObject: 0

we can see that we can control the upsampling factor. For example, if we wanted to upsample by 4
rather than 5:

opts.UpsamplingFactor = 4;
opts.SystemObject = true; 
upfilter = design(lowpassSpec,'ifir',opts);
cost(upfilter)

ans = struct with fields:
                  NumCoefficients: 217
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                        NumStates: 767
    MultiplicationsPerInputSample: 217
          AdditionsPerInputSample: 215

We would obtain a design that has a total of 217 non-zero multipliers.

Using Joint Optimization

It is possible to design the two filters used in IFIR conjunctly. By doing so, we can save a significant
number of multipliers at the expense of a longer design time (due to the nature of the algorithm, the
design may also not converge altogether in some cases):

opts.UpsamplingFactor = 'auto'; % Automatically determine the best factor
opts.JointOptimization = true;
ifirFilter = design(lowpassSpec,'ifir',opts);
cost(ifirFilter)

ans = struct with fields:
                  NumCoefficients: 172
                        NumStates: 726
    MultiplicationsPerInputSample: 172
          AdditionsPerInputSample: 170

For this design, the best upsampling factor found was 6. The number of non-zero multipliers is now
only 152

Using Multirate/Multistage Techniques to Achieve Efficient Designs

For the designs discussed so far, single-rate techniques have been used. This means that the number
of multiplications required per input sample (MPIS) is equal to the number of non-zero multipliers.
For instance, the last design we showed requires 152 MPIS. The single-stage equiripple design we
started with required 694 MPIS.

By using multirate/multistage techniques which combine decimation and interpolation we can also
obtain efficient designs with a low number of MPIS. For decimators, the number of multiplications
required per input sample (on average) is given by the number of multipliers divided by the
decimation factor.

multistageFilter = design(lowpassSpec,'multistage','SystemObject',true)

multistageFilter = 
  dsp.FilterCascade with properties:

         Stage1: [1x1 dsp.FIRDecimator]
         Stage2: [1x1 dsp.FIRDecimator]
         Stage3: [1x1 dsp.FIRDecimator]
         Stage4: [1x1 dsp.FIRInterpolator]
         Stage5: [1x1 dsp.FIRInterpolator]
         Stage6: [1x1 dsp.FIRInterpolator]
    CloneStages: true

cost(multistageFilter)

ans = struct with fields:
                  NumCoefficients: 396
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                        NumStates: 352
    MultiplicationsPerInputSample: 73
          AdditionsPerInputSample: 70.8333

The first stage has 21 multipliers, and a decimation factor of 3. Therefore, the number of MPIS is 7.
The second stage has a length of 45 and a cumulative decimation factor of 6 (that is the decimation
factor of this stage multiplied by the decimation factor of the first stage; this is because the input
samples to this stage are already coming in at a rate 1/3 the rate of the input samples to the first
stage). The average number of multiplications per input sample (reference to the input of the overall
multirate/multistage filter) is thus 45/6=7.5. Finally, given that the third stage has a decimation factor
of 1, the average number of multiplications per input for this stage is 130/6=21.667. The total
number of average MPIS for the three decimators is 36.5.

For the interpolators, it turns out that the filters are identical to the decimators. Moreover, their
computational cost is the same. Therefore the total number of MPIS for the entire multirate/
multistage design is 73.

Now we compare the responses of the equiripple design and this one:

fvt = fvtool(eqripFilter,multistageFilter,'Color','White', ...
    'NormalizeMagnitudeto1','on');
legend(fvt,'Equiripple design', 'Multirate/multistage design', ...
    'Location','NorthEast')

Notice that the stopband attenuation for the multistage design is about double that of the other
designs. This is because it is necessary for the decimators to attenuate out of band components by
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the required 66 dB in order to avoid aliasing that would violate the required specifications. Similarly,
the interpolators need to attenuate images by 66 dB in order to meet the specifications of this
problem.

Manually Controlling the Number of Stages

The multirate/multistage design that was obtained consisted of 6 stages. The number of stages is
determined automatically by default. However, it is also possible to manually control the number of
stages that result. For example:

lp4stage=design(lowpassSpec,'multistage','NStages',4,'SystemObject',true);
cost(lp4stage)

ans = struct with fields:
                  NumCoefficients: 516
                        NumStates: 402
    MultiplicationsPerInputSample: 86
          AdditionsPerInputSample: 84.5000

The average number of MPIS for this case is 86

Group Delay

We can compute the group delay for each design. Notice that the multirate/multistage design
introduces the most delay (this is the price to pay for a less computationally expensive design). The
IFIR design introduces more delay than the single-stage equiripple design, but less so than the
multirate/multistage design.

fvt = fvtool(eqripFilter,interpFilter,multistageFilter,...
    'Analysis','grpdelay','Color','White');
legend(fvt, 'Equiripple design','IFIR design',...
    'Multirate/multistage design');
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Filtering a Signal

We now show by example that the IFIR and multistage/multirate design perform comparably to the
single-stage equiripple design while requiring much less computation. In order to perform filtering
for cascades, it is necessary to call generateFilteringCode(ifirFilter) and
generateFilteringCode(multistageFilter). This has been done here already in order to create
HelperIFIRFilter and HelperMultiFIRFilter.

scope = spectrumAnalyzer('SampleRate',Fs,...
    'PlotAsTwoSidedSpectrum',false,'YLimits', [-90 10],...
    'ShowLegend',true,'ChannelNames',{'Equiripple design',...
    'IFIR design','Multirate/multistage design'});
tic,
while toc < 20
    % Run for 20 seconds
    x = randn(6000,1);
    
    % Filter using single stage FIR filter
    y1 = eqripFilter(x);
    
    % Filter using IFIR filter
    y2 = HelperIFIRFilter(x);
    
    % Filter multi-stage/multi-rate FIR filters
    y3 = HelperMultiFIRFilter(x);
    
    % Compare the output from both approaches
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    scope([y1,y2,y3])
end
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IIR Filter Design Given a Prescribed Group Delay
This example shows how to design arbitrary group delay filters using the fdesign.arbgrpdelay
filter designer. This designer uses a least-Pth constrained optimization algorithm to design allpass IIR
filters that meet a prescribed group delay.

fdesign.arbgrpdelay can be used for group delay equalization.

Arbitrary Group Delay Filter Designer

You can use fdesign.arbgrpdelay to design an allpass filter with a desired group delay response. The
desired group delay is specified in a relative sense. The actual group delay depends on the filter order
(the higher the order, the higher the delay). However, if you subtract the offset in the group delay due
to the filter order, the group delay of the designed filter tends to match the desired group delay. The
following code provides an example using two different filter orders.

N = 8;         % Filter order
N2 = 10;       % Alternate filter order
F = [0 0.1 1]; % Frequency vector
Gd = [2 3 1];  % Desired group delay
R = 0.99;      % Pole-radius constraint

Note that in an allpass filter, the numerator is always the reversed version of its denominator. For this
reason, you cannot specify different numerator and denominator orders in fdesign.arbgrpdelay.

The following code shows a single band arbitrary group delay design with the desired group delay
values, Gd, at the specified frequency points, F. In single band designs you specify the group delay
over frequency values that cover the entire Nyquist interval [0 1]*pi rad/sample.

arbGrpSpec = fdesign.arbgrpdelay('N,F,Gd',N,F,Gd)

arbGrpSpec = 
  arbgrpdelay with properties:

               Response: 'Arbitrary Group Delay'
          Specification: 'N,F,Gd'
            Description: {3x1 cell}
    NormalizedFrequency: 1
            FilterOrder: 8
            Frequencies: [0 0.1000 1]
             GroupDelay: [2 3 1]

arbGrpDelFilter1 = design(arbGrpSpec,'MaxPoleRadius',R, ...
    'SystemObject', true)

arbGrpDelFilter1 = 
  dsp.BiquadFilter with properties:

                   Structure: 'Direct form II'
             SOSMatrixSource: 'Property'
                   SOSMatrix: [4x6 double]
                 ScaleValues: [5x1 double]
           InitialConditions: 0
    OptimizeUnityScaleValues: true
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  Show all properties

Measure the total group delay at a set of frequency points from 0 to 1. Measure the nominal group
delay of the filter using the measure method.

Fpoints = 0:0.001:1;
M1 = measure(arbGrpSpec,arbGrpDelFilter1,Fpoints);

Design another filter with an order equal to N2.

arbGrpSpec.FilterOrder = N2;
arbGrpDelFilter2 = design(arbGrpSpec,'MaxPoleRadius',R, ...
    'SystemObject', true);
M2 = measure(arbGrpSpec,arbGrpDelFilter2,Fpoints);

Plot the measured total group delay minus the nominal group delay.

plot(Fpoints, M1.TotalGroupDelay-M1.NomGrpDelay, 'b',...
     Fpoints, M2.TotalGroupDelay-M2.NomGrpDelay, 'g',...
     [0 0.1 1], [2 3 1], 'r');
xlabel('Normalized Frequency (\times\pi rad/sample)');
ylabel('Group delay (samples)'); grid on;
legend('8th order design','10th order design','desired response')

The following plot shows that the actual group delay of the two designs is different. The significance
of this result is that one must find a compromise between a better fit to the desired relative group
delay (less ripple) and a larger overall delay in the filter.
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fvt = fvtool(arbGrpDelFilter1,arbGrpDelFilter2,'Analysis', 'grpdelay');
legend(fvt, '8th order design','10th order design')

Passband Group Delay Equalization

The primary use of fdesign.arbgrpdelay is to compensate for nonlinear-phase responses of IIR filters.
Since the compensating filter is allpass, it can be cascaded with the filter you want to compensate
without affecting its magnitude response. Since the cascade of the two filters is an IIR filter itself, it
cannot have linear-phase (while being stable). However, it is possible to have approximately a linear
phase response in the passband of the overall filter.

Lowpass Equalization

The following example uses fdesign.arbgrpdelay to equalize the group delay response of a lowpass
elliptic filter without affecting its magnitude response.

You use a multiband design to specify desired group delay values over one or more bands of interest
while leaving the group delay of all other frequency bands unspecified (don't care regions). In this
example there is only one band of interest which equals the passband of the lowpass filter. You want
to compensate the group delay in this band, and do not care about the resulting group delay values
outside of it.

Design an elliptic filter with a passband frequency of 0 . 2π rad/sample. Measure the total group delay
over the passband.

ellipFilter = design(fdesign.lowpass('N,Fp,Ap,Ast',4,0.2,1,40),...
    'ellip', 'SystemObject', true);
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wncomp = 0:0.001:0.2; 
g = grpdelay(ellipFilter,wncomp,2); % samples
g1 = max(g)-g;

Design an 8th order arbitrary group delay allpass filter. Use a multiband design and specify a single
band.

allpassSpec = fdesign.arbgrpdelay('N,B,F,Gd',8,1,wncomp,g1)

allpassSpec = 
  arbgrpdelay with properties:

               Response: 'Arbitrary Group Delay'
          Specification: 'N,B,F,Gd'
            Description: {4x1 cell}
    NormalizedFrequency: 1
            FilterOrder: 8
                 NBands: 1
          B1Frequencies: [0 1.0000e-03 0.0020 0.0030 0.0040 0.0050 ... ]
           B1GroupDelay: [14.5838 14.5835 14.5824 14.5808 14.5784 ... ]

allpassFilter = design(allpassSpec,'iirlpnorm', 'SystemObject', true)

allpassFilter = 
  dsp.BiquadFilter with properties:

                   Structure: 'Direct form II'
             SOSMatrixSource: 'Property'
                   SOSMatrix: [4x6 double]
                 ScaleValues: [5x1 double]
           InitialConditions: 0
    OptimizeUnityScaleValues: true

  Show all properties

Cascade the original filter with the compensation filter to achieve the desired group delay
equalization. Verify by processing white noise and estimating the group delay at the two output
stages

samplesPerFrame = 2048;
wn = (2/samplesPerFrame) * (0:samplesPerFrame-1);
numRealPoints = samplesPerFrame/2 + 1;
tfEstimator = dsp.TransferFunctionEstimator('FrequencyRange','onesided',...
      'SpectralAverages',64);
scope = dsp.ArrayPlot('PlotType','Line','YLimits',[0 40],...
      'YLabel','Group Delay (samples)',...
      'XLabel','Normalized Frequency (x pi rad/sample)',...
      'SampleIncrement',2/samplesPerFrame,...
      'Title',['Original (1), Compensated (2), ',...
      'Expected Compensated (3)'], 'ShowLegend', true);

gdOrig = grpdelay(ellipFilter, numRealPoints);
gdComp = grpdelay(allpassFilter, numRealPoints);
range = wn < wncomp(end);
gdExp = nan(numRealPoints, 1); 
gdExp(range) = gdOrig(range) + gdComp(range);
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Stream random samples through filter cascade

Nframes = 300;
for k = 1:Nframes
    x = randn(samplesPerFrame,1);  % Input signal = white Gaussian noise
    
    y_orig = ellipFilter(x);       % Filter noise with original IIR filter
    y_corr = allpassFilter(y_orig);% Compensating filter
    
    Txy = tfEstimator([x, x],[y_orig, y_corr]);
    gdMeas = HelperMeasureGroupDelay(Txy, [], 20);
    scope([gdMeas, gdExp]);
end

Bandpass Equalization

Design a passband group delay equalizer for a bandpass Chebyshev filter with a passband region in
the [0.3 0.4]*pi rad/sample interval. As in the previous example, there is only one band of interest
which corresponds to the passband of the filter. Because you want to compensate the group delay in
this band and do not care about the resulting group delay values outside of it, you use a multiband
design and specify a single band.

Design a bandpass Chebyshev type-1 filter and measure its total group delay over the passband.

bandpassFilter = design(fdesign.bandpass('N,Fp1,Fp2,Ap',4,0.3,0.4,1), ...
    'cheby1', 'SystemObject', true);
wncomp = 0.3:0.001:0.4;
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g = grpdelay(bandpassFilter,wncomp,2);
g1 = max(g)-g;

Design an 8th order arbitrary group delay filter. The pole radius is constrained to not exceed 0.95.

allpassSpec = fdesign.arbgrpdelay('N,B,F,Gd',8,1,wncomp,g1);
allpassFilter = design(allpassSpec,'iirlpnorm','MaxPoleRadius',0.95, ...
    'SystemObject', true);

Cascade the original filter with the compensation filter to achieve the desired group delay
equalization. Verify by processing white noise and estimating the group delay at the two output
stages.

gdOrig = grpdelay(bandpassFilter, numRealPoints);
gdComp = grpdelay(allpassFilter, numRealPoints);
range = wn > wncomp(1) & wn < wncomp(end);
gdExp = nan(numRealPoints,1); gdExp(range) = gdOrig(range) + gdComp(range);

release(scope), scope.YLimits = [0 55];
release(tfEstimator);

Stream random samples through filter cascade

for k = 1:Nframes
    x = randn(samplesPerFrame,1);  % Input signal = white Gaussian noise
    
    y_orig = bandpassFilter(x);    % Filter noise with original IIR filter
    y_corr = allpassFilter(y_orig);% Compensating filter
    
    Txy = tfEstimator([x, x],[y_orig, y_corr]);
    gdMeas = HelperMeasureGroupDelay(Txy, [], 20);
    scope([gdMeas, gdExp]);
end
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The resulting filter has one pair of constrained poles. The group delay variation in the passband ([0.3
0.4]*pi rad/sample) is less than 0.2 samples.

Bandstop Equalization

Design a passband group delay equalizer for a bandstop Chebyshev filter operating with a sampling
frequency of 1 KHz. The bandstop filter has two passband regions in the [0 150] Hz and [200 500] Hz
intervals. You want to compensate the group delay in these bands so you use a multiband design and
specify two bands.

Design a bandstop Chebyshev type-2 filter and measure its total group delay over the passbands.
Convert the measured group delay to seconds because fdesign.arbgrpdelay expects group delay
specifications in seconds when you specify a sampling frequency.

Fs = 1e3;
bandstopFilter = design(fdesign.bandstop('N,Fst1,Fst2,Ast',6,150,400,1,...
    Fs), 'cheby2', 'SystemObject', true);
f1 = 0.0:0.5:150; % Hz
g1 = grpdelay(bandstopFilter,f1,Fs).'/Fs; % seconds
f2 = 400:0.5:Fs/2; % Hz
g2 = grpdelay(bandstopFilter,f2,Fs).'/Fs; % seconds
maxg = max([g1 g2]);

Design a 14th order arbitrary group delay allpass filter. The pole radius is constrained to not exceed
0.95. The group delay specifications are given in seconds and the frequency specifications are given
in Hertz.
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allpassSpec = fdesign.arbgrpdelay('N,B,F,Gd',14,2,f1,maxg-g1,f2,...
    maxg-g2,Fs);
allpassFilter = design(allpassSpec,'iirlpnorm','MaxPoleRadius',0.95,...
    'SystemObject', true);

Cascade the original filter with the compensation filter to process white noise and estimate the group
delay at the two output stages.

gdOrig = grpdelay(bandstopFilter, numRealPoints);
gdComp = grpdelay(allpassFilter, numRealPoints);
fcomp = (Fs/samplesPerFrame) * (0:samplesPerFrame-1);
range = (fcomp>f1(1) & fcomp<f1(end)) | (fcomp>f2(1) & fcomp<f2(end));
gdExp = nan(numRealPoints,1); gdExp(range) = gdOrig(range) + gdComp(range);

release(scope), 
    scope.YLimits = [0 40];
    scope.SampleIncrement = Fs/samplesPerFrame;
    scope.YLabel = 'Group Delay (samples)';
    scope.XLabel = 'Frequency (Hz)';
release(tfEstimator)

Stream random samples through filter cascade

Nframes = 300;
for k = 1:Nframes
    x = randn(samplesPerFrame,1);  % Input signal = white Gaussian noise
    
    y_orig = bandstopFilter(x);    % Filter noise with original IIR filter
    y_corr = allpassFilter(y_orig);% Compensating filter
    
    Txy = tfEstimator([x, x],[y_orig, y_corr]);
    gdMeas = HelperMeasureGroupDelay(Txy, [], 12);
    scope([gdMeas, gdExp]);
end
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The resulting filter has one pair of constrained poles. The passbands have a group delay variation of
less than 3 samples.
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FIR Nyquist (L-th band) Filter Design
This example shows how to design lowpass FIR Nyquist filters. It also compares these filters with
raised cosine and square root raised cosine filters. These filters are widely used in pulse-shaping for
digital transmission systems. They also find application in interpolation/decimation and filter banks.

Magnitude Response Comparison

The plot shows the magnitude response of an equiripple Nyquist filter and a raised cosine filter. Both
filters have an order of 60 and a rolloff-factor of 0.5. Because the equiripple filter has an optimal
equiripple stopband, it has a larger stopband attenuation for the same filter order and transition
width. The raised-cosine filter is obtained by truncating the analytical impulse response and it is not
optimal in any sense.

NBand = 4;
N = 60;           % Filter order
R = 0.5;          % Rolloff factor
TW = R/(NBand/2); % Transition Bandwidth 
f1 = fdesign.nyquist(NBand,'N,TW',N,TW);
eq = design(f1,'equiripple',Zerophase=true,SystemObject=true);
coeffs = rcosdesign(R,N/NBand,NBand,'normal');
coeffs = coeffs/max(abs(coeffs))/NBand;
rc     = dsp.FIRFilter(Numerator=coeffs);
fvt = fvtool(eq,rc);
legend(fvt,'Equiripple NYQUIST design','Raised Cosine design');
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In fact, in this example it is necessary to increase the order of the raised-cosine design to about 1400
in order to attain similar attenuation.

Impulse Response Comparison

Here we compare the impulse responses. Notice that the impulse response in both cases is zero every
4th sample (except for the middle sample). Nyquist filters are also known as L-th band filters,
because the cutoff frequency is π

L  and the impulse response is zero every L-th sample. In this case, we
have 4th band filters.

f1.FilterOrder = 38;
eq1 = design(f1,'equiripple',Zerophase=true,SystemObject=true);
coeffs = rcosdesign(R,f1.FilterOrder/NBand,NBand,'normal');
coeffs = coeffs/max(abs(coeffs))/NBand;
rc1 = dsp.FIRFilter(Numerator=coeffs);
fvt = fvtool(eq1,rc1,Analysis='Impulse');
legend(fvt,'Equiripple NYQUIST','Raised Cosine');

Nyquist Filters with a Sloped Stopband

Equiripple designs allow for control of the slope of the stopband of the filter. For example, the
following designs have slopes of 0, 20, and 40 dB/(rad/sample)of attenuation:

f1.FilterOrder = 52;
f1.Band = 8;
f1.TransitionWidth = .05;
eq1 = design(f1,'equiripple', SystemObject=true);
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eq2 = design(f1,'equiripple', StopbandShape='linear', StopbandDecay=20,SystemObject=true);
eq3 = design(f1,'equiripple', StopbandShape='linear', StopbandDecay=40,SystemObject=true);
fvt = fvtool(eq1,eq2,eq3);
legend(fvt,'Slope=0', 'Slope=20', 'Slope=40')

Minimum-Phase Design

We can design a minimum-phase spectral factor of the overall Nyquist filter (a square-root in the
frequency domain). This spectral factor can be used in a similar manner to the square-root raised-
cosine filter in matched filtering applications. A square-root of the filter is placed on the transmitter's
end and the other square root is placed at the receiver's end.

f1.FilterOrder = 30;
f1.Band = NBand;
f1.TransitionWidth = TW;
eq1 = design(f1,'equiripple', Minphase=true, SystemObject=true);
coeffs = rcosdesign(R,N/NBand,NBand);
coeffs = coeffs / max(coeffs) * (-1/(pi*NBand) * (pi*(R-1) - 4*R));
srrc   = dsp.FIRFilter(Numerator=coeffs);
fvt = fvtool(eq1,srrc);
legend(fvt,'Minimum-phase equiripple design',...
    'Square-root raised-cosine design');
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Decreasing the Rolloff Factor

The response of the raised-cosine filter improves as the rolloff factor decreases (shown here for rolloff
= 0.2). This is because of the narrow main lobe of the frequency response of a rectangular window
that is used in the truncation of the impulse response.

f1.FilterOrder = N;
f1.TransitionWidth = .1;
eq1 = design(f1,'equiripple', Zerophase=true, SystemObject=true);
R = 0.2;
coeffs = rcosdesign(R,N/NBand,NBand,'normal');
coeffs = coeffs/max(abs(coeffs))/NBand;
rc1   = dsp.FIRFilter(Numerator=coeffs);
fvt = fvtool(eq1,rc1);
legend(fvt,'NYQUIST equiripple design','Raised Cosine design');
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Windowed-Impulse-Response Nyquist Design

Nyquist filters can also be designed using the truncated-and-windowed impulse response method.
This can be another alternative to the raised-cosine design. For example we can use the Kaiser
window method to design a filter that meets the initial specs:

f1.TransitionWidth = TW;
kaiserFilt = design(f1, 'kaiserwin', SystemObject=true);

The Kaiser window design requires the same order (60) as the equiripple design to meet the specs. In
contrast, we required an extraordinary 1400th-order raised-cosine filter to meet the stopband spec.

fvt = fvtool(eq,rc,kaiserFilt);
legend(fvt,'Equiripple design', 'Raised Cosine design', 'Kaiser window design');
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Nyquist Filters for Interpolation

Besides digital data transmission, Nyquist filters are attractive for interpolation purposes. The reason
is that every L samples you have a zero sample (except for the middle sample) as mentioned before.
There are two advantages to this, both are obvious by looking at the polyphase representation.

fm = fdesign.interpolator(4,'nyquist');
kaiserFilt = design(fm,'kaiserwin',SystemObject=true);
fvt = fvtool(kaiserFilt);
fvt.PolyphaseView = 'on';
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The polyphase subfilter #4 is an allpass filter, and in fact, it is a pure delay. To verify that, select
impulse response or view the filter coefficients in FVTool. That pure delay branch of the polyphase
filter has the following characteristics:

• All of its coefficients are zero except for one, leading to an efficient implementation of that
polyphase branch.

• The interpolation filter preserves the input samples values, i.e. y Lk = u k , even though the filter
is not ideal.

See Also

More About
• “Filter Builder Design Process” on page 24-2
• “Using Filter Designer” on page 23-2
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FIR Halfband Filter Design
This example shows how to design FIR halfband filters. Halfband filters are widely used in multirate
signal processing applications when interpolating or decimating by a factor of two. Halfband filters
are implemented efficiently in polyphase form because approximately half of the halfband filter
coefficients are equal to zero.

Halfband filters have two important characteristics:

• The passband and stopband ripples must be the same.
• The passband-edge and the stopband-edge frequencies are equidistant from the halfband

frequency Fs
4  (or π

2  rad/sample in normalized frequency).

Obtaining the Halfband Coefficients

The firhalfband function returns the coefficients of an FIR halfband equiripple filter. As a simple
example, consider a halfband filter dealing with data sampled at 96 kHz and has a passband
frequency of 22 kHz.

Fs  = 96e3;
Fp  = 22e3;
N   = 100;
num = firhalfband(N,Fp/(Fs/2));
zerophase(num,1,linspace(0,Fs/2,512),Fs);
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By zooming into the response, you can verify that the passband and stopband peak-to-peak ripples
are the same. Also there is symmetry about the Fs

4  (24 kHz) point. The passband extends up to 22 kHz
as specified and the stopband begins at 26 kHz. We can also verify that every other coefficient is
equal to zero by looking at the impulse response. This makes the filter very efficient to implement for
interpolation or decimation by a factor of 2.

fvt = fvtool(num,Fs=Fs);
fvt.Analysis = "impulse";

dsp.FIRHalfbandInterpolator and dsp.FIRHalfbandDecimator

The firhalfband function provides several other design options. However, using
dsp.FIRHalfbandInterpolator and dsp.FIRHalfbandDecimator System objects is
recommended when working with streaming data. These two System objects not only design the
coefficients, but also provide efficient polyphase implementation. They support filtering double, single
precision floating-point data as well as fixed-point data. They also support C and HDL code
generation as well as optimized ARM® Cortex® M and ARM® Cortex® A code generation.

halfbandInterpolator = dsp.FIRHalfbandInterpolator(SampleRate=Fs,...
    Specification="Filter order and transition width",...
    FilterOrder=N,TransitionWidth=4000);
fvt = fvtool(halfbandInterpolator,Fs=2*Fs); %#ok<NASGU> 
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In order to perform the interpolation, use the dsp.FIRHalfbandInterpolator System object™.
Because this is a multirate filter, it is important to define what is meant by the sample rate. For this
and all other System objects, the sample rate refers to the sample rate of the input signal. However,
FVTool defines the sample rate as the rate at which the filter is running. In the case of interpolation,
you upsample and then filter (conceptually), therefore the sample rate of FVTool needs to be specified
as 2Fs because of the upsampling by 2.

FrameSize = 256;
scope = spectrumAnalyzer(SampleRate=2*Fs);
sine1 = dsp.SineWave(Frequency=10e3,SampleRate=Fs,...
    SamplesPerFrame=FrameSize);
sine2 = dsp.SineWave(Frequency=20e3,SampleRate=Fs,...
    SamplesPerFrame=FrameSize);
tic
while toc < 10
    x = sine1() + sine2() + 0.01.*randn(FrameSize,1); %  96 kHz
    y = halfbandInterpolator(x);                      % 192 kHz
    scope(y);
end

release(scope);
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Notice that the spectral replicas are attenuated by about 40 dB which is roughly the attenuation
provided by the halfband filter. You can obtain a plot with the interpolated samples overlaid on the
input samples by compensating for the group-delay of the filter. Notice that the input samples remain
unchanged at the output of the filter. This is because one of the polyphase branches of the halfband
filter is a pure delay branch which does not change the input samples.

grpDel = 50;
n = 0:2:511;
stem(n(1:end-grpDel/2),x(1:end-grpDel/2),"k","filled")
hold on
nu = 0:511;
stem(nu(1:end-grpDel),y(grpDel+1:end))
legend("Input samples","Interpolated samples")
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In the case of decimation, the sample rate specified in dsp.FIRHalfbandDecimator corresponds to
the sample rate of the filter, since the object filters and then downsamples (conceptually). So for
decimators, the Fs specified in FVTool does not need to be multiplied by any factor.

FrameSize = 256;
FsIn = 2*Fs;
halfbandDecimator = dsp.FIRHalfbandDecimator(SampleRate=FsIn,...
    Specification="Filter order and transition width",...
    FilterOrder=N,TransitionWidth=4000);
fvt = fvtool(halfbandDecimator,Fs=FsIn);%#ok<NASGU> 
scope = spectrumAnalyzer(SampleRate=Fs);
sine1 = dsp.SineWave(Frequency=10e3,SampleRate=Fs,...
    SamplesPerFrame=FrameSize);
sine2 = dsp.SineWave(Frequency=20e3,SampleRate=Fs,...
    SamplesPerFrame=FrameSize);
tic
while toc < 10
    x = sine1() + sine2() + 0.01.*randn(FrameSize,1); %  96 kHz
    y = halfbandInterpolator(x);                      % 192 kHz
    xd = halfbandDecimator(y);                        %  96 kHz
    scope(xd);
end
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release(scope);
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Obtaining the Filter Coefficients

The filter coefficients can be extracted from the interpolator/decimator by using the tf function.

num = tf(halfbandInterpolator); % Or num = tf(halfbandDecimator);

Using Different Design Specifications

Instead of specifying the filter order and transition width, you can design a minimum-order filter that
provides a given transition width as well as a given stopband attenuation.

Ast = 80; % 80 dB
halfbandInterpolator = dsp.FIRHalfbandInterpolator(SampleRate=Fs,...
    Specification="Transition width and stopband attenuation",...
    StopbandAttenuation=Ast,TransitionWidth=4000);
fvtool(halfbandInterpolator,Fs=2*Fs);
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Notice that as with all interpolators, the passband gain in absolute units is equal to the interpolation
factor (2 in the case of halfbands). This corresponds to a passband gain of 6.02 dB.

It is also possible to specify the filter order and the stopband attenuation.

halfbandDecimator = dsp.FIRHalfbandDecimator(SampleRate=Fs,...
    Specification="Filter order and stopband attenuation",...
    StopbandAttenuation=Ast,FilterOrder=N);
fvtool(halfbandDecimator,Fs=Fs);
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Unlike interpolators, decimators have a gain of 1 (0 dB) in the passband.

Using Halfband Filters for Filter Banks

Halfband interpolators and decimators can be used to efficiently implement synthesis/analysis filter
banks. The halfband filters shown so far have all been lowpass filters. With a single extra adder, it is
possible to obtain a highpass response in addition to the lowpass response and use the two responses
for the filter bank implementation.

The following code simulates a quadrature mirror filter (QMF) bank. An 8 kHz signal consisting of 1
kHz and 3 kHz sine waves is separated into two 4 kHz signals using a lowpass/highpass halfband
decimator. The lowpass signal retains the 1 kHz sine wave while the highpass signal retains the 3 kHz
sine wave (which is aliased to 1 kHz after downsampling). The signals are then merged back together
with a synthesis filter bank using a halfband interpolator. The highpass branch upconverts the aliased
1 kHz sine wave back to 3 kHz. The interpolated signal has an 8 kHz sample rate.

Fs1 = 8000; % Units = Hz
Spec = "Filter order and transition width";
Order = 52;
TW = 4.1e2; % Units = Hz

% Construct FIR Halfband Interpolator
halfbandInterpolator = dsp.FIRHalfbandInterpolator( ...
    Specification=Spec,...
    FilterOrder=Order,...
    TransitionWidth=TW,...
    SampleRate=Fs1/2,...
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    FilterBankInputPort=true);

% Construct FIR Halfband Decimator
halfbandDecimator = dsp.FIRHalfbandDecimator( ...
    Specification=Spec,...
    FilterOrder=Order,...
    TransitionWidth=TW,...
    SampleRate=Fs1);

% Input
f1 = 1000;
f2 = 3000;
InputWave = dsp.SineWave(Frequency=[f1,f2],SampleRate=Fs1,...
    SamplesPerFrame=1024,Amplitude=[1 0.25]);

% Construct Spectrum Analyzer object to view the input and output
scope = spectrumAnalyzer(SampleRate=Fs1,...
    PlotAsTwoSidedSpectrum=false,ShowLegend=true,...
    YLimits=[-120 30],...
    Title="Input Signal and Output Signal of Quadrature Mirror Filter",...
    ChannelNames={"Input","Output"}); %#ok<CLARRSTR> 

tic
while toc < 10
    Input = sum(InputWave(),2);
    NoisyInput = Input+(10^-5)*randn(1024,1);
    [Lowpass,Highpass] = halfbandDecimator(NoisyInput);
    Output = halfbandInterpolator(Lowpass,Highpass);
    scope([NoisyInput,Output]);
end

release(scope);
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Advanced Design Options: Specifying Different Design Algorithms

All designs presented so far have been optimal equiripple designs. dsp.FIRHalfbandDecimator
and dsp.FIRHalfbandInterpolator System objects can also design their filters using the Kaiser
window method.

Fs = 44.1e3;
N  = 90;
TW = 1000;
equirippleHBFilter = dsp.FIRHalfbandInterpolator(DesignMethod="Equiripple",...
    Specification="Filter order and transition width",...
    SampleRate=Fs,...
    TransitionWidth=TW,...
    FilterOrder=N); 
kaiserHBFilter = dsp.FIRHalfbandInterpolator(DesignMethod="Kaiser",...
    Specification="Filter order and transition width",...
    SampleRate=Fs,...
    TransitionWidth=TW,...
    FilterOrder=N); 

You can compare the designs with FVTool. The two designs allow for tradeoffs between minimum
stopband attenuation and larger overall attenuation.

fvt = fvtool(equirippleHBFilter,kaiserHBFilter,Fs=2*Fs);
legend(fvt,"Equiripple design","Kaiser-window design")
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If you use thefdesign.interpolator and fdesign.decimator objects, other design algorithms,
such as Least-square linear-filter FIR filter design are available. To determine the list of available
design methods for a given filter specification object, use the designmethods function.

filtSpecs = fdesign.interpolator(2,"halfband","N,TW",N,TW/Fs);
designmethods(filtSpecs,"FIR");

FIR Design Methods for class fdesign.interpolator (N,TW):

equiripple
firls
kaiserwin

Controlling the Stopband Attenuation

Alternatively, one can specify the order and the stopband attenuation. This allows for tradeoffs
between overall stopband attenuation and transition width.

Ast  = 60; % Minimum stopband attenuation
equirippleHBFilter = dsp.FIRHalfbandInterpolator(DesignMethod="Equiripple",...
    Specification="Filter order and stopband attenuation",...
    SampleRate=Fs,...
    StopbandAttenuation=Ast,...
    FilterOrder=N); 
kaiserHBFilter = dsp.FIRHalfbandInterpolator(DesignMethod="Kaiser",...
    Specification="Filter order and stopband attenuation",...
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    SampleRate=Fs,...
    StopbandAttenuation=Ast,...
    FilterOrder=N); 
fvt = fvtool(equirippleHBFilter,kaiserHBFilter,Fs=2*Fs);
legend(fvt,"Equiripple design","Kaiser-window design")

Minimum-Order Designs

Kaiser window designs can also be used in addition to equiripple designs when designing a filter of
the minimum-order necessary to meet the design specifications. The actual order for the Kaiser
window design is larger than that needed for the equiripple design, but the overall stopband
attenuation is better in return.

Fs = 44.1e3;
TW = 1000; % Transition width
Ast = 60;  % 60 dB minimum attenuation in the stopband

equirippleHBFilter = dsp.FIRHalfbandDecimator(DesignMethod="Equiripple",...
    Specification="Transition width and stopband attenuation",...
    SampleRate=Fs,...
    TransitionWidth=TW,...
    StopbandAttenuation=Ast); 
kaiserHBFilter = dsp.FIRHalfbandDecimator(DesignMethod="Kaiser",...
    Specification="Transition width and stopband attenuation",...
    SampleRate=Fs,...
    TransitionWidth=TW,...
    StopbandAttenuation=Ast); 
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fvt = fvtool(equirippleHBFilter,kaiserHBFilter);
legend(fvt,"Equiripple design","Kaiser-window design")

Automatic Choice of Filter Design Technique

In addition to "Equiripple" and "Kaiser", the DesignMethod property of
dsp.FIRHalfbandDecimator and dsp.FIRHalfbandInterpolator System objects can also be
specified as "Auto". When DesignMethod is set to "Auto", the filter design method is chosen
automatically by the object based on the filter design parameters.

Fs = 44.1e3;
TW = 1000; % Transition width
Ast = 60;  % 60 dB minimum attenuation in the stopband
autoHBFilter = dsp.FIRHalfbandDecimator(DesignMethod="Auto",...
    Specification="Transition width and stopband attenuation",...
    SampleRate=Fs,...
    TransitionWidth=TW,...
    StopbandAttenuation=Ast);
fvt = fvtool(autoHBFilter);
legend(fvt,"DesignMethod = Auto");

4 DSP System Toolbox Featured Examples

4-122



For the above filter specifications, you can observe from the magnitude response that the System
object designs an equiripple filter. If the design constraints are very tight such as a very high
stopband attenuation or a very narrow transition width, then the algorithm automatically chooses the
Kaiser window method. The Kaiser window method is optimal to design filters with very tight
specifications. However, if the design constraints are not tight, then the algorithm performs
equiripple design.

The following illustrates a case where the filter specifications are too tight to perform equiripple
design. The DesignMethod property of the object is set to "Equiripple". Hence the object
attempts to design the filter using equiripple characteristics and the design fails to converge,
resulting in warnings generated about convergence.

Fs = 192e3;
TW = 100; % Transition width
Ast = 180;  % 180 dB minimum attenuation in the stopband
equirippleHBFilter = dsp.FIRHalfbandDecimator(DesignMethod="Equiripple",...
    TransitionWidth=TW,...
    StopbandAttenuation=Ast,...
    SampleRate=Fs);
fvt = fvtool(equirippleHBFilter);

Warning: Final filter order of 10448 is probably too high to optimally meet the constraints.

Warning: Design is not converging.  Number of iterations was 6
1) Check the resulting filter using freqz.
2) Check the specifications.
3) Filter order may be too large or too small.
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4) For multiband filters, try making the transition regions more similar in width.
If err is very small, filter order may be too high

legend(fvt,"DesignMethod = Equiripple");

In this case, it is possible to design a filter that converges in design by setting the DesignMethod
property to "Auto" or "Kaiser", and the object designs the halfband filter using the Kaiser window
method.

Fs = 192e3;
TW = 100; % Transition width
Ast = 180;  % 180 dB minimum attenuation in the stopband
autoHBFilter = dsp.FIRHalfbandDecimator(DesignMethod="Auto",...
    TransitionWidth=TW,...
    StopbandAttenuation=Ast,...
    SampleRate=Fs);
fvt = fvtool(autoHBFilter);
legend(fvt,"DesignMethod = Auto");
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Equiripple Designs with Increasing Stopband Attenuation

Using the fdesign.interpolator and fdesign.decimator objects, you can also modify the
shape of the stopband in equiripple design by specifying the optional "StopbandShape" argument
of the design function.

Fs = 44.1e3;
TW = 1000/(Fs/2); % Transition width
Ast = 60;  % 60 dB minimum attenuation in the stopband
filtSpecs = fdesign.decimator(2,"halfband","TW,Ast",TW,Ast);
equirippleHBFilter1 = design(filtSpecs,"equiripple",...
    StopbandShape="1/f",StopbandDecay=4,SystemObject=true);
equirippleHBFilter2 = design(filtSpecs,"equiripple",...
    StopbandShape="linear",StopbandDecay=53.333,SystemObject=true);
fvt = fvtool(equirippleHBFilter1,equirippleHBFilter2,...
    Fs=Fs);
legend(fvt,"Stopband decaying as (1/f)^4","Stopband decaying linearly")
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Highpass Halfband Filters

A highpass halfband filter can be obtained from a lowpass halfband filter by changing the sign of
every second coefficient. Alternatively, one can directly design a highpass halfband by setting the
Type property of the fdesign.decimator object to "Highpass".

filtSpecs = fdesign.decimator(2,"halfband",...
    "TW,Ast",TW,Ast,Type="Highpass");
halfbandHPFilter = design(filtSpecs,"equiripple",...
    StopbandShape="linear",StopbandDecay=53.333,SystemObject=true);
fvt = fvtool(halfbandHPFilter,equirippleHBFilter2,Fs=Fs);
legend(fvt,"Highpass halfband filter","Lowpass halfband filter")
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Arbitrary Magnitude Filter Design
This example shows how to design filters with arbitrary magnitude response. The family of filter
design (FDESIGN) objects allow for the design of filters with various types of responses. Among these
types, the arbitrary magnitude is the less specialized and most versatile one. The examples below
illustrate how arbitrary magnitude designs can solve problems when other response types find
limitations.

FIR Modeling with the Frequency Sampling Method

This section illustrates a case where the amplitude of the filter is defined over the complete Nyquist
range (there are no relaxed or "don't care" regions). The example that follows uses a single (full)
band specification type and the robust frequency sampling algorithm to design a filter whose
amplitude is defined over three sections: a sinusoidal section, a piecewise linear section and a
quadratic section. It is necessary to select a large filter order because the shape of the filter is quite
complicated:

N = 300;
B1 = 0:0.01:0.18;
B2 = [.2 .38 .4 .55 .562 .585 .6 .78];
B3 = 0.79:0.01:1;
A1 = .5+sin(2*pi*7.5*B1)/4;    % Sinusoidal section
A2 = [.5 2.3 1 1 -.2 -.2 1 1]; % Piecewise linear section
A3 = .2+18*(1-B3).^2;          % Quadratic section
F = [B1 B2 B3];
A = [A1 A2 A3];
d = fdesign.arbmag('N,F,A',N,F,A);
Hd = design(d,'freqsamp','SystemObject',true);
fvtool(Hd,'MagnitudeDisplay','Zero-phase');
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close(gcf)

In the previous example, the normalized frequency points were distributed between 0 and pi rad/
sample (extrema included). You can also specify negative frequencies and obtain complex filters. The
following example models a complex RF bandpass filter and uses a Kaiser window to mitigate the
effects of the Gibbs phenomenon that occurs due to the 70 dB magnitude gap between the -pi and pi
rad/sample frequencies:

load cfir.mat; % load a predefined set of frequency and amplitude vectors
N = 200;
d = fdesign.arbmag('N,F,A',N,F,A);
Hd = design(d,'freqsamp', 'window' ,{@kaiser,20},'SystemObject',true);
fvtool(Hd,'FrequencyRange','[-pi, pi)');
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Modeling Smooth Functions with an Equiripple FIR Filter

The equiripple algorithm is well suited for modeling smooth functions as shown in the following
example that models an exponential with a minimum order FIR filter. The example specifies a small
ripple value across all frequencies and defines weights that increase proportionally to the desired
amplitude to improve the performance at high frequencies:

F = linspace(0,1,100);
A = exp(-2*pi*F); 
R = 0.045; % ripple
W = .1-20*log10(abs(A)); % weights
d = fdesign.arbmag('F,A,R',F,A,R);
Hd = design(d,'equiripple','weights',W,'SystemObject',true);
fvtool(Hd,'MagnitudeDisplay','Zero-phase', 'FrequencyRange','[0, pi)');
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Single-Band vs. Multi-Band Equiripple FIR Designs

In certain applications, it might be of interest to shape the stopband of the filter to, for example,
minimize the integrated side-lobe levels, or to improve the quantization robustness. The following
example designs a lowpass filter with a staircase stopband. To achieve the design, it uses a
distribution of weights that increase the attenuation of each step by 5 dB in the stopband:

N = 150;
F = [0 .25 .3 .4 .401 .5 .501 .6 .601 .7 .701 .8 .801 .9 .901 1]; 
A = [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
W = 10.^([0 0 5 5 10 10 15 15 20 20 25 25 30 30 35 35]/20);
d = fdesign.arbmag('N,F,A',N,F,A);
Hd1 = design(d,'equiripple','weights',W,'SystemObject',true);

The following example presents an alternative design based on the use of a multi-band approach that
defines two bands (passband and stopband) separated by a "don't care" region (or transition band):

B = 2;            % Number of bands
F1 = F(1:2);      % Passband
F2 = F(3:end);    % Stopband
% F(2:3)=[.25 .3] % Transition band
A1 = A(1:2);
A2 = A(3:end);
W1 = W(1:2);
W2 = W(3:end);
d = fdesign.arbmag('N,B,F,A',N,B,F1,A1,F2,A2);
Hd2 = design(d,'equiripple','B1Weights',W1,'B2Weights',W2,...
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    'SystemObject',true);
hfvt = fvtool(Hd1,Hd2,'MagnitudeDisplay','Magnitude (dB)','Legend','On');
legend(hfvt, 'Single-Band Design', 'Multi-Band Design');

Notice the clear advantage of the multi-band approach. By relaxing constraints in the transition
region, the equiripple algorithm converges to a solution with lower passband ripples and greater
stopband attenuation. In other words, the frequency characteristics of the first filter could be
matched with a lower order. The following example illustrates this last comment by obtaining
equivalent filters using minimum order designs.

Minimum order designs require the specification of one ripple value per band. For this example, set
the ripple to 0.0195 in all bands.

R = 0.0195;

% Single-band minimum order design
d = fdesign.arbmag('F,A,R',F,A,R);
Hd1 = design(d,'equiripple','Weights',W,'SystemObject',true);

% Multi-band minimum order design
d = fdesign.arbmag('B,F,A,R',B,F1,A1,R,F2,A2,R);
Hd2 = design(d,'equiripple','B1Weights',W1,'B2Weights',W2,...
    'SystemObject',true);

hfvt = fvtool(Hd1,Hd2);
legend(hfvt, 'Single-Band Minimum Order Design', ...
  'Multi-Band Minimum Order Design');
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The passband ripple and stopband attenuation of both designs match. However, the single-band
design has an order of 152 while the multi-band design has an order of 72.

order(Hd)

ans = 32

Constrained Multi-Band Equiripple Designs

Multi-band equiripple designs allow you to specify ripple constraints for different bands, specify
single-frequency bands, and force specified frequency points to specified values.

Constrained Band Designs

The following example designs an 80th order passband filter with an attenuation of 60 dB in the first
stopband and of 40 dB in the second stopband. By relaxing the attenuation of the second stopband,
the ripple in the passband is reduced while maintaining the same filter order.

N = 80; % filter order
B = 3;  % number of bands

d = fdesign.arbmag('N,B,F,A,C',N,B,[0 0.25],[0 0],true,...
  [0.3 0.6],[1 1],false,[0.65 1],[0 0],true)

d = 
  arbmag with properties:

               Response: 'Arbitrary Magnitude'

 Arbitrary Magnitude Filter Design

4-133



          Specification: 'N,B,F,A,C'
            Description: {4x1 cell}
    NormalizedFrequency: 1
            FilterOrder: 80
                 NBands: 3
          B1Frequencies: [0 0.2500]
           B1Amplitudes: [0 0]
          B1Constrained: 1
               B1Ripple: 0.2000
          B2Frequencies: [0.3000 0.6000]
           B2Amplitudes: [1 1]
          B2Constrained: 0
          B3Frequencies: [0.6500 1]
           B3Amplitudes: [0 0]
          B3Constrained: 1
               B3Ripple: 0.2000

The B1Constrained and B3Constrained properties have been set to true to specify that the first
and third bands are constrained bands. Specify the ripple value for the ith constrained band using the
BiRipple property:

d.B1Ripple = 10^(-60/20); % Attenuation for the first stopband
d.B3Ripple = 10^(-40/20); % Attenuation for the second stopband

Hd = design(d,'equiripple','SystemObject',true)

Hd = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form'
      NumeratorSource: 'Property'
            Numerator: [-0.0036 0.0049 0.0052 -0.0022 -0.0097 -0.0044 ... ]
    InitialConditions: 0

  Show all properties

fvtool(Hd,'Legend','Off');
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Single-Frequency Bands

The following example designs a minimum order equiripple filter with two notches at exactly 0.25*pi
and 0.55*pi rad/sample, and with a ripple of 0.15 in the passbands.

B = 5; % number of bands
d = fdesign.arbmag('B,F,A,R',B);

d.B1Frequencies = [0 0.2];  
d.B1Amplitudes = [1 1];
d.B1Ripple = 0.15;
d.B2Frequencies = 0.25; % single-frequency band
d.B2Amplitudes = 0; 
d.B3Frequencies = [0.3 0.5]; 
d.B3Amplitudes = [1 1]; 
d.B3Ripple = 0.15;
d.B4Frequencies = 0.55; % single-frequency band
d.B4Amplitudes = 0; 
d.B5Frequencies = [0.6 1];  
d.B5Amplitudes = [1 1];
d.B5Ripple = 0.15;
Hd = design(d,'equiripple','SystemObject',true);
fvtool(Hd);
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Forced Frequency Points

The following example designs a highpass filter with a stopband edge at 100 Hz, and a passband edge
at 150 Hz. Suppose that you want to reject a strong 60 Hz interference without having to add an
extra filter or without having to increase the filter order by a large amount. You can do this by forcing
the magnitude response of the highpass filter to be 0 at 60 Hz:

B = 2;    % number of bands
N = 92;   % filter order
Fs = 2e3; % sampling frequency
d = fdesign.arbmag('N,B,F,A',N,B,[0 60 100],[0 0 0],[150 1000],[1 1],Fs);

Use the B1ForcedFrequencyPoints design option to force the 60 Hz point to its specified
amplitude value.

Hd = design(d,'equiripple','B1ForcedFrequencyPoints',60,...
    'SystemObject',true);
hfvt = fvtool(Hd,'Fs', Fs);

4 DSP System Toolbox Featured Examples

4-136



Zoom into the stopband of the highpass filter to observe that the amplitude is zero at the specified 60
Hz frequency point:

hfvt.MagnitudeDisplay = 'Magnitude';
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Single-Band vs. Multi-Band IIR Designs

As in the FIR case, IIR design problems where a transition band cannot be easily identified are best
resolved with a single (full) band specification approach. As an example, model the optical absorption
of a gas (atomic Rubidium87 vapor):

Nb = 12; 
Na = 10;
F = linspace(0,1,100);
As = ones(1,100)-F*0.2;
Absorb = [ones(1,30),(1-0.6*bohmanwin(10))',...
    ones(1,5), (1-0.5*bohmanwin(8))',ones(1,47)];
A = As.*Absorb;
d = fdesign.arbmag('Nb,Na,F,A',Nb,Na,F,A);
W = [ones(1,30) ones(1,10)*.2 ones(1,60)];
Hd = design(d, 'iirlpnorm', 'Weights', W, 'Norm', 2, 'DensityFactor',30,...
    'SystemObject',true);
fvtool(Hd, 'MagnitudeDisplay','Magnitude (dB)', ...
    'NormalizedFrequency','On');
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In other cases where constraints can be relaxed in one or more transition bands, the multi-band
approach provides the same benefits as in the FIR case (namely better passband and stopband
characteristics). The following example illustrates these differences by modeling a Rayleigh fading
wireless communications channel:

Nb = 4;
Na = 6;
F = [0:0.01:0.4 .45 1];
A = [1.0./(1-(F(1:end-2)./0.42).^2).^0.25 0 0];
d = fdesign.arbmag('Nb,Na,F,A',Nb,Na,F,A); % single-band design
Hd1 = design(d,'iirlpnorm','SystemObject',true);

B = 2;
F1 = F(1:end-2);          % Passband
F2 = F(end-1:end);        % Stopband
% F(end-2:end-1)=[.4 .45] % Transition band
A1 = A(1:end-2);  
A2 = A(end-1:end);
d = fdesign.arbmag('Nb,Na,B,F,A',Nb,Na,B,F1,A1,F2,A2); % multi-band design
Hd2 = design(d,'iirlpnorm','SystemObject',true);
hfvt = fvtool(Hd1,Hd2);
legend(hfvt, 'Single-Band Design', 'Multi-Band Design');
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Design of Peaking and Notching Filters
This example shows how to design peaking and notching filters. Filters that peak or notch at a certain
frequency retain or eliminate a particular frequency component of a signal. The design parameters
for the filter are the frequency at which the peak or notch is desired, and either the 3-dB bandwidth
or the filter's Q factor. Moreover, given these specifications, by increasing the filter order, it is
possible to obtain designs that more closely approximate an ideal filter.

Second Order Notch Filters

Suppose you need to eliminate a 60 Hz interference in a signal sampled at 3000 Hz. A notch filter can
be used for such a purpose. The iirnotch function can be used to compute the coefficients of a
second order notch filter.

Here is an example:

F0 = 60;   % Interference is at 60 Hz
Fs = 3000; % Sampling frequency is 3000 Hz
BW = 6;    % Choose a bandwidth factor of 6Hz
[num1,den1] = iirnotch(F0/(Fs/2),BW/(Fs/2));
fvtool(num1,den1,'Fs',Fs,'Color','white');

An equivalent way of designing the filter is to specify the quality factor and obtain the 3 dB
bandwidth. Quality factor is defined as the ratio of the notch or peak frequency F0 and the 3 dB
bandwidth BW. Mathematically, Q factor is given by Q = F0/BW. In the above case, the value of the
quality factor is 10. Specifying the bandwidth is a more convenient way of achieving exactly the
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desired shape for the designed filter. Ther Q factor of the filter is a measure of how well the desired
frequency is isolated from other frequencies. For a fixed filter order, a higher Q factor is
accomplished by pushing the poles closer to the zeros.

Visualize the magnitude response of the filter using fvtool.

Q2 = 100;    % Choose a Q factor of 100
[num2,den2] = iirnotch(F0/(Fs/2),F0/(Q2*Fs/2));
fvt = fvtool(num1,den1,num2,den2,'Fs',Fs,'Color','white');
legend(fvt,'Q = 10','Q = 100');

Second order Peak Filters

Peaking filters are used to retain only a single frequency component (or a small band of frequencies)
from a signal. The iirpeak function can be used to compute the coefficients of a second order peak
filter.

F0 = 1000;   % Interference is at 60 Hz
Fs = 3000;   % Sampling frequency is 3000 Hz
Q1 = 10;
[num1,den1] = iirpeak(F0/(Fs/2),F0/(Q1*Fs/2));
Q2 = 100;
[num2,den2] = iirpeak(F0/(Fs/2),F0/(Q2*Fs/2));
fvt = fvtool(num1,den1,num2,den2,'Fs',Fs,'Color','white');
legend(fvt,'Q = 10','Q = 100');
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Time varying Second Order Notch filter Implementation

Using time-varying filters requires changing the coefficients of the filter while the simulation runs.
The DSP System Toolbox™ provides certain features such as the iirnotch function and the
dsp.NotchPeakFilter object to design time-varying tunable notch filters. These features compute
the filter coefficients directly.

Dynamic simulation with static filter

In order to implement a time varying filter, create a dynamic setup to simulate the filter and
implement the filter with time-varying design parameters.

Start by creating a dynamic (streamed) simulation with filters whose coefficients do not change.
Create two second-order notch filters, one using the dsp.SOSFilter object and the second using
the dsp.NotchFilter object. In the first filter, set the center frequency to 1 kHz, and the bandwidth
at -3 dB to 500 Hz. Calculate the coefficients of this filter directly using the iirnotch function. In
the second filter, set the center frequency to 3 kHz and the bandwidth at -3 dB to 500 Hz. The sample
rate for both filters is 8 kHz.

Fs = 8e3;    % 8 kHz sampling frequency
F01 = 1e3;   % Notch at 1 kHz for Filter 1
BW = 500;    % 500 Hz bandwidth for both filters
[b, a] = iirnotch(F01/(Fs/2), BW/(Fs/2))    % Filter 1 coefficients

b = 1×3
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    0.8341   -1.1796    0.8341

a = 1×3

    1.0000   -1.1796    0.6682

sosFilter = dsp.SOSFilter(b,a);

F02 = 3e3;    % Notch at 3 kHz for Filter 2
npFilter = dsp.NotchPeakFilter('CenterFrequency',F02,'Bandwidth',BW,...
    'SampleRate',Fs);

scope = spectrumAnalyzer('PlotAsTwoSidedSpectrum', false, ...
    'SampleRate', Fs, ...
    'AveragingMethod','exponential',...
    'ForgettingFactor',.95,...
    'ChannelNames',{'Filter 1','Filter 2'},...
    'ShowLegend',true);

samplesPerFrame = 256;
nFrames = 8192;
for k = 1:nFrames
   x = randn(samplesPerFrame, 1);
   y1 = sosFilter(x);
   y2 = npFilter(x);
   scope([y1,y2]);
end
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Dynamic simulation with time-varying filter

For a time-varying filter, the coefficients of time-varying filters change over time due to runtime
changes in the design parameters (for example the center frequency for a notch filter). Create two
second order notch filters with time varying design parameters. Similar to the above example, use the
iirnotch function and the dsp.SOSFilter object to implement the first filter, and the
dsp.NotchFilter object to implement the second filter. Vary the design parameters of both filters
over time.

% Notch filter parameters - how they vary over time
Fs = 8e3;                       % 8 kHz sampling frequency
F01 = 1e3 * [0.5, 1, 1.5, 3];   % Notch frequencies for Filter 1
F02 = 1e3 * [3.5, 3, 2.5, 2];   % Notch frequencies for Filter 2
BW = 500 * ones(1,4);           % 500 Hz bandwidth for both filters

myChangingParams1 = struct('f0', num2cell(F01/(Fs/2)), 'bw', num2cell(BW/(Fs/2)));
myChangingParams2 = struct('F0', num2cell(F02), 'BW', num2cell(BW));
paramsChangeTimes = [0, 70, 140, 210]; % in seconds

% Simulation time management
nSamplesPerFrame = 256;
tEnd = 300;
nSamples = ceil(tEnd * Fs);
nFrames = floor(nSamples / nSamplesPerFrame);

% Object creation
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sosFilter = dsp.SOSFilter; %Filter 1 object
npFilter = dsp.NotchPeakFilter('SampleRate',Fs);
scope = spectrumAnalyzer('PlotAsTwoSidedSpectrum', false, ...
    'SampleRate', Fs, ...
    'AveragingMethod','exponential',...
    'ForgettingFactor',.75,...
    'ChannelNames',{'Filter 1','Filter 2'},...
    'ShowLegend',true);
paramtbl1 = ParameterTimeTable('Time', paramsChangeTimes, ...
    'Values', myChangingParams1, ...
    'SampleRate', Fs/nSamplesPerFrame);
paramtbl2 = ParameterTimeTable('Time', paramsChangeTimes, ...
    'Values', myChangingParams2, ...
    'SampleRate', Fs/nSamplesPerFrame);

% Actual simulation loop
for frameIdx = 1:nFrames
    % Get current F0 and BW
    [params1, update1] = paramtbl1();
    [params2, update2] = paramtbl2();
    if(update1)
        % Recompute filter coefficients if parameters changed
        [b, a] = iirnotch(params1.f0, params1.bw);
        % Set filter coefficients to new values
        sosFilter.Numerator = b;
        sosFilter.Denominator = a;
    end
    if(update2)
        npFilter.CenterFrequency = params2.F0;
        npFilter.Bandwidth = params2.BW;
    end
    % Generate vector of white noise samples
    x = randn(nSamplesPerFrame, 1);
    % Filter noise
    y1 = sosFilter(x);
    y2 = npFilter(x);
    % Visualize spectrum
    scope([y1,y2]);
end
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A tunable peaking filter can be implemented similarly using the dsp.NotchPeakFilter object or
using the iirpeak function and dsp.SOSFilter object.

Note: These tunable peaking and notching filters support code generation.

Higher order Notch Filter

Since it is only possible to push the poles so far and remain stable, in order to improve the brickwall
approximation of the filter, it is necessary to increase the filter order. A higher order notch filter can
be designed using fdesign.notch filter specification object.

notchspec = fdesign.notch('N,F0,Q',2,.4,100);
notchfilt = design(notchspec,'SystemObject',true);
notchspec.FilterOrder = 6;
notchfilt1 = design(notchspec,'SystemObject',true);
fvt= fvtool(notchfilt, notchfilt1, 'Color','white');
legend(fvt,'2nd Order Filter','6th Order Filter');
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For a given order, we can obtain sharper transitions by allowing for passband and/or stopband
ripples.

N = 8; F0 = 0.4; BW = 0.1;
notchspec = fdesign.notch('N,F0,BW',N,F0,BW);
notchfilt = design(notchspec,'SystemObject',true);
notchspec1 = fdesign.notch('N,F0,BW,Ap,Ast',N,F0,BW,0.5,60);
notchfilt1 = design(notchspec1,'SystemObject',true);
fvt= fvtool(notchfilt, notchfilt1, 'Color','white');
legend(fvt,'Maximally Flat 8th Order Filter',...
    '8th Order Filter With Passband/Stopband Ripples', ...
    'Location','SouthEast');
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Higher order Peak Filters

A higher order peak filter can be designed using fdesign.peak filter specification object. All
specifications and tradeoffs mentioned so far apply equally to peaking filters.

Here's an example of a higher order peaking filter:

N = 6; F0 = 0.7; BW = 0.001;
peakspec = fdesign.peak('N,F0,BW',N,F0,BW);
peakfilt = design(peakspec,'SystemObject',true);
peakspec1 = fdesign.peak('N,F0,BW,Ast',N,F0,BW,80);
peakfilt1 = design(peakspec1,'SystemObject',true);
fvt= fvtool(peakfilt, peakfilt1, 'Color','white');
legend(fvt,'Maximally Flat 6th Order Filter',...
    '6th Order Filter With 80 dB Stopband Attenuation','Location','SouthEast');
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See Also
Functions
iirnotch | iirpeak | fdesign.notch | fdesign.peak

Objects
dsp.NotchPeakFilter | dsp.SOSFilter

Related Examples
• “Multistage Halfband IIR Filter Design” on page 4-247
• “Design a Filter in Fdesign — Process Overview” on page 5-2
• “Least Pth-Norm Optimal IIR Filter Design” on page 4-169
• “Classic IIR Filter Design” on page 4-78
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Fractional Delay Filters Using Farrow Structures
This example shows how to design digital fractional delay filters that are implemented using Farrow
structures. Digital fractional delay filters are useful tools to fine-tune the sampling instants of signals.
They are for example typically found in the synchronization of digital modems where the delay
parameter varies over time. This example illustrates the Farrow structure, a popular method for
implementing time-varying FIR fractional delay filters.

Ideal Fractional Delay Filter

The ideal fractional delay filter is a linear phase allpass filter. Its impulse response is a time-shifted
discrete sinc function that corresponds to a non causal filter. Since the impulse response is infinite, it
cannot be made causal by a finite shift in time. It is therefore non realizable and must be
approximated.

The Farrow Structure

To compute the output of a fractional delay filter, we need to estimate the values of the input signal
between the existing discrete-time samples. Special interpolation filters can be used to compute new
sample values at arbitrary points. Among those, polynomial-based filters are of particular interest
because a special structure - the Farrow structure - permits simple handling of coefficients. In
particular, the tunability of the Farrow structure makes its well-suited for practical hardware
implementations.

Maximally-Flat FIR Approximation (Lagrange Interpolation)

Lagrange interpolation is a time-domain approach that leads to a special case of polynomial-based
filters. The output signal is approximated with a polynomial of degree M. The simplest case (M=1)
corresponds to linear interpolation. Let's design and analyze a linear fractional delay filter that will
split the unit delay by various fractions:

Nx = 1024;
Nf = 5;
yw = zeros(Nx,Nf);
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transferFuncEstimator = dsp.TransferFunctionEstimator( ...
    'SpectralAverages',25,'FrequencyRange','onesided');
arrPlotPhaseDelay = dsp.ArrayPlot('PlotType','Line','YLimits',[0 1.5], ...
    'YLabel','Phase delay','SampleIncrement',1/512);
arrPlotMag = dsp.ArrayPlot('PlotType','Line','YLimits',[-10 1], ...
    'YLabel','Magnitude (dB)','SampleIncrement',1/512);

fracDelay = dsp.VariableFractionalDelay;

xw = randn(Nx,Nf);
transferFuncEstimator(xw,yw);
w = getFrequencyVector(transferFuncEstimator,2*pi);
w = repmat(w,1,Nf);
tic,
while toc < 2 
    yw = fracDelay(xw,[0 0.2 0.4 0.6 0.8]); 
    H = transferFuncEstimator(xw,yw); 
    arrPlotMag(20*log10(abs(H))) 
    arrPlotPhaseDelay(-angle(H)./w) 
end 
release(fracDelay)
release(transferFuncEstimator)
release(arrPlotMag)

release(arrPlotPhaseDelay)
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For any value of the delay, the ideal filter should have both a flat magnitude response and a flat phase
delay response. The approximation is correct only for the lowest frequencies. This means that in
practice the signals need to be over-sampled for the linear fractional delay to work correctly. Here
you apply two different fractional delays to a sine wave and use the time scope to overlay the original
sine wave and the two delayed versions. A delay of 0.2 samples with a sample rate of 1000 Hz,
corresponds to a delay of 0.2 ms.

scope = timescope('SampleRate',1000, ...
                      'YLimits',[-1 1], ...
                      'TimeSpan',.02, ...
                      'TimeSpanOverrunAction','Scroll');
sine = dsp.SineWave('Frequency',50,'SamplesPerFrame',Nx);
tic,
while toc < 2
    x  = sine();
    y = fracDelay(x,[.2 .8]); % Delay by 0.2 ms and 0.8 ms
    scope([x,y(:,1),y(:,2)])
end
release(fracDelay)
release(scope);
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Higher order Lagrange interpolators can be designed. Let's compare a cubic Lagrange interpolator
with a linear one:

farrowFracDelay = dsp.VariableFractionalDelay( ...
    'InterpolationMethod','Farrow','MaximumDelay',1025);
Nf = 2;
yw = zeros(Nx,Nf);
xw = randn(Nx,Nf);
H = transferFuncEstimator(xw,yw);
w = getFrequencyVector(transferFuncEstimator,2*pi);
w = repmat(w,1,Nf);
tic,
while toc < 2
    % Run for 2 seconds
    yw(:,1) = fracDelay(xw(:,1),0.4);  % Delay by 0.4 ms
    yw(:,2) = farrowFracDelay(xw(:,2),1.4); % Delay by 1.4 ms   
    H = transferFuncEstimator(xw,yw);    
    arrPlotMag(20*log10(abs(H)))
    arrPlotPhaseDelay(-unwrap(angle(H))./w)
end 
release(fracDelay)
release(transferFuncEstimator)
release(arrPlotMag)
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release(arrPlotPhaseDelay)
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Increasing the order of the polynomials slightly increases the useful bandwidth when Lagrange
approximation is used. The length of the differentiating filters, that is, the number of pieces of the
impulse response (number of rows of the 'Coefficients' property) is equal to the length of the
polynomials (number of columns of the 'Coefficients' property). Other design methods can be used to
overcome this limitation. Also notice how the phase delay of the third order filter is shifted from 0.4
to 1.4 samples at DC. Since the cubic lagrange interpolator is a 3rd order filter, the minimum delay it
can achieve is 1. For this reason, the delay requested is 1.4 ms instead of 0.4 ms for this case.

sine = dsp.SineWave('Frequency',50,'SamplesPerFrame',Nx);
tic,
while toc < 2
       x  = sine();
       y1 = fracDelay(x,0.4);
       y2 = farrowFracDelay(x,1.4);
       scope([x,y1,y2])
end
release(fracDelay)
release(scope);
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Time-Varying Fractional Delay

The advantage of the Farrow structure over a Direct-Form FIR resides in its tunability. In many
practical applications, the delay is time-varying. For each new delay we would need a new set of
coefficients in the Direct-Form implementation but with a Farrow implementation, the polynomial
coefficients remain constant.
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tic,
while toc < 5
    x  = sine();
    if toc < 1
        delay = 1;
    elseif toc < 2
        delay = 1.2;
    elseif toc < 3
        delay = 1.4;
    elseif toc < 4
        delay = 1.6;
    else
        delay = 1.8;
    end
    y = farrowFracDelay(x,delay); 
    scope([x,y])
end
release(fracDelay)
release(scope);

See Also

Related Examples
• “Design of Fractional Delay FIR Filters” on page 4-197

4 DSP System Toolbox Featured Examples

4-158



Least Pth-Norm Optimal FIR Filter Design
This example shows how to design least Pth-norm FIR filters with the firlpnorm function. This
function uses a least-Pth unconstrained optimization algorithm to design FIR filters with arbitrary
magnitude response.

FIRLPNORM Syntax

The syntax for firlpnorm is similar to that of iirlpnorm (see the “Least Pth-Norm Optimal IIR
Filter Design” on page 4-169 example for details) except that the denominator order is not specified.

The function designs optimal FIR filters in the least-Pth sense. However the filter is not constrained
to have linear-phase, that is, the impulse response has no special symmetry properties.

However, the linear-phase constraint also results in filters with larger order than the more general
nonlinear-phase designs. Note that in some hardware implementations, one can reduce the number of
multipliers in half when implementing linear-phase filters because of the symmetry in the coefficients.
For example, consider the following firlpnorm design

N = 30;
F = [0 0.3 0.45 1];
E = F;
A = [1 1 0 0];
W = [1 1 10 10];
b = firlpnorm(N,F,E,A,W);
h = fvtool(b);
h.MagnitudeDisplay = 'Magnitude';
h.Color = 'White';
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If we zoom in, we can see that the filter has a passband peak ripple of about 0.008 and a stopband
peak ripple of about 0.000832. A firpm or firgr design with comparable specs will require a 37th
order filter. This is especially significant considering that firgr will provide the lowest order linear-
phase FIR filter that meets the specifications.

dev = [0.008 0.000832];
bgr = firgr('minorder',F,A,dev);
orderfirgr = length(b)-1;
fprintf('Order: %d\n',orderfirgr);

Order: 30

h = fvtool(b,1,bgr,1);
h.MagnitudeDisplay = 'Magnitude';
h.Color = 'White';
legend(h,'FIRLPNORM design','FIRGR design');
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Another way to look at this is by using the firceqrip function which also designs linear-phase
equiripple filters, but whose specifications are given in a different way to firgr (see the constrained
equiripple FIR filter design example for details). If we want a linear-phase filter of 30th order that
meets the passband and stopband ripple that the design from firlpnorm achieves we need to live
with a larger transition width.

bceq = firceqrip(30,(F(2)+F(3))/2,dev);
h = fvtool(b,1,bceq,1,'Color','White');
legend(h,'FIRLPNORM design','FIRCEQRIP design');
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Minimum-Phase Designs

Of course it is also possible to design nonlinear-phase filters with firgr by specifying the minphase
option. Doing so allows us to obtain an FIR filter of lower order than in the linear-phase case and still
meet the required specs. However, even in this case, the result is a non-optimal nonlinear-phase filter
because the filter order is larger than the minimum required for a nonlinear-phase equiripple filter to
meet the specs as is evident from the following example.

bm = firgr('minorder',F,A,dev,'minphase');
orderfirgrmin = length(bm)-1;
fprintf('Order: %d\n',orderfirgrmin);

Order: 32

h = fvtool(b,1,bm,1,'Color','White');
legend(h,'FIRLPNORM design','FIRGR minimum-phase design');
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Minimum-Phase Designs with FIRLPNORM

firlpnorm does allow for the option to constrain the zeros to lie on or inside the unit circle,
resulting in a minimum-phase design. The constraint, however, results in larger passband ripple and
less stopband attenuation than the unconstrained design.

bmlp = firlpnorm(30,F,E,A,W,'minphase');
h = fvtool(b,1,bmlp,1,'Color','White');
legend(h,'FIRLPNORM design','FIRLPNORM minimum-phase design');
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If we increase the order to that of the minimum-phase filter designed with firgr we can see that we
meet the specs met by both the 30th order firlpnorm (nonminimum-phase) design and the 32nd
order firgr minimum-phase design.

bmlp = firlpnorm(orderfirgrmin,F,E,A,W,'minphase');
h = fvtool(b,1,bm,1,bmlp,1,'Color','White');
legend(h,'FIRLPNORM design',...
    'FIRGR minimum-phase design',...
    'FIRLPNORM minimum-phase design');
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Changing the Pth-Norm

Like iirlpnorm and iirlpnormc, firlpnorm allows for the specification of the Pth-norm used to
optimize the filter. The Pth-norm is specified in the exact same way as in iirlpnorm, i.e. a two
element vector with Pinit and Pfinal as its elements. Pinit specifies the initial Pth-norm used by the
algorithm (this aids in the convergence) and Pfinal specifies the final Pth-norm with which the filter is
optimized.

For example, a least-squares design for the above specs can be obtained as follows:

N = 40;
F = [0 0.4 0.45 1];
E = F;
A = [0 0 1 1];
W = [1 1 10 10];
P = [2 2];
bl2 = firlpnorm(N,F,E,A,W,P);
h = fvtool(bl2,1,'Color','White');
legend(h,'FIRLPNORM design')
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Comparing to FIRLS

In comparison, we design a linear-phase least-squares filter using firls. Once again, for the same
filter order, the linear-phase constraint results in less stopband attenuation and a larger passband
ripple.

W = [1 20];
bls = firls(N,F,A,W);
h = fvtool(bl2,1,bls,1,'Color','White');
legend(h,'FIRLPNORM design','FIRLS design');
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Other Norms

Equiripple designs are useful when one requires the smallest possible order to meet a set of design
specifications. To meet the same specs with a least-squares design requires a higher order filter.
However, the higher order does provide extra attenuation (less ripple) for a large portion of the
stopband (passband). In fact least-squares design minimize the energy of the stopband. Compromises
between equiripple design and least-squares design can be reached by using intermediate norms. For
example we show the design of a filter with the same specs, but optimized for the following norms: 2,
4, 12, 256 (approx. infinity norm).

W = [1 1 10 10];
P4 = [2 4];
bl4 = firlpnorm(N,F,E,A,W,P4);
P12 = [2 12];
bl12 = firlpnorm(N,F,E,A,W,P12);
Pinf = [2 256];
blinf = firlpnorm(N,F,E,A,W,Pinf);
h = fvtool(bl2,1,bl4,1,bl12,1,blinf,1,'Color','White');
legend(h,'P = 2','P = 4','P = 12','P = 256');
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In order to meet the minimum stopband attenuation of the equiripple (256-norm) case, it is necessary
to increase the order of the other designs.
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Least Pth-Norm Optimal IIR Filter Design
This example shows how to design optimal IIR filters with arbitrary magnitude response using the
least-Pth unconstrained optimization algorithm.

IIRLPNORM Fundamentals

The iirlpnorm algorithm differs from the traditional IIR design algorithms in several aspects:

• The designs are done directly in the Z-domain. No need for bilinear transformation.
• The numerator and denominator order can be different.
• One can design IIR filters with arbitrary magnitude response in addition to the basic lowpass,

highpass, bandpass, and bandstop.

Lowpass Design

For simple designs such as lowpass and highpass, specify passband and stopband frequencies. The
transition band is considered as a don't-care band by the algorithm.

d = fdesign.lowpass('N,Fp,Fst',8,.4,.5) 

d = 
  lowpass with properties:

               Response: 'Lowpass'
          Specification: 'N,Fp,Fst'
            Description: {3×1 cell}
    NormalizedFrequency: 1
            FilterOrder: 8
                  Fpass: 0.4000
                  Fstop: 0.5000

hiirlpnorm = design(d,'iirlpnorm','SystemObject',true);

For comparison purposes, consider this elliptic filter design.

d = fdesign.lowpass('N,Fp,Ap,Ast',8,.4,0.0084,66.25);
hellip = design(d,'ellip','SystemObject',true);
hfvt = fvtool(hiirlpnorm,hellip);
legend(hfvt,'IIRLPNORM design','ELLIP design');
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The response of the two filters is very similar. Zooming into the passband accentuates the point.
However, the magnitude of the filter designed with iirlpnorm is not constrained to be less than 0
dB.

zoom(hfvt,[0 .44 -.0092 .0052]);
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Different Numerator and Denominator Orders

While we can get very similar designs with elliptic filters, iirlpnorm algorithm provides greater
flexibility. For instance the denominator can be set different than numerator.

d = fdesign.lowpass('Nb,Na,Fp,Fst',8,6,.4,.5) 

d = 
  lowpass with properties:

               Response: 'Lowpass'
          Specification: 'Nb,Na,Fp,Fst'
            Description: {4×1 cell}
    NormalizedFrequency: 1
               NumOrder: 8
               DenOrder: 6
                  Fpass: 0.4000
                  Fstop: 0.5000

hiirlpnorm = design(d,'iirlpnorm','SystemObject',true);

With elliptic filters (and other classical IIR designs), we must change both the numerator and the
denominator order.

d = fdesign.lowpass('N,Fp,Ap,Ast',6,.4,0.0084,58.36);
hellip = design(d,'ellip','SystemObject',true);
hfvt = fvtool(hiirlpnorm,hellip);
legend(hfvt,'IIRLPNORM design','ELLIP design');
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Clearly, the elliptic design (in green) now results in a much wider transition width.

Weighting the Designs

Similar to equiripple or least-square designs, we can weight the optimization criteria to alter the
design as we see fit. However, unlike equiripple, we have the extra flexibility of providing different
weights for each frequency point instead of for each frequency band.

Consider the following two highpass filters:

d = fdesign.highpass('Nb,Na,Fst,Fp',6,4,.6,.7) 

d = 
  highpass with properties:

          Specification: 'Nb,Na,Fst,Fp'
               Response: 'Highpass'
            Description: {4×1 cell}
    NormalizedFrequency: 1
               NumOrder: 6
               DenOrder: 4
                  Fstop: 0.6000
                  Fpass: 0.7000

h1 = design(d,'iirlpnorm','Wpass',1,'Wstop',10,'SystemObject',true);
h2 = design(d,'iirlpnorm','Wpass',1,'Wstop',[100 10],'SystemObject',true);
hfvt = fvtool(h1,h2);
legend(hfvt,'Same weight for entire band',...
    'Different weights in stopband');
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The first design uses the same weight per band (10 in the stopband, 1 in the passband). The second
design uses a different weight per frequency point. This provides a simple way of attaining a sloped
stopband which may be desirable in some applications. The extra attenuation over portions of the
stopband comes at the expense of a larger passband ripple and transition width.

The Pth-Norm

Roughly speaking, the optimal design is achieved by minimizing the error between the actual
designed filter and an ideal filter in the Pth-norm sense. Different values of the norm result in
different designs. When specifying the P-th norm, we actually specify two values, 'InitNorm' and
'Norm' where 'InitNorm' is the initial value of the norm used by the algorithm and 'Norm' is the
final (the actual) value for which the design is optimized. Starting the optimization with a smaller
initial value aids in the convergence of the algorithm.

By default, the algorithm starts optimizing in the 2-norm sense but finally optimizes the design in the
128-norm sense. The 128-norm in practice yields a good approximation to the infinity-norm. So that
the designs tend to be equiripple. For a least-squares design, we should set the norm to 2. For
instance, consider the following lowpass filter

d = fdesign.lowpass('Nb,Na,Fp,Fst',10,7,.25,.35);
design(d,'iirlpnorm','Norm',2,'SystemObject',true);
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Arbitrary Shaped Magnitude

Another of the important features of iirlpnorm is its ability to design filters other than the basic
lowpass, highpass, bandpass and bandstop filters. See the “Arbitrary Magnitude Filter Design” on
page 4-128 example for more information. We now show a few examples: Rayleigh Fading Channel
and Optical Absorption of Atomic Rubidium87 Vapor.

Rayleigh Fading Channel

Here's a filter for noise shaping when simulating a Rayleigh fading wireless communications channel

F1 = 0:0.01:0.4;
A1 = 1.0 ./ (1 - (F1./0.42).^2).^0.25;
F2 = [0.45 1];
A2 = [0 0];
d = fdesign.arbmag('Nb,Na,B,F,A',4,6,2,F1,A1,F2,A2);
design(d,'iirlpnorm','SystemObject',true);
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fig = gcf;
fig.Color = [1 1 1];

Optical Absorption of Atomic Rubidium87 Vapor

The following design models the absorption of light in a certain gas. The resulting filter turns out to
have approximately linear-phase:

Nb = 12;
Na = 10;
F = linspace(0,1,100);
As = ones(1,100)-F*0.2;
Absorb = [ones(1,30),(1-0.6*bohmanwin(10))', ...
    ones(1,5), (1-0.5*bohmanwin(8))',ones(1,47)];
A = As.*Absorb;
d = fdesign.arbmag('Nb,Na,F,A',Nb,Na,F,A);
W = [ones(1,30) ones(1,10)*.2 ones(1,60)];
design(d,'iirlpnorm','Weights',W,'Norm',2,'DensityFactor',30, ...
    'SystemObject',true);
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Multistage Rate Conversion
Multistage rate conversion is an approach that splits rate conversion into several stages. For
example, instead of decimation by a factor of 18, decimate by factor of 3, followed by another
decimation by 3, and and then by a factor of 2. Using multiple stages reduces the computational
complexity of filtered rate conversion. Furthermore, if one already has the converter units for the
different prime factors, they can be used as building blocks for higher rates. This example
demonstrates multistage rate conversion designs.

Single-Stage v.s. Multistage Conversion: Cost Analysis

Consider decimation system of rate M = 8. One can implement such a system in two ways:

• A single decimator of rate M = 8.
• A cascade of three half-rate decimators ( M = 2)

A multistage cascade of filtered decimators (or interpolators) has a reduced single-stage form. The
filter in the reduced form is called the single-stage equivalent filter, which encapsualtes the filters of
all the stages. Thus, any multistage cascade FIR decimator can be represented as a single-stage FIR
decimator. For more details, see [1]. However, while the two alternatives effectively perform the same
decimation, they differ in their numerical complexites.

Evaluate the cost of implementing a multistage decimator using the cost function, and compare to
the cost of implementing a single-stage decimator.

firDecim2_1 = dsp.FIRDecimator(2);
firDecim2_2 = dsp.FIRDecimator(2);
firDecim2_3 = dsp.FIRDecimator(2);
firDecim2cascade = dsp.FilterCascade(firDecim2_1,firDecim2_2,firDecim2_3);

cost2cascade = cost(firDecim2cascade)

firDecim8 = dsp.FIRDecimator(8);
cost8 = cost(firDecim8)

cost2cascade = 

  struct with fields:

                  NumCoefficients: 75
                        NumStates: 138
    MultiplicationsPerInputSample: 21.8750
          AdditionsPerInputSample: 21

cost8 = 

  struct with fields:

                  NumCoefficients: 169
                        NumStates: 184
    MultiplicationsPerInputSample: 21.1250
          AdditionsPerInputSample: 21
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Cascading three decimators of rate M=2 consumes less memory (states and coefficients) compared to
a single-stage decimator of M=8, making the multistage converter more memory efficient. The
arithmetic load (operations per sample) of the single-stage and multistage implementation are
equivalent. Note that the number of samples drops by half after each decimation stage. In conclusion,
it is often better to split the decimation into multiple stages (given that the rate change factor is not a
prime number, of course).

There is usually more than one way to factor a (non-prime) conversion rate, and even more degrees of
freedom multistage design. The DSP System Toolbox (TM) offers several tools to simplify the design
process. We will examine two of them in what follows.

Using designMultistageDecimator and designMultistageInterpolator Functions

The designMultistageInterpolator and designMultistageDecimator functions
automatically determine an optimal configuation, that includes determining the number of stages
along with their arrangements, lowpass parameters, etc. The result is a filter cascade system object,
which encapsualtes all the stages. To illustrate, let us design a decimator of rate M=12.

M = 12;
fcDecMulti = designMultistageDecimator(M);
disp(cascadeInfoSummary(fcDecMulti))

Multistage FIR Decimator, M=12 (48.0kHz to 4.0kHz)
Equivalent lowpass cutoff: 4.0kHz, transition Width: 800.0Hz

Number of stages: 3
Stage1: FIR Decimator, M = 2 (48.0kHz to 24.0kHz), FIR Length = 11                                                                  
Stage2: FIR Decimator, M = 2 (24.0kHz to 12.0kHz), FIR Length = 15                                                                  
Stage3: FIR Decimator, M = 3 (12.0kHz to 4.0kHz),  FIR Length = 79                                                                  

This particular design has 3 stages ( ), where the lowpass of the last stage is the
longest.

Repeat the design with a single-stage.

fcDecSingle = designMultistageDecimator(M,'NumStages',1);
disp(cascadeInfoSummary(fcDecSingle))

Multistage FIR Decimator, M=12 (48.0kHz to 4.0kHz)
Equivalent lowpass cutoff: 4.0kHz, transition Width: 800.0Hz

Number of stages: 1
Stage1: FIR Decimator, M = 12 (48.0kHz to 4.0kHz), FIR Length = 307                                                                 

Compare the cost of the two implementations. Obivously, the multistage approach is more efficient.

costMulti  = cost(fcDecMulti)
costSingle = cost(fcDecSingle)

costMulti = 

  struct with fields:

                  NumCoefficients: 69
                        NumStates: 102
    MultiplicationsPerInputSample: 10.1667
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          AdditionsPerInputSample: 9.3333

costSingle = 

  struct with fields:

                  NumCoefficients: 283
                        NumStates: 300
    MultiplicationsPerInputSample: 23.5833
          AdditionsPerInputSample: 23.5000

Now, let us compare the combined frequency response of the decimation filters. While the filters of
the two implementations differ in the stopband, the passband and transition band are nearly
identical.

hfv = fvtool(fcDecMulti, fcDecSingle);
legend(hfv,'Multistage Combined Response', 'Single-Stage Response');

The same methodology applies for designMultistageInterpolator. Create two interpolators
(single-stage and multistage) and compare their outputs. Note that the outputs are nearly identical,
except a slightly longer latency of the multistage interpolator.

n = (1:20)';
x = (abs(n-5)<=5).*(5-abs(n-5));
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L = 12;
fcIntrMulti  = designMultistageInterpolator(L);
fcIntrSingle = designMultistageInterpolator(L,'NumStages',1);

xInterpSingle = fcIntrSingle(x);
xInterpMulti  = fcIntrMulti(x);

release(fcIntrMulti);
release(fcIntrSingle);

subplot(3,1,1); stem(x); xlim([1,20]); title('Input Sequence');
subplot(3,1,2); stem(xInterpSingle); title('Single-Stage Interpolated')
subplot(3,1,3); stem(xInterpMulti); title('Multistage Interpolated')

Additional Design Parameters for the designMultistageDecimator and
designMultistageInterpolator Functions

You can specify filter design parameters such as transition width and stopband attenuation to the
designMultistageDecimator and designMultistageInterpolator functions. Such additional
parameters allow for better control of the filter characteristics. The input sample rate Fs is assumed
to be 1 by default, but this value can be customized as well.

Design a filter that reduces the input rate from 48 MHz to 1 MHz, a decimation factor of 48. The
following are typical specifications for a lowpass filter that reduces the bandwidth accordingly.

Fs    = 48e6;
TW    = 100e3;
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Astop = 80;     % Minimum stopband attenuation
M     = 48;     % Decimation factor

Here is a simple multistage design for these specs.

multiDecim = designMultistageDecimator(M,Fs,TW,Astop);
disp(cascadeInfoSummary(multiDecim))

Multistage FIR Decimator, M=48 (48.0MHz to 1.0MHz)
Equivalent lowpass cutoff: 1.0MHz, transition Width: 100.0kHz

Number of stages: 5
Stage1: FIR Decimator, M = 2 (48.0MHz to 24.0MHz), FIR Length = 7                                                                    
Stage2: FIR Decimator, M = 2 (24.0MHz to 12.0MHz), FIR Length = 7                                                                    
Stage3: FIR Decimator, M = 2 (12.0MHz to 6.0MHz),  FIR Length = 11                                                                   
Stage4: FIR Decimator, M = 3 (6.0MHz to 2.0MHz),   FIR Length = 33                                                                   
Stage5: FIR Decimator, M = 2 (2.0MHz to 1.0MHz),   FIR Length = 95                                                                   

This is a 5-stage decimator cascade with the factors  whose product is
 as expected.

Design a similar filter with the default transition width and attenuation. The overall conversion rate is
similar, but the transition width (and perhaps the ordering of the stages) can be different.

multiDecim_default = designMultistageDecimator(M,Fs);
disp(cascadeInfoSummary(multiDecim_default))

Multistage FIR Decimator, M=48 (48.0MHz to 1.0MHz)
Equivalent lowpass cutoff: 1.0MHz, transition Width: 200.0kHz

Number of stages: 5
Stage1: FIR Decimator, M = 2 (48.0MHz to 24.0MHz), FIR Length = 7                                                                    
Stage2: FIR Decimator, M = 2 (24.0MHz to 12.0MHz), FIR Length = 7                                                                    
Stage3: FIR Decimator, M = 2 (12.0MHz to 6.0MHz),  FIR Length = 11                                                                   
Stage4: FIR Decimator, M = 2 (6.0MHz to 3.0MHz),   FIR Length = 15                                                                   
Stage5: FIR Decimator, M = 3 (3.0MHz to 1.0MHz),   FIR Length = 79                                                                   

Design a single-stage decimator using the same parameters.

singleDecim = designMultistageDecimator(M,Fs,TW,Astop,'NumStages',1);
disp(cascadeInfoSummary(singleDecim))

Multistage FIR Decimator, M=48 (48.0MHz to 1.0MHz)
Equivalent lowpass cutoff: 1.0MHz, transition Width: 100.0kHz

Number of stages: 1
Stage1: FIR Decimator, M = 48 (48.0MHz to 1.0MHz), FIR Length = 2411                                                                 

Compare the filter costs for the single-stage and the multistage implementations. The number of
multiplications per input sample for the multistage approach is about 7, and roughly 49 for the single-
stage implementation. In other words, using the multistage implementation reduces the number of
multiplications by a factor of 7, which makes a significant difference. Similar differences can be
observed in the number of coefficints (89 v.s. 2361), number of states (146 v.s. 2400), and additions
per input sample (6 v.s. 49).

costMultiDecim  = cost(multiDecim)

costSingleDecim = cost(singleDecim)
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costMultiDecim = 

  struct with fields:

                  NumCoefficients: 89
                        NumStates: 146
    MultiplicationsPerInputSample: 6.6042
          AdditionsPerInputSample: 5.6667

costSingleDecim = 

  struct with fields:

                  NumCoefficients: 2361
                        NumStates: 2400
    MultiplicationsPerInputSample: 49.1875
          AdditionsPerInputSample: 49.1667

Compare the frequency responses of the single-stage implementation and the single-stage
equivalents of the two multistage designs. The gain responses of the three implementations are very
similar on the passband and transition band, and have negligible differences on the stopband. In spite
of the significant cost difference, the lowpass filtering in all three designs is almost the same.

hfv = fvtool(multiDecim, multiDecim_default, singleDecim);
legend(hfv, 'Multistage (Custom Parameters)','Multistage (Default parameters)','Single stage')
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The default design has a slightly larger transition width.

hfv = fvtool(multiDecim, multiDecim_default, singleDecim);
legend(hfv, 'Multistage (Custom Parameters)','Multistage (Default parameters)','Single stage')
xlim([0 0.8])
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Optimial Designs for a Minimimal Total Number of Coefficients

By default, the design minimizes multiplications per input sample. It is also possible to minimize the
number of coefficients. Set the property MinTotalCoeffs = true to use the latter cost.

minCoeffDecim = designMultistageDecimator(M,Fs,TW,Astop,'MinTotalCoeffs',true);
disp(cascadeInfoSummary(minCoeffDecim))
cost(minCoeffDecim)

Multistage FIR Decimator, M=48 (48.0MHz to 1.0MHz)
Equivalent lowpass cutoff: 1.0MHz, transition Width: 100.0kHz

Number of stages: 5
Stage1: FIR Decimator, M = 2 (48.0MHz to 24.0MHz), FIR Length = 7                                                                    
Stage2: FIR Decimator, M = 3 (24.0MHz to 8.0MHz),  FIR Length = 17                                                                   
Stage3: FIR Decimator, M = 2 (8.0MHz to 4.0MHz),   FIR Length = 11                                                                   
Stage4: FIR Decimator, M = 2 (4.0MHz to 2.0MHz),   FIR Length = 23                                                                   
Stage5: FIR Decimator, M = 2 (2.0MHz to 1.0MHz),   FIR Length = 95                                                                   

ans = 

  struct with fields:

                  NumCoefficients: 87
                        NumStates: 147
    MultiplicationsPerInputSample: 6.8125
          AdditionsPerInputSample: 6
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Compared to multiDecim, the number of coefficients in minCoeffDecim is lower, but the number of
multiplications per input sample is higher.

Estimate vs. Design for Determining Cost

The objective function of the optimal design (either the number of coefficients or multiplications) that
the designMultistageDecimator function uses depends on the FIR length of every stage. By default,
this function evaluates the cost using an estimate of the FIR length rather than a true length,
sometimes leading to a sub-optimal filter design.

A slower, but more precise method uses a cost based on the true FIR lengths obtained through actual
designs of all filter candidates. Use the property CostMethod='design' to optimize for the
accurate cost. Setting this property ensures that the design cost is indeed minimal.

trueMinCostDecim = designMultistageDecimator(M,Fs,TW,Astop, 'CostMethod','design');

disp(cascadeInfoSummary(trueMinCostDecim))

Multistage FIR Decimator, M=48 (48.0MHz to 1.0MHz)
Equivalent lowpass cutoff: 1.0MHz, transition Width: 100.0kHz

Number of stages: 5
Stage1: FIR Decimator, M = 2 (48.0MHz to 24.0MHz), FIR Length = 7                                                                    
Stage2: FIR Decimator, M = 2 (24.0MHz to 12.0MHz), FIR Length = 7                                                                    
Stage3: FIR Decimator, M = 3 (12.0MHz to 4.0MHz),  FIR Length = 21                                                                   
Stage4: FIR Decimator, M = 2 (4.0MHz to 2.0MHz),   FIR Length = 23                                                                   
Stage5: FIR Decimator, M = 2 (2.0MHz to 1.0MHz),   FIR Length = 95                                                                   

The estimated cost performs very well in many cases (as it does in this example).

cost(trueMinCostDecim)

hfv = fvtool(minCoeffDecim,trueMinCostDecim);
legend(hfv, 'Optimize for Estimated FIR Lengths', 'Optimize for True FIR Lengths')

ans = 

  struct with fields:

                  NumCoefficients: 87
                        NumStates: 146
    MultiplicationsPerInputSample: 6.5625
          AdditionsPerInputSample: 5.6667
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The dsp.SampleRateConverter System Object

The dsp.SampleRateConverter system object provides a convenient interface for arbitrary rate
conversion, combining interpolation and decimation as needed.

src = dsp.SampleRateConverter('InputSampleRate',18,'OutputSampleRate',16,'Bandwidth',13);
info(src)

ans =

    'Overall Interpolation Factor    : 8
     Overall Decimation Factor       : 9
     Number of Filters               : 1
     Multiplications per Input Sample: 24.333333
     Number of Coefficients          : 219
     Filters:                         
        Filter 1:
        dsp.FIRRateConverter - Interpolation Factor: 8
                             - Decimation Factor   : 9 
     '

The different stages can be extracted with the getFilters function:

firs = getFilters(src)

firs = 
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  dsp.FilterCascade with properties:

         Stage1: [1x1 dsp.FIRRateConverter]
    CloneStages: true

We can also specify absolute frequencies (rather than ratios). For example, the
dsp.SampleRateConverter object can convert audio data sample rate from 48 kHz to 44.1 kHz.

src = dsp.SampleRateConverter('InputSampleRate',48000,'OutputSampleRate',44100);
[L,M] = getRateChangeFactors(src);

firs = getFilters(src);

reader = dsp.AudioFileReader('audio48kHz.wav','SamplesPerFrame',4*M);

x = reader();
xr = src(x);

% Obtain the rate conversion FIR
b = firs.Stage1.Numerator;

% Calculate the resampling delay
i0 = floor(length(b)/2)/L;

figure;
hold on;
stem((1:length(x))+i0,x);
stem(linspace(1,length(x),length(xr)),xr,'r');
hold off;
legend('Input Audio','Resampled Audio');
xlim([150,200])

release(reader);
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Simplification by Rate Conversion Slack

Conversion ratios like  (used in the previous section) requires a large upsample and
downsample ratios, as even its reduced form is . The filters required for such a
conversion are fairly long, introducing a significant latency in addition to the memory and
computational load.

cost(src)

ans = 

  struct with fields:

                  NumCoefficients: 8587
                        NumStates: 58
    MultiplicationsPerInputSample: 53.6688
          AdditionsPerInputSample: 52.7500

We can mitigate the costly conversion by approximating the rate conversion factor. For example,

The deviation of 100Hz is small, only 0.23 % of the absolute frequencies. The
dsp.SampleRateConverter can automatically approximate the rate conversion factor by allowing
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the output frequency to be perturbed. The perturbation tolerance is specified through the
'OutputRateTolerance' property. The default tolerance is 0, meaning, no slack. In other words,
slack means the deviation from the specified output rate value. Clearly, the approximated rate
conversion has much smaller computational cost, and suffices for many applications, such as standard
definition audio processing.

src_approx = dsp.SampleRateConverter('InputSampleRate',48000,...
            'OutputSampleRate',44100,'Bandwidth',13,...
            'OutputRateTolerance',0.01);
[L_approx,M_approx] = getRateChangeFactors(src_approx)

cost(src_approx)

L_approx =

    11

M_approx =

    12

ans = 

  struct with fields:

                  NumCoefficients: 61
                        NumStates: 5
    MultiplicationsPerInputSample: 5.0833
          AdditionsPerInputSample: 4.1667

See Also

References
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Complex Bandpass Filter Design
This example shows how to design complex bandpass filters. Complex bandpass filters are used in
many applications from IF subsampling digital down converters to vestigial sideband modulation
schemes for analog and digital television broadcast. One easy way to design a complex bandpass
filter is to start with a lowpass prototype and apply a complex shift frequency transformation. In this
example, we review several cases of lowpass prototypes from single-stage single-rate FIR filters to
multistage multirate FIR filters to IIR filters.

Single-Stage Single-Rate FIR Design

In the case of a single-rate FIR design, we simply multiply each set of coefficients by (aka 'heterodyne
with') a complex exponential. In the next example, we rotate the zeros of the lowpass Nyquist filter
prototype by a normalized frequency of .6.

Hlp = design(fdesign.nyquist(8), SystemObject=true);     % Lowpass prototype
N = length(Hlp.Numerator)-1;
Fc = .6;                              % Desired frequency shift
Hbp = clone(Hlp);
Hbp.Numerator = Hbp.Numerator.*exp(1j*Fc*pi*(0:N));
hfvt = fvtool(Hlp,Hbp,Color='white');
legend(hfvt,'Lowpass Prototype','Complex Bandpass',Location='NorthWest')

The same technique also applies to single-stage multirate filters.
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Multirate Multistage FIR Design

In the case of multirate multistage FIR filters, we need to account for the different relative
frequencies each filter operates on. In the case of a multistage decimator, the desired frequency
shift applies only to the first stage. Subsequent stages must also scale the desired frequency shift by
their respective cumulative decimation factor.

Hd = designMultistageDecimator(16,16,0.1,75);

Fc  = -.2;                          % Desired frequency shift 
Hdbp = clone(Hd);

Fck = Fc;
for k = 1:Hdbp.getNumStages
    Stagek = Hdbp.(sprintf('Stage%i',k));
    Nk = length(Stagek.Numerator)-1;
    Stagek.Numerator = Stagek.Numerator.*exp(1j*Fck*pi*(0:Nk));

    % Update the frequency shift applied to the k-th stage
    Fck = Fck* Stagek.DecimationFactor; 
end

hfvt = fvtool(Hd,Hdbp);
legend(hfvt,'Lowpass Prototype','Complex Bandpass',Location='NorthWest')
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Similarly, in the case of a multistage interpolator, the desired frequency shift applies only to the last
stage. Previous stages must also scale the desired frequency shift by their respective cumulative
interpolation factor.

Hi = designMultistageInterpolator(16,16,0.1,75);

Fc = .4;                               % Desired frequency shift 
Hibp = clone(Hi);

Fck = Fc;
for k = Hibp.getNumStages:-1:1
    Stagek = Hibp.(sprintf('Stage%i',k));
    Nk = length(Stagek.Numerator)-1;
    Stagek.Numerator = Stagek.Numerator.*exp(1j*Fck*pi*(0:Nk));

    % Update the frequency shift applied to the k-th stage
    Fck = Fck* Stagek.InterpolationFactor;
end

hfvt = fvtool(Hi,Hibp);
legend(hfvt,'Lowpass Prototype','Complex Bandpass',Location='NorthWest')

We can design multistage bandpass filters easily by using the dsp.ComplexBandpassDecimator
System object. The object designs the bandpass filter based on the specified decimation factor, center
frequency, and sample rate. There is no need to translate lowpass coefficients to bandpass as we did
in the section above: the object will do it for us.
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Design a complex bandpass filter with a decimation factor of 16, a center frequency of 5 KHz, a
sampling rate of 44.1 KHz, a transition width of 100 Hz, and a stopband attenuation of 75 dB:

bp = dsp.ComplexBandpassDecimator(16,5000,SampleRate=44100,...
                                  TransitionWidth=100,...
                                  StopbandAttenuation=75);

Visualize the filter response using freqz:

freqz(bp)

Visualize the response of the different filter stages using visualizeFilterStages:

visualizeFilterStages(bp);
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Notice that only the first filter is shifted to 5 KHz. The subsequent filter stages are lowpass and have
real coefficients. Set the MinimizeComplexCoefficients property to false to shift all filter stages
to 5000 KHz.

Get the cost of the bandpass filter using cost:

cost(bp)

ans = struct with fields:
                      NumCoefficients: 144
                            NumStates: 272
    RealMultiplicationsPerInputSample: 27.8750
          RealAdditionsPerInputSample: 27

Single-Rate IIR Design

Finally in case of single-rate IIR designs, we can either use a complex shift frequency transformation
or a lowpass to complex bandpass IIR transformation. In the latter case, the bandwidth of the
bandpass filter may also be modified.

Fp = .2;

% Design a lowpass prototype, and obtain the second order coefficients
Hiirlp = design(fdesign.lowpass(Fp,.25,.5,80),'ellip', SystemObject=true);
B = Hiirlp.ScaleValues(1:end-1).*Hiirlp.SOSMatrix(:,1:3);
A = Hiirlp.SOSMatrix(:,4:6);
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% Perform lowpass to complex bandpass transform
Fc = .6;  % Desired frequency shift 

[Bc,Ac] = iirlp2bpc(B,A, ...  % Transform lowpass to complex bandpass
    Fp, [Fc-Fp, Fc+Fp]);      % Lowpass passband frequency mapped
                              % to bandpass passband frequencies 

% Construct a filter object and plot the responses
Hiircbp = dsp.SOSFilter(Bc, Ac);

hfvt = fvtool(Hiirlp,Hiircbp);
legend(hfvt,'Lowpass Prototype', 'Complex Bandpass',Location='NorthWest')
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Design of Fractional Delay FIR Filters
Fractional delay filters are aimed at shifting a digital sequence by a noninteger value, through
interpolation and resampling combined into a single convolution filter. This example demonstrates the
design and implementation of fractional delay FIR filters using tools available in the DSP System
Toolbox™.

Delay as a Convolution System

Integer Delays Delays

Consider the delay of a digital signal, y[n] = x[n− D] where D is an integer. This operation can be
represented as a convolution filter y = h * x, with a finite impulse response h n = δ n− D . The
corresponding transfer function is H(z) = z−D, and the frequeny response is H ω = e−iω D.
Programmatically, you can implement such an integer delay filter using the following MATLAB®
code.

% Create the FIR
D = 3; % Delay value
h = [zeros(1,D) 1]

h = 1×4

     0     0     0     1

Shift a sequence by filtering it through the FIR h. Note the leading zeros at the beginning of the
output, those signify the initial condition that is inherent to such filters.

x = (1:10)';
dfir = dsp.FIRFilter(h);
y = dfir(x)'

y = 1×10

     0     0     0     1     2     3     4     5     6     7

Non-Integer Delays via D/A Interpolation

Delaying a sequence x n− D  is not defined whenever D is not an integer. To make such fractional
delays sensible, one needs to add an intermediate D/A interpolation stage so as to sample the output
on the continuum. That is, y n = xn n− D  where xn denotes some D/A interpolation of the input
sequnce x. The D/A interpolating function xn could depend on with n, and could be thought of as a
representation of an underlying analog signal model from which the sequence x was sampled. This
strategy is used in other resampling problems such as rate conversion.

This example will feature fractional delay filters using two interpolation models, both of which are
offered as a part of the DSP Systems Toolbox.

1 The sinc-based interpolation model, which uses a bandlimited reconstruction for xn.
2 The Lagrange-based interpolation model, which uses a polynomial reconstruction for xn.
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Bandlimited Fractional Delay Filters

The Shannon-Whittaker interpolation formula x t = ∑k x k sinc t − k  models bandlimited signals.
That is, the intermediate D/A conversion x is a bandlimited reconstruction of the input sequence. For
a delay value D, the fractional delay y n = x n− D , which uses the same x for every n, can be
represented as a convolution filter. This filter is called the ideal bandlimited fractional delay filter, and
its impulse response is

hD[k] = sinc(k− D).

The corresponding frequency response (that is, DTFT) is given by HD(ω) = e−iωD.

Causal FIR Approximation of the Ideal Bandlimited Shift Filter

The ideal sinc shift filter described in the previous section is an all-pass filter (i.e. Hd ω = 1), but it
has an infinite and non-causal impulse response hD. In MATLAB, it cannot be represented as a vector,
but rather as a function of an index k.

% Ideal Filter sequence
D = 0.4;
hIdeal = @(k) sinc(k-D); 

For practical and computational purposes, the ideal filter can be truncated on a finite index window,
at a cost of some bandwidth loss. For a target delay value of D and a desired length of N, the window
of indices k satisfying D− k ≤ N

2  is symmetric about D, and captures the main lobe of the ideal filter.
For D = i0 + FD where 0 ≤ FD ≤ 1 and an integer i0, the explicit window indices are

{i0− ⌊N − 1
2 ⌋, …, i0 + ⌊N

2 ⌋}. The integer i0 is referred to as the integer latency, and can be chosen

arbitrarily. To make the FIR causal, set i0 = N − 1
2 , so the index window is 0, …, N − 1 . The code

below depicts the rationale behind the causal FIR approximation.

% FIR approximation with causal shift
N = 6;
idxWindow = (-floor((N-1)/2):floor(N/2))';
i0 = -idxWindow(1); % Causal latency
hApprox = hIdeal(idxWindow);
plot_causal_fir("sinc",D,N,i0,hApprox,hIdeal);
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Truncation of a sinc filter causes a ripple in the frequency response, which can be addressed by
applying weights wk  (such as Kaiser or Hamming) to the FIR coefficients .

Finally, the resulting FIR approximation model of the ideal bandlimited fractional delay filter is given
below.

h[k] = wkhd[k] =
wksinc(k− FD− i0) 0 ≤ k ≤ N − 1

0 otherwise 

You can design such a filter using the designFracDelayFIR function and the
dsp.VariableFractionalDelay System object™ in 'FIR' mode, both of which use Kaiser window
weights.

Lagrange-based Fractional Delay Filters

Lagrange-based fractional delay filters use polynmial fitting on a moving window of input samples.
That is, xn t  is a polynomial of some fixed degree K. Like the sinc-based delay filters, Lagrange-based
delay filters can be formulated as a causal FIR convolution (i.e. y = h * x) of the length N=K+1, and
supported on the index window{− ⌊N − 1

2 ⌋, … ⌊N
2 ⌋}. Similarly to the sinc-based model, apply the

causal latency i0 = N − 1
2 . Given a fractional delay FD, the FIR coefficients h 0 , …, h K  of the (causal

shifted) Lagrange delay filter can be obtained by solving a system of linear equaions, as written
below. Those equations describe a standard Lagrange polynomial fitting problem.
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∑
k = 0

K
tnkh[k] = (FD)n, n = 0, …, K

Here, t0, …, tK are the enumerated indices of the sample window. The implementation is
straightforward.

% Filter parameters
FD = 0.4;
K = 7;    % Polynomial degree
N = K+1;  % FIR Length
idxWindow = (-floor((N-1)/2):floor(N/2))';

% Define and solve Lagrange interpolation equations
V = idxWindow.^(0:K); % Vandermonde structure
C = FD.^(0:K);

hLagrange = C/V;  % Solve for the coefficients
i0 = -idxWindow(1); % Causal latency
plot_causal_fir("Lagrange",FD,N,i0,hLagrange);

This model can be implemented as a direct-form FIR filter if the delay value FD is fixed, or using a
Farrow structure if the delay value is varying. There is a section below dedicated to the
implementaiton of Lagrange interpolation using dsp.VariableFractionalDelay in 'Farrow'
mode.
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Design And Implement sinc-Based Fractional Delay FIR Filters

The following section is focuses on designing and implementing sinc-based fractional delay filters.

The Function designFracDelayFIR in Length-based Design Mode

The function designFracDelayFIR provides a simple interface to design a fractional delay FIR
filter of delay value FD and of length N.

FD = 0.32381;
N = 10;
h = designFracDelayFIR(FD,N)

h = 1×10

    0.0046   -0.0221    0.0635   -0.1664    0.8198    0.3926   -0.1314    0.0552   -0.0200    0.0042

The filter implementation can be done using any standard FIR filter, such as the dsp.FIRFilter
System object.

% Create an FIR filter object
fdfir = dsp.FIRFilter(h); 

Delay a signal by filtering it through the designed filter.

% Generate some input
n = (1:100)';
x = gen_input_signal(n);

% Filter the input signal
y = fdfir(x);
plot_sequences(n,x, n,y);
legend('Filter Output','Original Sequence')
title('Raw Filter Output v.s. Input Sequence')
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Notice that the actual filter delay is not FD, but rather FD + i0 because of the causal integer latency
i0. That latency is returned from the designFracDelayFIR function as a second output argument.

[h,i0] = designFracDelayFIR(FD,N);

The overall delay is merely the sum of the desired fractional delay and the incurred integer latency.

Dtotal = i0+FD

Dtotal = 4.3238

This total delay is also the group delay of the FIR filter at low frequencies. Verify that by using the
outputDelay function.

[Doutput,~,~] = fdfir.outputDelay(Fc=0)

Doutput = 4.3238

Shift the plot of the input sequence by the total delay FD + i0 to align the filter output with the
expected result.

plot_sequences(n+Dtotal,x, n,y);
legend('Filter Output','Input Sequence (shifted by FD+i0)')
title('Filter Output v.s. Time Adjusted Input Sequence')
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Note that the shifted input markers located at n + FD + i0, x n  generally do not coincide with
output samples markers n, y n , because n + FD + i0 falls on noninteger values on the x-axis,
whereas n is integer. Rather, the shifted input samples fall approximately on a line connecting each
two consecutive output samples.

plot_sequences(n+i0+FD,x, n,y,'with line');
legend('Filter Output','Input Sequence (shifted by FD+i0)')
title('Output Samples v.s. Shifted Input Samples ')
xlim([20,30])
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The dsp.VariableFractionalDelay System Object in 'FIR' Mode

Similarly to designFracDelayFIR, the dsp.VariableFractionalDelay object can also design
sinc-based delay filters when used with the 'FIR' inteprolation mode. Begin by creating an instance
of the System object. The FIR length is always even, and is specified as a half-length parameter.

vfd_fir = dsp.VariableFractionalDelay('InterpolationMethod','FIR','FilterHalfLength',N/2);
i0_vfd_fir = vfd_fir.FilterHalfLength;    % Interger latency

Pass the desired fractional delay as the second input argument to the object call. Make sure that the
delay value you specify includes the integer latency.

y = vfd_fir(x,i0+FD);
release(vfd_fir)
plot_sequences(n+i0+FD,x, n,y);
legend('Filter Output','Input Sequence (shifted by FD+i0)')
title('dsp.VariableFractionalDelay in FIR Mode')
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Comparison of designFracDelayFIR and dsp.VariableFractionalDelay in 'FIR' Mode

Both designFracDelayFIR and dsp.VariableFractionalDelay in 'FIR' mode provide sinc-
based fractional delay filters, but their implementations are different.

• The dsp.VariableFractionalDelay approximates the delay value by a rational number
FD ≈ k L up to some tolerance, and then samples the fractional delay as the k-th phase of a (long)
interpolation filter of length L. This requires increased memory use, and yields less accurate delay.

• By contrast, designFracDelayFIR generates the FIR coefficients directly, rather than sampling
them from a longer FIR. This gives the precise fractional delay value, and costs less memory.

• The designFracDelayFIR has a simple function interface returning the FIR coefficients, leaving
the filter implementation to the the user. The dsp.VariableFractionalDelay is System object
meant to encapsualte the filter design and implementation entirely.

The use of designFractionalDelayFIR is preferred over dsp.VariableFractionalDelay in
'FIR' mode for its simplicity, better performance, and efficiency. In the figure below, the filter
designed with dsp.VariableFractionalDelay has a shorter bandwidth, and its group delay is off
by ~0.02 from the nominal value.

% Obtain the FIR coefficients from the dsp.VariableFractionalDelay object
h_vfd_fir = vfd_fir([1;zeros(31,1)],i0_vfd_fir+FD);
release(vfd_fir);
plot_freq_and_gd(h,i0,[],"designFracDelayFIR", h_vfd_fir,i0_vfd_fir,[],"dsp.VariableFractionalDelay FIR mode");
hold on;
yline(FD,'DisplayName','Target Fractional Delay');
ylim([-0.1,0.4])
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Design And Implement Lagrange-based Delay Filters

Lagrange-based fractional delay filter are computationally cheap and can be implemented efficiently
using the Farrow structure. The Farrow filter is a special type of FIR that is implemented using only
elementary algebraic operations, such as scalar additions and multiplications. Unlike the sinc-based
designs, Farrow filters do not require specialized functions (such as sinc or Bessel) to compute the
delay FIR coefficients. This makes Farrow fractional delay filters particularly simple to implement on
a basic hardware.

On the downside, Lagrange-based delay filters are limited to low orders, due to the highly unstable
nature of polynomial approximations of high degree. This usually results with a lower bandwidth,
when compared with a sinc-based filter.

The System Object dsp.VariableFractionalDelay in 'Farrow' mode

Use the system object dsp.VariableFractionalDelay in 'Farrow' mode to create and
implement Farrow delay filters. Begin by creating an instance of the system object:

vfd = dsp.VariableFractionalDelay('InterpolationMethod','Farrow','FilterLength',8);
i0var = floor(vfd.FilterLength/2)  % Interger latency of the filter

i0var = 4

Apply the created object on the input signal, and plot the result.

y = vfd(x,i0var+FD);
plot_sequences(n+i0var+FD,x, n,y);
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legend('Farrow Fractional Delay Output','Input Sequence (shifted by FD+i0)')
title('dsp.VariableFractionalDelay in Farrow Mode')

You can also vary the fractional delay values. The code below operates on frames of 20 samples, while
increasing the delay value with each frame. Note the increase of the delay in the output graph,
corresponding to the changes in the delay values.

release(vfd)
FDs = i0var+5*(0:0.2:0.8); % Fractional delays vector
xsource = dsp.SignalSource(x,20);
ysink = dsp.AsyncBuffer;
for FD=FDs
    xk = xsource();
    yk = vfd(xk, FD);
    write(ysink,yk);
end
y = read(ysink);

plot_sequences(n+i0var,x, n,y);
legend('Variable Fractional Delay Output','Original Sequence (shifted by i0)')
title('dsp.VariableFractionalDelay in Farrow Mode, Varying Delay')
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Bandwidth of FIR Fractional Delay Filters: Analysis and Design

Longer filters give better approximation of the ideal delay filter. Indeed, in terms of raw quadratic
norms it is the case. However, we need a metric that is more practically meaningful, such as the
bandwidth. The function designFracDelayFIR measures combined bandwidth, which is defined as
the frequency range in which both the gain and the group delay are within 1% of their nominal
values. The measured combined bandwidth can be obtained as a return value of the
designFracDelayFIR function. Compare a filter of length 16 (blue) with a filter of length 256 (red)
in the figure below. As expected, the longer filter have significantly higher combined bandwidth.

FD = 0.3;
N1 = 16;
N2 = 256;
[h1,i1,bw1] = designFracDelayFIR(FD, N1);
[h2,i2,bw2] = designFracDelayFIR(FD, N2);

plot_freq_and_gd(h1,i1,bw1,"N="+num2str(N1), h2,i2,bw2,"N="+num2str(N2));
ylim([-0.2,0.6])

4 DSP System Toolbox Featured Examples

4-208



The Function designFracDelayFIR in Bandwidth Design Mode

The bandwidth design mode of designFracDelayFIR can determine the required length for a given
bandwidth. Specify the delay value and the desired target bandwidth as inputs to the function, and
the function will find the appropriate length.

FD = 0.3;
bwLower = 0.9; % Target bandwidth lower limit
[h,i0fixed,bw] = designFracDelayFIR(FD,bwLower);
fdfir = dsp.FIRFilter(h);
info(fdfir)

ans = 6x35 char array
    'Discrete-Time FIR Filter (real)    '
    '-------------------------------    '
    'Filter Structure  : Direct-Form FIR'
    'Filter Length     : 52             '
    'Stable            : Yes            '
    'Linear Phase      : No             '

Note that bwLower is merely a lower bound for the combined bandwidth. The function returns a filter
whose combined bandwidth is at least the value specified in bwLow.

Distortion in High Bandwidth Signals

In this section, we compare the performance of the two design points (long sinc v.s. short Lagrange)
with a high bandwidth input. The dsp.VariableFractionalDelay in the previous section is an 8-
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degree Farrow structure, effectively an FIR of length 9. The filter obtained by
designFracDelayFIR(FD,0.9) has a length of 52 samples. Putting the two FIR frequency
responses together on the same graph demonstrates the bandwidth difference between the two.

release(vfd);
hvar = vfd([1;zeros(31,1)],i0var+FD);
plot_freq_and_gd(h,i0fixed,bw,"Sinc-based", hvar,i0var,[],"Farrow");
ylim([-0.2,0.6])

Apply the two filters on a high bandwidth signal, as compared in figure below. Sinc on the left
column, Farrow on the right. Time domain on top row, frequency on the bottom. The results are, as
expected:

• The longer sinc filter has a higher bandwidth. The shorter Farrow filter has lower bandwidth.
• Signal distortion is virtually nonexistent using the longer sinc filter, but easily noticeable in the

shorter Farrow filter.
• The higher accuracy comes at the expense of longer latency: approximately 25 samples v.s. only 4

in the shorter filter.

n=(1:80)';
x = high_bw_signal(n);

y1 = fdfir(x);
y2 = vfd(x,i0var+FD);

plot_signal_comparison(n,x,y1,y2,h,hvar,i0fixed,i0var,FD);
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Which should be used: dsp.VariableFractionalDelay or designFracDelayFIR ?

This decision is largely based on filter requirements and the target platform.

• For a high bandwidth and accurate group delay response, use the designFracDelayFIR
function. Keep in mind that this design process is more computationally intensive. Therefore, is it
better suited to be deployed on a higher-end hardware, especially if realtime tuning of the delay
value is desired. It is also suitable for lower-end hardware deployment, if the delay value is fixed,
and the design can be done offline.

• For time-varying delay filters aimed at low-performance computational apparatus, use
dsp.VariableFractionalDelay with the 'Farrow' mode.
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Time Delay and Scaling in Multirate DSP Filters
This example demonstrates the effect of time delay and scaling in multirate filters, and how to
calculate them.

Time Delay and Scaling Model in Multirate Filters

A multirate filter is a cascade combining upsampling, downsampling, and convolution filters (FIR or
IIR). Such filter structures are often used to implement resampling systems, wherein the output is a
resampled version of the input at a different rate. Informally, for an input u n , the output of a
resampling system is y k = u S ⋅ k− D . This is stated with a slight abuse of notations, since
u S ⋅ k− D  is undefined when S ⋅ k− D is noninteger. More formally, the input is interpolated to a
continuous domain functionf t  from which the output is sampled:

y k = f k
Fsout

− D .

The input can sometimes be approximated by samplingf t  at the inut rate u n ≈ f n
Fsin

.
Approximation is used instead of equality due to the filtering operation (e.g. lowpass/highpass) which
is an integral part of the interpolation model. The interpolation model u n f t  does not necessarily
preserve the values of every input u n .

The constants Fsin, Fsout and D in the equations above are the input sample rate, output sample rate,
and the resampling output delay respectively. For many multirate filtering applications, it is useful to
find Fsout and D for a given input sample rate Fsin.

Using The outputDelay Function

You can use the outputDelay function to calculate the resampling output delay D and output sample
rate FsOut for a given filter object operating at rate FsIn. This function is available for any DSP
System object that supports filter analysis methods. For a list of supported objects, refer to the
outputDelay. The returned delay value D is specified in the natural units of the interpolated signal
(usually seconds), corresponding to the input sample rate.

Consider a signal u n  that is sampled from a continuous signal f t  at a rate of Ts=0.1s (that is,
Fs=10 Hz). Add zero-mean white Gaussian noise with a standard deviation of 0.05.

f = analyticSignal(); % x is a function of a real variable
Ts = 1/10;

n = (0:511)'; % Sample index vector
u = f(n*Ts)+ 0.05*randn(size(n));

figure(Position = [0 0 900 200])
plot(n*Ts, u);
xlabel('time'); legend('Input');
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To eliminate the high frequency noise, design a lowpass filter and apply it to the signal. This lowpass
has a cutoff at 15% of the Nyquist frequency with a transition width of 10%. Plot the input against the
filtered output on the same graph. Note the delay between the input and the filtered signal.

Fs = 1/Ts;
Fnyq = Fs/2;
F0 = 0.15;    % Cutoff frequency normalized to the Nyquist frequency
TW = 0.1;
g1 = dsp.LowpassFilter(SampleRate = Fs, ...
                    PassbandFrequency = (F0-TW/2)*Fnyq, ...
                    StopbandFrequency = (F0+TW/2)*Fnyq);
y = g1(u);
ts = timescope(SampleRate=Fs, ...
               ChannelNames={'Input', 'Lowpass Output'},...
               YLimits=[-3,3]);
ts(u, y)
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The observed delay is inherent to any convolution filter, such as the one implemented in
dsp.LowpassFilter. Call the outputDelay function to find that output delay.

D = g1.outputDelay()

D = 3.6000

To align the input with the output, shift the output back in time by D units, of shift the input forward
in time by the same amount. You can perform such a shift using the TimeDisplayOffset property of
the timescope object. When you specify a vector in TimeDisplayOffset instead of a scalar, each
input channel of the timescope object has its own delay, corresponding to the entries of the vector
in TimeDisplayOffset. Set the first channel (input) delay to D, and keep the second channel
(output) with no delay. The two channels are now synchronized.

release(ts);
ts.TimeDisplayOffset = [D, 0];
ts(u, y)
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The same delay can be used with standard MATLAB® plots.

plot(n*Ts, u);
hold on;
plot(n*Ts-D, y);
hold off;
xlabel('time'); legend('Input', 'Output (filtered)');

The Relation Between Resampling Output Delay and the Group Delay

The outputDelay function uses the group delay of the convolution stages to calculate the overall
resampling output delay. Although the two terms are closely related, there are several distinctions
between the two:
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• Scalar vs a function: Group delay is a function of frequency, defined as G ω = − ϕ′ ω  where
ϕ ω  is the phase response of a convolution system. Output delay is defined as a scalar, and it
stems from the resampling model y k = f k/Fsout− D .

• Scope of definition: Output delay applies to multirate filters, whereas group delay is well defined
only for convolution systems (single-rate LTI systems).

• Units: Group delay is measured in sample units. Output delay is defined in time units of the
interpolated signal f t .

When the convolution stages of a multirate filter have a linear phase, their group delays do not
depend on the input frequency. Symmetric filter designs, which are very common in DSP applications,
have a linear phase. In the simple case of a single-stage symmetric convolution filter, the output delay
is merely the (constant) group delay G scaled to the sample time, i.e. D = G

Fs . For a single-stage filter

with a nonlinear phase, the output delay depends on the input frequency, namely D f = 1
FsG πf

Fs . For
a multistage filter, the output delay is the sum of output delays of its stages. The multi-stage and
nonlinear phase cases will be discussed later in this example.

In the simple case of a symmetric single-stage filter, the group delay can be thought of as the center
of mass of its impulse response, which is its point of symmetry. The filter g1 in the example above is a
73-taps FIR, symmetric about its 36th index.

h = g1.impz();
stem(0:length(h)-1, h); hold on;
xline(36, Color='red'); hold off;
xlabel('n (samples)')

The filter introduces a group delay of 36 samples, which is equivalent to an output delay of 3.6 time
units accounting for the sample rate Fs=10 Hz. Calculate the output delay using center-of-mass

weighted sum formula 
∑k = 0

L− 1 k ⋅ h k

∑ j = 0
L− 1h j

 and verify that it is indeed 3.6, the exact same value returned from

outputDelay.

D_cm = Ts*sum((0:length(h)-1)'.*h)/sum(h)

D_cm = 3.6000

Working With Sample Rates

You can specify or override the input sample rate by using the named argument FsIn. For example,
calculate the output delay assuming that the input sample rate is 2 kHz instead of 10 Hz. Note that
the returned delay value changes accordingly to reflect the new time units.

D2k = g1.outputDelay(FsIn = 2e3) % Override the sample rate to 2 kHz
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D2k = 0.0180

By default, FsIn is obtained from the object on which outputDelay is called. If the object has an
intrinsic sample rate property, FsIn equals that property. For example, dsp.LowpassFilter and
dsp.IIRHalfbandDecimator have the property SampleRate, and dsp.FarrowRateConverter
has the property InputSampleRate. For objects that do not have a sample rate property, such as
dsp.FIRFilter and dsp.FIRDecimator, the default value for FsIn is 1 (one sample per second).

Obtaining The Output Sample Rate of a Multirate Filter

Multirate filters such as dsp.FIRRateConverter often involve rate change, so the input sample
rate and output sample rate are not equal. In the following example, the output appears shrank on
the time domain.

g2 = dsp.FIRRateConverter(7,16);
y = g2(u);

D = g2.outputDelay(FsIn = Fs);
ts = timescope(SampleRate = Fs, ...
                TimeDisplayOffset = [0, -D],...
                ChannelNames={'Input', 'Output'},...
                YLimits=[-3,3]);
ts(u, y);
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The outputDelay function returns the output sample rate as the second ouput argument, which is
particularly convenient when using dsp.FilterCascade objects. Call outputDelay with two
output arguments to obtain Fsout.

[D, FsOut] = g2.outputDelay(FsIn = Fs)

D = 1.2000

FsOut = 4.3750

You can specify different sample rates for each channel of a timescope object, by setting a vector to
its SampleRate property instead of a scalar. Make sure to use the same channel order as you step
through the timescope object. Set the first entry of SampleRate to Fs (the input sample rate), and
the second to FsOut (the output sample rate). The input and output now have the same scale on the
plot.

ts = timescope(SampleRate = [Fs, FsOut], ...
                 TimeDisplayOffset = [0, -D],...
                 ChannelNames={'Input', 'Output'},...
                 YLimits=[-3,3]);
ts(u, y);

Bandlimited Mode: Using outputDelay with Nonlinear Phase Filters

So far, we used symmetric filter designs, which have a linear phase, and a constant group delay.
Asymmetric filters, on the other hand, have a varying group delay and can exhibit signal distortion in
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the time domain, which breaks the resampling model described above. Using outputDelay in such
cases is possible, but requires some caution. This is discussed in the next section.

Distortion in Nonlinear Phase Filters

Causal and stable rational IIR filters are common in DSP, and they often have a nonlinear phase. For
example, consider the following lowpass IIR design, which clearly has a varying group delay.

F0 = 0.35;
TW = 0.2;
g3 = dsp.LowpassFilter(SampleRate = Fs, ...
                    PassbandFrequency = (F0-TW/2)*Fnyq, ...
                    StopbandFrequency = (F0+TW/2)*Fnyq, ...
                    FilterType='IIR');
[G, W] = g3.grpdelay(2048, Fs);
plot(W, G); xlabel('Frequency (Hz)'); ylabel('Group Delay (samples)');

The outputDelay function alerts the user if the system has a nonlinear phase convolution stage.

>> D  = g3.outputDelay(); % Throws a warning.
% The System object has a nonlinear phase, but a carrier frequency Fc has not been specified. 
% To suppress this warning, specify Fc argument explicitly, or call the outputDelay method with 
% band measurement output. If you don't specify any value, the default carrier frequency is Fc=0. 

To demonstrate the effect of a nonlinear phase distortion, input a short time pulse to the IIR filter g3.
Note that the input and the output are not related by a time delay and scaling, i.e. they no longer
satisfy the resampling modely k = f k/Fsout− D  and u n ≈ f n/Fsin .

v = f(10*Ts*n);
y = g3(v);

release(ts);
ts.TimeDisplayOffset = [D, 0];
ts(v, y);
ts.TimeSpanSource='Property';
ts.TimeSpan=20;
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Using outputDelay on a filter with nonlinear phase stages only makes sense if the group delay of
the stages is relatively constant on the input signal band. That could happen if:

• The filter stages have a flat group delay response over a known band, or
• If the input is narrowband, so that the group delay response can be approximated as a constant on

the input band.

In any case, since the group delay is not constant, you need to specify the frequency from which the
group delay is sampled. The outputDelay function accepts this frequency (specified in input sample
rate units) through the parameter Fc.

Nonlinear Phase Filters with a Partially Flat Group Delay Response (Quasi-Linear Phase)

Some filter designs have a nonlinear phase, yet still have a relatively flat group delay on subbands.
For example, any FIR designed using the designFracDelayFIR function has a relatively flat group
delay. Other examples include the dsp.IIRHalfbandDecimator and the
dsp.FIRHalfbandInterpolator filters that are operating in the Quasi-linear phase design mode.
The Quasi-linear design mode compensates for the nonlinear phase of the IIR on the passband and
considerably reduces the distortion.

Design an IIR halfband decimator, and plot its group delay. The group delay is obviously not constant,
yet relatively flat outside the transition band.

g4 = dsp.IIRHalfbandDecimator(DesignMethod='Quasi-linear phase');
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[G, W] = g4.grpdelay(8192, g4.SampleRate);
plot(W, G); xlabel('Frequency (Hz)'); ylabel('Group Delay (samples)');

To obtain the output delay for a bandlimited signal on the flat region, set Fc to be any frequency
within that flat region. Note that a slight deviation of the delay values of different frequencies within
the flat region is normal and is expected.

D1 = g4.outputDelay(Fc = 0)

D1 = 4.9884e-04

Fc = 5000;
D2 = g4.outputDelay(Fc = Fc) % 5 kHz is still in the flat region

D2 = 4.9889e-04

Input Band Measurement

For a filter with nonlinear phase stages, changing Fc alters the output delay D. The outputDelay
function can calculate the interval of input frequencies B = [f1, f2] around Fc that have a delay
value close to D up to a tolerance, or |D f − D Fc | < Tol

Fsin  for every f ∈ f1, f2 . The edges of the
band, f1 and f2, are returned in the third output argument of the outputDelay function. The
tolerance is specified in sample time units using the Tol named parameter. For example, obtain the
input frequency band for which the delay deviates by up to Tol = 1 second from the nominal value D
at the frequency Fc.

[D, ~, B] = g4.outputDelay(Fc = Fc, Tol = 1) % Discard the FsOut output argument

D = 4.9889e-04

B = 1×2
103 ×

   -9.9268    9.9268

Note that the measured band is two-sided and might contain negative frequencies.

plot(W, G); xlabel('Frequency (Hz)'); ylabel('Group Delay (samples)');
hold on;
I = W>=B(1) & W<=B(2); % Find band indices
plot(W(I), G(I), Color='m', LineWidth=3);
plot(Fc, D*g4.SampleRate, 'ro');
legend('Delay', 'Input band', 'Fc')
grid on
hold off
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Band Measurement Resolution

If the tolerance value of the band measurement is very low, the resulting band may be a singleton
(contains a single frequency, the specified frequency Fc), which is a degenerate case. This is because
the group delay search resolution is too coarse for the specified tolerance. For example, repeat the
band measurement of the system g4 with a tight tolerance of Tol = 1e-3. The returned B equals to
[Fc, Fc], indicating that is has a single frequency.

Fc = 9600;
Tol = 1e-3;
[D, ~, B] = g4.outputDelay(Fc = Fc, Tol = Tol) 

D = 5.0657e-04

B = 1×2

        9600        9600

plot(W, G,'-o'); xlabel('Frequency (Hz)'); ylabel('Group Delay (samples)');
hold on;
plot(Fc, D*g4.SampleRate, 'ro');
yline(D*g4.SampleRate+[-Tol Tol], Color=[0.5 0 0.8])
legend('Delay', 'Fc', 'Tolerance interval')
grid on
hold off
xlim([Fc-5 Fc+5]);

An obvious solution is to relax the tolerance. However, if you want to keep the low tolerance, you can
instead increase the group delay resolution by using the FFTLength parameter. The default length is
213 = 8192. Increase FFTLength to 216 = 65536 and notice that the returned B has two distinct
edges, and not a single frequency.

[D, ~, B] = g4.outputDelay(Fc = Fc, Tol = Tol, FFTLength=2^16)
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D = 5.0657e-04

B = 1×2
103 ×

    9.5998    9.6004

To plot the band, calculate the group delay with increased resolution as well.

[G, W] = g4.grpdelay(2^16, 'whole', g4.SampleRate);
plot(W, G,'-o'); xlabel('Frequency (Hz)'); ylabel('Group Delay (samples)');
hold on;
I = W>=B(1) & W<=B(2); % Find band indices
plot(W(I), G(I), Color='m',LineWidth=3);
plot(Fc, D*g4.SampleRate, 'ro');
yline(D*g4.SampleRate+[-Tol Tol], Color=[0.5 0 0.8])
legend('Delay','Input band','Fc','Tolerance interval');
grid on
hold off
xlim([Fc-5 Fc+5])

Narrowband Signals

The outputDelay function can be used even if the group delay is not flat, given that the input signal
is a narrowband signal. The band measurement returned from outputDelay can be used to
determine the maximal bandwidth for the signal subject to a delay tolerance.

When the system under consideration has a nonlinear phase and the signal is narrowband signal
centered around some carrier frequency ωc = 2π ⋅ Fc, the resampling model is slightly different than
in the linear phase case. The input is approximated by

u n ≈ f n ⋅ Tsin ⋅ cos ωc ⋅ n ⋅ Tsin ,

and the output is

y k ≈ f k ⋅ Tsout− D ⋅ cos ωc ⋅ k ⋅ Tsout− Dp .

The basedband signal is delayed by the output delay D, which is calculated using the group delay
obtained from ωc. The carrier signal, however, experiences a different delay, called phase delay, and
denoted Dp. For single-rate systems, the phase delay is merely the negative of the system's phase
response measured at ωc and divided by ωc.

Dp = −
∠H ωc

ωc
 .
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Consider the IIR design g3, and obtain the output delay for a narroband signal with the center
frequency Fc=0.75 Hz . Indeed, the returned band B=[0.526 Hz, 0.885 Hz] contains the carrier
frequency, and has a bandwidth of 0.3589 Hz.

Fc = 0.15*Fnyq; % Carrier frequency
Tol = 1;
[D, ~, B] = g3.outputDelay(FsIn = Fs, Fc=Fc, Tol = Tol) % Find deviation up to 1 time unit

D = 0.7457

B = 1×2

    0.5261    0.8850

Plot the response and the band, and verify that the frequency Fc is indeed contained in the band.

[G, W] = g3.grpdelay(2048, Fs);
plot(W, G); xlabel('Frequency (Hz)'); ylabel('Group Delay (samples)');
hold on;
I = W>=B(1) & W<=B(2); % Find band indices
plot(W(I), G(I), Color='m', LineWidth=3);
Fc = 0.15*Fnyq; % Carrier frequency
plot(Fc, D*Fs, 'ro');
yline(D*g3.SampleRate+[-Tol Tol], Color=[0.5 0 0.8])
legend('Delay','Input band','Fc','Tolerance interval');
grid on
hold off

Carrier Shift and Phase Delay

Filter a modulated signal through the filter, and plot the input against the output with the apropriate
delay. As expected, the delayed input appears synchronized with the output under the same envelope
(the delayed baseband signal), but have a slight phase shift - the phase delay of the carrier signal.

ubase = f(n*Ts); % Baseband signal (evelope)

wc = 2*pi*Fc; % Carrier frequency
u  = f(n*Ts).*cos(wc*n*Ts) + 0.05*randn(size(n)); 
y  = g3(u);

ts = timescope(SampleRate = Fs,...
               TimeDisplayOffset = [D, 0, D],...
               ChannelNames={'Delayed input', 'Output','Delayed baseband'},...
               YLimits=[-3,3]);

ts(u(1:250), y(1:250), ubase(1:250))
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To obtain this phase delay Dp = −
∠H ωc

ωc
 , use the phasez function.

% phasez parses the first argument as a frequency whenever it is a vector
% of at least two elements. Therefore, we must pass [Fc Fc] instead of just Fc.
phi = g3.phasez([Fc Fc], Fs);
pd  = -phi(1)/wc

pd = 0.6188

Use the phase delay to shift the carrier. Accounting for the phase delay, the filter output is almost
perfectly aligned with the delayed input reference.

yref = f(n*Ts-D).*cos(wc*(n*Ts-pd));

ts = timescope(SampleRate = Fs, ...
               TimeDisplayOffset = [0, 0, D],...
               ChannelNames={'Delayed input (carrier aligned)', 'Output' ,'Delayed baseband'},...
               YLimits=[-3,3]);

ts(yref(1:250), y(1:250), ubase(1:250))
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Using outputDelay with dsp.FilterCascade Objects

The outputDelay function can be used with filter cascade objects, even if they contain nonlinear
phase stages (although this is a more nuanced case). For example, combine an IIR halfband
interpolator, a lowpass filter, and a rational rate converter.

g5 = cascade(dsp.IIRHalfbandInterpolator(DesignMethod='Quasi-linear phase'), ...
                dsp.LowpassFilter(FilterType='IIR'), ...
                dsp.FIRRateConverter(7,4));

The input sample rate is either specified using the FsIn argument, or derived from the first stage of
the dsp.FilterCascade object. If FsIn is unspecified and the first stage does not have a sample
rate property, the default sample rate is FsIn = 1. In this case, the first stage is an IIR Halfband
Interpolator, and its sample rate is 22.05 kHz.

FsIn = g5.Stage1.SampleRate

FsIn = 22050

The output sample rate expected in g5 is 22 . 05 × 2 × 7
4=77.175 kHz, which is indeed the output

sample rate returned from outputDelay.

[D, FsOut] = g5.outputDelay(Fc = 0) % The input sample rate is of the first stage

D = 8.5479e-04

FsOut = 77175
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Verify that the same result is obtained when you specify FsIn = 22050

[D, FsOut] = g5.outputDelay(FsIn = FsIn, Fc = 0)

D = 8.5479e-04

FsOut = 77175

Process a signal through g5 and plot the results. The input and output are synchronized.

y = g5(u);
ts = timescope(SampleRate = [FsIn, FsOut], ...
                TimeDisplayOffset = [0, -D],...
                ChannelNames={'Input', 'Output'},...
                YLimits=[-3,3]);
ts(u(1:250), y(1:650));

Multirate filter cascades are used in dsp.SampleRateConverter, which also supports the
outputDelay function. For example, instantiate a sample rate converter object, and find its output
delay and sample rate. The the default filter designs used within dsp.SampleRateConverter are
symmetric FIR filters, all stages have a linear phase and there is no need to specify Fc.

src = dsp.SampleRateConverter

src = 
  dsp.SampleRateConverter with properties:
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        InputSampleRate: 192000
       OutputSampleRate: 44100
    OutputRateTolerance: 0
              Bandwidth: 40000
    StopbandAttenuation: 80

[D, FsOut] = src.outputDelay()

D = 9.7148e-04

FsOut = 44100

Band Measurement of dsp.FilterCascade Objects

For band measurement, the cascade must be reducible to a single filter stage using noble identities.
For example, the cascade g5 can be reduced to have a single convolution stage. Measure the input
band for that filter.

[D, FsOut, B] = g5.outputDelay(FsIn = Fs, Fc = 0, Tol = 0.1) 

D = 1.8848

FsOut = 35

B = 1×2

   -1.1450    1.1450

If a cascade has a nonlinear stage and is not reducible, outputDelay will error out. For example an
interpolator chained after a decimator is usually irreducible to a single filter cascade. Call
outputDelay and note that it errors out.

g = cascade(dsp.FIRDecimator,g3,dsp.FIRInterpolator);
% >> [D,~,B] = g.outputDelay();
% Error using dsp.FilterCascade/outputDelay
% Analysis of multistage-multirate filters in which interpolators follow decimators is not supported unless the 
% cumulative rate change factors of the interpolators is equal to the cumulative rate change factors of the decimators. 
% The cascade is irreducible to a single stage, so band estimation is not supported.

See Also
outputDelay

Related Examples
• “Analysis Methods for Filter System Objects”
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Design of Decimators and Interpolators
This example shows how to design filters for decimation and interpolation of discrete sequences.

The Role of Lowpass Filtering in Rate Conversion

Rate conversion is the process of changing the rate of a discrete signal to obtain a new discrete
representation of the underlying continuous signal. The process involves uniform downsampling and
upsampling. Uniform downsampling by a rate of N refers to taking every N-th sample of a sequence
and discarding the rest of the samples. Uniform upsampling by a factor of N refers to the padding of
N-1 zeros between every two consecutive samples.

x = 1:3
L = 3; % upsampling rate
M = 2; % downsampling rate

% Upsample and downsample
xUp = upsample(x,L)
xDown = downsample(x,M)

x =

     1     2     3

xUp =

     1     0     0     2     0     0     3     0     0

xDown =

     1     3

Both those basic operations introduce signal artifacts: downsampling introduces aliasing, and
upsampling introduces imaging. To mitigate these effect, use lowpass filters.

• When downsampling by a rate of , a lowpass filter applied prior to downsampling limits the
input bandwidth, and thus eliminating spectrum aliasing. This is similar to an analog LPF used in
A/D converters. Ideally, such an anti-aliasing filter has a unit gain and a cutoff frequency of

, here  is the Nyquist frequency of the signal. Note: the underlying sampling
frequency is insignificant, we assume normalized frequencies (i.e. ) throughout the
discussion.

• When upsampling by a rate of , a lowpass filter applied after upsampling is known as an anti-
imaging filter. The filter removes the spectral images of the low-rate signal. Ideally, the cutoff
frequency of this anti-imaging filter is  (like its antialiasing counterpart), while its gain is

.

Both upsampling and downsampling operations of rate  require a lowpass filter with a normalized
cutoff frequency of . The only difference is in the required gain and the placement of the filter
(before or after rate conversion).
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The combination of upsampling a signal by a factor of , followed by filtering, and then

downsampling by a factor of  converts the sequence sample rate by a rational factor of . This is
obtained by upsampling by rate  followed by filtering, then downsampling by rate . The order of
rate conversion operation cannot be commuted. A single filter that combines anti-aliasing and anti-
imaging is placed between the upsampling and the downsampling stages. This filter is a lowpass with
the normalized cutoff frequency of  and a gain of .

While any lowpass FIR design function (e.g. fir1, firpm, or fdesign) could design an appropriate
anti-aliasing and anti-imaging filter, the function designMultirateFIR gives a convenient and a
simplified interface. The next few sections show the use of these functions to design the filter and
demonstrate why designMultirateFIR is the preferred way.

Filtered Rate Conversion: Decimators, Interpolators, and Rational Rate Converters

Filtered rate conversions includes decimators, interpolators, and rational rate converters, all of which
are cascades of rate change blocks with filters in various configuations.

Filtered Rate Conversion using the filter, upsample, and downsample functions

Decimation refers to LTI filtering followed by uniform downsampling. An FIR decimator can be
implemented as follows.

1 Design a an anti-aliasing lowpass filter h
2 Filter the input though h
3 Downsample the filtered sequence by a factor of M

% Define an input sequence
x = rand(60,1);

% Implement an FIR decimator
h = fir1(L*12*2,1/M); % an arbitrary filter
xDecim = downsample(filter(h,1,x), M);

Interpolation refers to a upsampling followed by filtering. The implementation is very similar to
decimation.

xInterp = filter(h,1,upsample(x,L));

Lastly, rational rate conversion is comprised of an interpolator followed by a decimator (in that
specific order).

xRC = downsample(filter(h,1,upsample(x,L) ), M);

Filtered Rate Conversion Using System Objects

For streaming data, the system objects dsp.FIRInterpolator, dsp.FIRDecimator, and
dsp.FIRRateConverter encapsulate the rate change and filtering in a single object. For example,
construction of an interpolator is done as follows.

firInterp = dsp.FIRInterpolator(L,h);

Then, feed a sequence to the newly created object by a step call.

xInterp = firInterp(x);

Design and use decimators and rate converters in a similar way.
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firDecim = dsp.FIRDecimator(M,h); % Construct
xDecim = firDecim(x); % Decimate (step call)

firRC = dsp.FIRRateConverter(L,M,h); % Construct
xRC = firRC(x); % Convert rate (step call)

Using system objects is generally preferred, as they:

• Allow for a cleaner syntax.
• Keep a state, as filter initial coniditon for subsequent step calls.
• Most importantly, they utilize a very efficient polyphase algorithm.

To construct these object, you need the rate conversion factor, and the FIR coefficients. The following
section describes how to generate appropriate FIR coefficients for a rate conversion filter.

Design a Rate Conversion Filter using designMultirateFIR

The function designMultirateFIR(L,M) automatically finds the apropriate scaling and cutoff
frequency for a given rate conversion ratio . Use the FIR coefficients returned by
designMultirateFIR with dsp.FIRDecimator (if ), dsp.FIRInterpolator (if ), or
dsp.FIRRateConverter (general case).

Let us design an interpolation filter:

L = 3;
bInterp = designMultirateFIR(L,1); % Pure upsampling filter
firInterp = dsp.FIRInterpolator(L,bInterp);

Then, apply the interpolator to a sequence.

% Create a sequence
n = (0:89)';
f = @(t) cos(0.1*2*pi*t).*exp(-0.01*(t-25).^2)+0.2;
x = f(n);

% Apply interpolator
xUp = firInterp(x);
release(firInterp);

Let us first examine the raw output of the interpolator and compare with the original sequence.

plot_raw_sequences(x,xUp);
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While there is some resemblence between the input x and the output xUp, there are several key
differences. In the interpolated signal

• The time domain is stretched (as expected).
• The signal has a delay of half the length of the FIR length(h)/2 (denoted  henceforth).
• There is a transient response at the beginning.

To compare, align and scale the time domains of the two sequences. An interpolated sample xUp[k]
corresponds to an input time .

nUp = (0:length(xUp)-1);
i0 = length(bInterp)/2;
plot_scaled_sequences(n,x,(1/L)*(nUp-i0),xUp,["Original Sequence",...
            "Interpolator Output Sequence (Time Adjusted)"],[0,60]);
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The same idea works for downsampling, where the time conversion is :

M = 3;
bDecim = designMultirateFIR(1,M); % Pure downsampling filter
firDecim = dsp.FIRDecimator(M,bDecim);
xDown = firDecim(x);

Plot them on the same scale and adjust for delay. Note they overlap perfectly.

i0 = length(bDecim)/2;
nDown = (0:length(xDown)-1);
plot_scaled_sequences(n,x,M*nDown-i0,xDown,["Original Sequence",...
            "Decimator Output Sequence (Time Adjusted)"],[-10,80]);
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Visualize the magnitude responses of the upsampling and downampling filters using fvtool. The two
FIR filters are identical in that case, up to a different gain.

hfv = fvtool(firInterp,firDecim); % Notice the gains in the passband
legend(hfv,"Interpolation Filter L="+num2str(L), ...
            "Decimation Filter M="+num2str(M));
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General rational conversions can be treated the same way as upsampling and downsampling. The
cutoff is  and the gain is . The function designMultirateFIR figures that out
automatically.

L = 5;
M = 2;
b = designMultirateFIR(L,M);
firRC = dsp.FIRRateConverter(L,M,b);

Let us now compare the combined filter with the separate interpolation/decimation components.

firDecim = dsp.FIRDecimator(M,designMultirateFIR(1,M));
firInterp = dsp.FIRInterpolator(L,designMultirateFIR(L,1));

hfv = fvtool(firInterp,firDecim, firRC); % Notice the gains in the passband
legend(hfv,"Interpolation Filter L="+num2str(L),...
    "Decimation Filter M="+num2str(M), ...
    "Rate Conversion Filter L/M="+num2str(L)+"/"+num2str(M));
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Once the FIRRateConverter is set up, perform the rate conversion by a step call.

xRC = firRC(x);

Plot the input and the filter output with time adjustment given by .

nRC = (0:length(xRC)-1)';
i0 = length(b)/2;
plot_scaled_sequences(n,x,(1/L)*(M*nRC-i0),xRC,["Original Sequence",...
        "Rate Converter Output Sequence (time adjusted)"],[0,80]);
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Adjusting the Lowpass FIR Design Parameters

Using designMultirateFIR you can also adjust the FIR length, transition width, and stopband
attenuation.

Adjusting the FIR Length

The FIR length can be controlled through L, M, and a third parameter P called half-polyphase length,
whose default value is 12 (refer to “Output Arguments” for more details). Let us examine two design
points.

% Unspecified half-length defaults to 12
b24 = designMultirateFIR(3,1);

halfPhaseLength = 20;
b40 = designMultirateFIR(3,1,halfPhaseLength);

Generally, larger half polyphase length yields steeper transitions.

hfv = fvtool(b24,1,b40,1);
legend(hfv, 'Polyphase length = 24 (Default)','Polyphase length = 40');
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Adjusting the Transition Width

Design the filter by specifying the desired transition width. The appropirate length will be derived
automatically. Plot the resulting filter against the default design, and notice the difference in the
transition width.

TW = 0.02;
bTW = designMultirateFIR(3,1,TW);

hfv = fvtool(b24,1,bTW,1);
legend(hfv, 'Default Design (FIR Length = 72)',"Design with TW="...
        +num2str(TW)+" (FIR Length="+num2str(length(bTW))+")");
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The Special Case of Rate Conversion by 2: Halfband Interpolators and Decimators

Using a half-band filter (i.e. ), you can perform sample rate conversion by a factor of 2. The
dsp.FIRHalfbandInterpolator and dsp.FIRHalfbandDecimator objects perform interpolation
and decimation by a factor of 2 using halfband filters. These system object are implemented using an
efficient polyphase structure specific for that rate conversion. The IIR counterparts
dsp.IIRHalfbandInterpolator and dsp.IIRHalfbandDecimator can be even more efficient.
These system objects can also work with custom sample rates.

Visualize the magnitude response using fvtool. In the case of interpolation, the filter retains most of
the spectrum from 0 to Fs/2 while attenuating spectral images. For decimation, the filter passes
about half of the band, that is 0 to Fs/4, and attenuates the other half in order to minimize aliasing.
The amount of attenuation can be set to any desired value for both interpolation and decimation. If
unspecified, it defaults to 80 dB.

Fs = 1e6;
hbInterp = dsp.FIRHalfbandInterpolator('TransitionWidth',Fs/10,...
    'SampleRate',Fs);
fvtool(hbInterp) % Notice gain of 2 (6 dB) in the passband
hbDecim  = dsp.FIRHalfbandDecimator('TransitionWidth',Fs/10,...
    'SampleRate',Fs);
fvtool(hbDecim)
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Equiripple Design

The function designMultirateFIR utilizes window-based design of FIR lowpass. Other lowpass
design methods can be applied as well, such as equiripple. For more control over the design process,
use the fdesign filter design functions. The following example designs a decimator using the
fdesign.decimator function.

M   = 4;   % Decimation factor
Fp  = 80;  % Passband-edge frequency
Fst = 100; % Stopband-edge frequency
Ap  = 0.1; % Passband peak-to-peak ripple
Ast = 80;  % Minimum stopband attenuation
Fs  = 800; % Sampling frequency
fdDecim = fdesign.decimator(M,'lowpass',Fp,Fst,Ap,Ast,Fs) %#ok

fdDecim = 

  decimator with properties:

          MultirateType: 'Decimator'
               Response: 'Lowpass'
       DecimationFactor: 4
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: 0
                     Fs: 800
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                  Fs_in: 800
                 Fs_out: 200
                  Fpass: 80
                  Fstop: 100
                  Apass: 0.1000
                  Astop: 80

The specifications for the filter determine that a transition band of 20 Hz is acceptable between 80
and 100 Hz and that the minimum attenuation for out of band components is 80 dB. Also that the
maximum distortion for the components of interest is 0.05 dB (half the peak-to-peak passband ripple).
An equiripple filter that meets these specs can be easily obtained by the fdesign interface.

eqrDecim = design(fdDecim,'equiripple', 'SystemObject', true);
measure(eqrDecim)

ans = 

Sample Rate      : 800 Hz     
Passband Edge    : 80 Hz      
3-dB Point       : 85.621 Hz  
6-dB Point       : 87.8492 Hz 
Stopband Edge    : 100 Hz     
Passband Ripple  : 0.092414 dB
Stopband Atten.  : 80.3135 dB 
Transition Width : 20 Hz      
 

Visualize the magnitude response confirms that the filter is an equiripple filter.

fvtool(eqrDecim)
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Nyquist Filters and Interpolation Consistency

A digital convolution filter  is called an L-th Nyquist filter if it is vanishing periodically every 
samples, except the center index. In other words, the sampling  by a factor of  yields an impulse:

The -th band ideal lowpass, , for example, is -th Nyquist filter. Another example is
a triangular window.

L=3;
t = linspace(-3*L,3*L,1024);
n = (-3*L:3*L);
hLP = @(t) sinc(t/L);
hTri = @(t) (1-abs(t/L)).*(abs(t/L)<=1);

plot_nyquist_filter(t,n,hLP,hTri,L);
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The function designMultirateFIR yields Nyquist filters, since it is based on weighted and
truncated versions of ideal Nyquist filters.

Nyquist filters are efficient to implement since an L-th fraction of the coefficients in these filters are
zero, which reduces the number of required multiplications. This feature makes these filters efficient
for both decimation and interpolation.

Interpolation Consistency

Nyquist filters retain the sample values of the input even after filtering. This behavior, which is called
interpolation consistency, is not true in general, as will be shown below.

Interpolation consistency holds in Nyquist filter, since the coefficients equal to zero every L samples
(except for at the center). The proof is straightforward. Assume that  is the upsampled version of 
(with zeros inserted between samples) so that , and that  is the interpolated
signal. Sample  uniformly and get the following equation.

Let us examine the effect of using a Nyquist filter for interpolation. The designMultirateFIR
function produces Nyquist filters. As you can see in the depiction below, the input values coincide
with the interpolated values.

% Generate input
n = (0:20)';
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xInput = (n<=10).*cos(pi*0.05*n).*(-1).^n;

L = 4;
hNyq = designMultirateFIR(L,1);
firNyq = dsp.FIRInterpolator(L,hNyq);
xIntrNyq = firNyq(xInput);
release(firNyq);
plot_shape_and_response(hNyq,xIntrNyq,xInput,L,num2str(L)+"-Nyuist");

This is not the case for other lowpass filters such as equiripple designs, as seen in the figure below.
Note that the interpolated sequence does not coincide with the low-rate input values. On the other
hand, distortion may be lower in non-Nyquist filters, as a tradeoff for interpolation consistency.

hNotNyq = firpm(length(hNyq)-1,[0 1/L 1.5/L 1],[1 1 0 0]);
hNotNyq = hNotNyq/max(hNotNyq); % Adjust gain
firIntrNotNyq = dsp.FIRInterpolator(L,hNotNyq);
xIntrNotNyq= firIntrNotNyq(xInput);
release(firIntrNotNyq);

plot_shape_and_response(hNotNyq,xIntrNotNyq,xInput,L,"equiripple, not Nyquist");
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See Also
Functions
designMultirateFIR | downsample | upsample | filter

Objects
dsp.FIRDecimator | dsp.FIRInterpolator | dsp.FIRRateConverter |
dsp.FIRHalfbandDecimator | dsp.FIRHalfbandInterpolator

Related Examples
• “FIR Nyquist (L-th band) Filter Design” on page 4-102
• “Multistage Rate Conversion” on page 4-177
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Multistage Halfband IIR Filter Design
This example shows how to design multistage halfband IIR decimators.

Similar to FIR multirate filters, IIR halfband decimators and interpolators can be implemented using
efficient polyphase structures. IIR polyphase filters present several interesting properties. These
filters require a very small number of multipliers to implement, they are inherently stable, have low
roundoff noise sensitivity and no limit cycles.

Butterworth and elliptic IIR filters can be designed with a halfband decimator and interpolator
response type. Furthermore, it is possible to achieve almost linear phase response using specialized
IIR design algorithms.

Cost Efficiency Case Study

A way of measuring a filter's computational cost is to determine how many multiplications need to be
computed (on average) per input sample (MPIS). Consider a MPIS count case study: FIR vs IIR for
the following filter specifications.

Fs  = 9.6e3;   % Sampling frequency: 9.6 kHz
TW  = 120;     % Transition width
Ast = 80;      % Minimum stopband attenuation: 80 dB
M   = 8;       % Decimation factor
NyquistDecimDesign = fdesign.decimator(M,'Nyquist',M,TW,Ast,Fs);

Multistage Halfband FIR Design

A way of obtaining efficient FIR designs is through the use of multirate multistage techniques. This
design results in three FIR halfband decimators in cascade. Halfband filters are extremely efficient
because every other coefficient is zero.

MultistageFIRDecim = design(NyquistDecimDesign,'multistage', ...
           'HalfbandDesignMethod','equiripple','SystemObject',true);
cost(MultistageFIRDecim)

ans = struct with fields:
                  NumCoefficients: 69
                        NumStates: 126
    MultiplicationsPerInputSample: 12.8750
          AdditionsPerInputSample: 12

This method achieves computational costs of 12.875 MPIS on average.

Multistage Halfband IIR Design

Elliptic filters are the IIR equivalent of optimal equiripple filters. This design results in three IIR
halfband decimators in cascade. Elliptic designs produce the most efficient IIR halfband designs.

MultistageIIRDecim = design(NyquistDecimDesign,'multistage', ...
    'HalfbandDesignMethod','ellip','SystemObject',true);
cost(MultistageIIRDecim)

ans = struct with fields:
                  NumCoefficients: 11
                        NumStates: 17
    MultiplicationsPerInputSample: 2.5000
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          AdditionsPerInputSample: 5

This method achieves computational costs of only 2.5 MPIS on average.

If we overlay the magnitude responses of the FIR and IIR multirate multistages filters, the two filters
look very similar and both meet the specifications.

fvFig = fvtool(MultistageFIRDecim,MultistageIIRDecim);
legend(fvFig,'Multirate/Multistage FIR Polyphase', ...
    'Multirate/Multistage IIR Polyphase')

Close inspection actually shows the passband ripples of the IIR filter to be far superior to that of the
FIR filter. So computational cost savings don't come at the price of a degraded magnitude response.

zoom(fvFig,[0 0.325 -0.0016 0.0016])

4 DSP System Toolbox Featured Examples

4-248



Quasi-Linear Phase Halfband IIR Designs

By modifying the structure used to implement each IIR halfband filter, it is possible to achieve almost
linear phase designs using IIR filters. This design also results in three halfband decimators in
cascade. However, each halfband is implemented in a specific way that includes a pure delay
connected in parallel with an allpass filter. This constraint on the implementation helps provide the
quasi linear phase response. This comes at the expense of a slight increase in computational cost
compared to elliptic designs.

IIRLinearPhaseFilt = design(NyquistDecimDesign,'multistage',...
    'HalfbandDesignMethod','iirlinphase','SystemObject',true);
cost(IIRLinearPhaseFilt)

ans = struct with fields:
                  NumCoefficients: 25
                        NumStates: 55
    MultiplicationsPerInputSample: 4.3750
          AdditionsPerInputSample: 8.7500

Although not as efficient as the elliptic case, the design is nevertheless more efficient than using FIR
halfbands.

Group Delay Comparison

Overlaying the group delay of the three designs, and focusing on the passband of the filter (the area
of interest), we can verify that the latter IIR design achieves quasi-linear phase (almost flat group
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delay) in that area. In contrast, the elliptic filter, while more efficient (and with a lower group delay
overall), has a clearly nonlinear phase response.

fvFig = fvtool(MultistageFIRDecim,MultistageIIRDecim,IIRLinearPhaseFilt,...
    'Analysis','grpdelay');
zoom(fvFig, [0 0.6 0 225]);
legend(fvFig, 'Linear-Phase FIR', 'Nonlinear Phase Elliptic IIR',...
    'Quasi-Linear Phase IIR')

Fixed-Point Robustness

Polyphase IIR filters can be implemented in different ways. We have already encountered single-rate
and multirate cascade allpass in previous sections. Now take a Hilbert transformer for example. A
quasi linear-phase IIR Hilbert filter with a transition width of 96Hz and a maximum passband ripple
of 0.1 dB can be implemented as a cascade wave digital filter using only 10 MPIS compared to 133
MPIS for an FIR equivalent.

HilbertDesign = fdesign.hilbert('TW,Ap',96,.1,Fs);
HilbertIIRFilt = design(HilbertDesign,'iirlinphase',...
                 'FilterStructure','cascadewdfallpass',...
                 'SystemObject',true);
cost(HilbertIIRFilt)

ans = struct with fields:
                  NumCoefficients: 10
                        NumStates: 33
    MultiplicationsPerInputSample: 10
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          AdditionsPerInputSample: 25

Wave digital filters have been proven to be very robust even when poles are close to the unit circle.
They are inherently stable, have low roundoff noise properties and are free of limit cycles. To convert
our IIR Hilbert filter to a fixed-point representation, we can use the realizemdl command and the
Fixed-Point Tool to do the floating-point to fixed-point conversion of the Simulink® model.

realizemdl(HilbertIIRFilt)

Summary

IIR filters have traditionally been considered much more efficient than their FIR counterparts in the
sense that they require a much smaller number of coefficients in order to meet a given set of
specifications.

Modern FIR filter design tools utilizing multirate and polyphase techniques have bridged the gap
while providing linear-phase response along with good sensitivity to quantization effects and the
absence of stability and limit cycles problems when implemented in fixed-point.

However, IIR polyphase filters enjoy most of the advantages that FIR filters have and require a very
small number of multipliers to implement.
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Efficient Sample Rate Conversion Between Arbitrary Factors
This example shows how to efficiently convert sample rates between arbitrary factors.

The need for sample rate conversion by an arbitrary factor arises in many applications (e.g. symbol
synchronization in digital receivers, speech coding and synthesis, computer simulation of continuous-
time systems, etc.). In this example, we will examine an example where cascades of polynomial-based
and polyphase filters form an efficient solution when it is desired to convert the sampling rate of a
signal from 8 kHz to 44.1 kHz.

Single Stage Polyphase Approach

Polyphase structures are generally considered efficient implementations of multirate filters. However
in the case of fractional sample rate conversion, the number of phases, and therefore the filter order,
can quickly become excessively high. To resample a signal from 8 kHz to 44.1 kHz, we interpolate by
441 and decimate by 80 (8*441/80=44.1).

sampRateConv = dsp.SampleRateConverter('Bandwidth',6e3, ...
    'InputSampleRate',8e3,'OutputSampleRate',44.1e3, ...
    'StopbandAttenuation',50);

This can be done in relatively efficient manner in two stages:

info(sampRateConv)

ans = 
    'Overall Interpolation Factor    : 441
     Overall Decimation Factor       : 80
     Number of Filters               : 2
     Multiplications per Input Sample: 95.175000
     Number of Coefficients          : 1774
     Filters:                         
        Filter 1:
        dsp.FIRRateConverter - Interpolation Factor: 147
                             - Decimation Factor   : 80 
        Filter 2:
        dsp.FIRInterpolator  - Interpolation Factor: 3 
     '

cost(sampRateConv)

ans = struct with fields:
                  NumCoefficients: 1774
                        NumStates: 30
    MultiplicationsPerInputSample: 95.1750
          AdditionsPerInputSample: 89.6750

Although the number of operations per input sample is reasonable (roughly 95 multiplications -
keeping in mind that the rate increases after the first stage to 14.7 kHz), 1774 coefficients would
have to be stored in memory in this case.

Providing an Output Rate Tolerance

One way to mitigate the large number of coefficients could be to allow for a tolerance in the output
sample rate if the exact rate is not critical. For example, specifying a tolerance of 1% results in an
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output rate of 44 kHz rather then 44.1 kHz. This now requires to interpolate by 11 and decimate by 2.
It can be done efficiently with a single stage.

sampRateConvWithTol = dsp.SampleRateConverter('Bandwidth',6e3, ...
    'InputSampleRate',8e3,'OutputSampleRate',44.1e3, ...
    'StopbandAttenuation',50,'OutputRateTolerance',0.01);
cost(sampRateConvWithTol)

ans = struct with fields:
                  NumCoefficients: 120
                        NumStates: 12
    MultiplicationsPerInputSample: 60
          AdditionsPerInputSample: 55

In this case, 120 coefficients are needed and the number of multiplications per input sample is 60.

Single Stage Farrow Approach

Polynomial-based filters are another way to overcome the problem of needing a large number of
coefficients to be stored. Farrow structures are efficient implementations for such filters.

farrowSampRateConv_3rd = dsp.FarrowRateConverter('InputSampleRate',8e3, ...
    'OutputSampleRate',44.1e3,'PolynomialOrder',3);

farrowSampRateConv_4th = dsp.FarrowRateConverter('InputSampleRate',8e3, ...
    'OutputSampleRate',44.1e3,'PolynomialOrder',4);

cost(farrowSampRateConv_3rd)

ans = struct with fields:
                  NumCoefficients: 16
                        NumStates: 3
    MultiplicationsPerInputSample: 66.1500
          AdditionsPerInputSample: 60.6375

cost(farrowSampRateConv_4th)

ans = struct with fields:
                  NumCoefficients: 25
                        NumStates: 4
    MultiplicationsPerInputSample: 121.2750
          AdditionsPerInputSample: 99.2250

With 3rd-order polynomials, 16 coefficients are needed and about 66 multiplications per input
sample. Fourth-order polynomials provide slightly better lowpass response at a higher cost: 25
coefficients and 121 multiplications per input sample.

filts = getFilters(sampRateConv);
W = linspace(0,44.1e3,2048);  % Define the frequency range analysis
Fs1 = 8e3*147;  % The equivalent single stage filter is clocked at 3.53 MHz
hfvt = fvtool(filts.Stage1,farrowSampRateConv_3rd, ...
    farrowSampRateConv_4th,'FrequencyRange','Specify freq. vector', ...
    'FrequencyVector',W,'Fs',[Fs1 3*Fs1 3*Fs1], ...
    'NormalizeMagnitudeto1','on','Color','white');
legend(hfvt,'Polyphase Sample-Rate Converter', ...
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    '3rd-Order Farrow Interpolator','4th-Order Farrow Interpolator', ...
    'Location','NorthEast')

Providing an output rate tolerance does not significantly impact the implementation cost of the
Farrow filter. However, it does change the interpolation and decimation factors in the same way it
does for dsp.SampleRateConverter.

farrowSampRateConv_4th = dsp.FarrowRateConverter('InputSampleRate',8e3, ...
    'OutputSampleRate',44.1e3,'PolynomialOrder',4, ...
    'OutputRateTolerance',0.01);
info(farrowSampRateConv_4th)

ans = 12x52 char array
    'Discrete-Time FIR Multirate Filter (real)           '
    '-----------------------------------------           '
    'Filter Structure      : Farrow Sample-Rate Converter'
    'Interpolation Factor  : 11                          '
    'Decimation Factor     : 2                           '
    'Filter Length         : 5                           '
    'Stable                : Yes                         '
    'Linear Phase          : No                          '
    '                                                    '
    'Arithmetic            : double                      '
    'Output Rate Tolerance : 1.000000 %                  '
    'Adjusted Output Rate  : 44000.000000                '

cost(farrowSampRateConv_4th)
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ans = struct with fields:
                  NumCoefficients: 25
                        NumStates: 4
    MultiplicationsPerInputSample: 121
          AdditionsPerInputSample: 99

Cascade of Farrow and FIR Polyphase Structures

We now try to design a hybrid solution that would take advantage of the two types of filters that we
have previously seen. Polyphase filters are particularly well adapted for interpolation or decimation
by an integer factor and for fractional rate conversions when the interpolation and the decimation
factors are low. Farrow filters can efficiently implement arbitrary (including irrational) rate change
factors. First, we interpolate the original 8 kHz signal by 4 using a cascade of FIR halfband filters.

intSampRateConv = dsp.SampleRateConverter('Bandwidth',6e3, ...
    'InputSampleRate',8e3,'OutputSampleRate',32e3, ...
    'StopbandAttenuation',50);
info(intSampRateConv)

ans = 
    'Overall Interpolation Factor    : 4
     Overall Decimation Factor       : 1
     Number of Filters               : 1
     Multiplications per Input Sample: 34.000000
     Number of Coefficients          : 34
     Filters:                         
        Filter 1:
        dsp.FIRInterpolator  - Interpolation Factor: 4 
     '

Then, we interpolate the intermediate 32 kHz signal by 44.1/32 = 1.378125 to get the desired 44.1
kHz final sampling frequency. We use a cubic Lagrange polynomial-based filter for this purpose.

farrowSampRateConv = dsp.FarrowRateConverter('InputSampleRate',32e3, ...
    'OutputSampleRate',44.1e3,'PolynomialOrder',3);

The overall filter is simply obtained by cascading the two filters.

cost(intSampRateConv)

ans = struct with fields:
                  NumCoefficients: 34
                        NumStates: 11
    MultiplicationsPerInputSample: 34
          AdditionsPerInputSample: 31

cost(farrowSampRateConv)

ans = struct with fields:
                  NumCoefficients: 16
                        NumStates: 3
    MultiplicationsPerInputSample: 16.5375
          AdditionsPerInputSample: 15.1594

The number of coefficients of this hybrid design is relatively low (36) and the number of
multiplications per input sample is also relatively low: 28 + 16*4 = 92. The combined frequency
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response of these two designs is superior to that of farrowSampRateConv_3rd or
farrowSampRateConv_4th.

[Hsrc,f]     = freqz(intSampRateConv);
Fsfar        = 32e3*441;        
Hfsrc        = freqz(farrowSampRateConv,f,Fsfar);
Hhybrid      = Hsrc.*Hfsrc;
Hhybrid_norm = Hhybrid/norm(Hhybrid,inf); % Normalize magnitude to 0 dB
plot(f,20*log10(abs(Hhybrid_norm)));
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
legend('Combined polyphase and Farrow sample rate converters', ...
       'Location','NorthEast')

We now overlay the frequency responses of the single-stage and the multistage designs. Clearly the
responses are very comparable.

scope = spectrumAnalyzer('SampleRate',44.1e3,'PlotAsTwoSidedSpectrum',false, ...
    'YLimits',[-80 20],'ShowLegend',true, ...
    'ChannelNames',{'Single-stage design','Multi-stage design'});
tic,
while toc < 20
    % Run for 20 seconds
    x = randn(8000,1);
    
    % Convert rate using multistage FIR filters
    y1 = sampRateConv(x);
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    % Convert rate using cascade of multistage FIR and Farrow filter
    ytemp  = intSampRateConv(x);
    y2     = farrowSampRateConv(ytemp);
    
    % Compare the output from both approaches
    scope([y1,y2])
end
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Reconstruction Through Two-Channel Filter Banks
This example shows how to design perfect reconstruction two-channel filter banks, also known as the
Quadrature Mirror Filter (QMF) banks. The QMF banks use power complementary filters.

There are several digital signal processing applications in which signals are first split into low
frequency and high frequency subbands, and later these subbands are combined to reconstruct the
original signal. One such application is subband coding (SBC).

First simulate the perfect reconstruction process by filtering a signal made up of scaled and time
shifted impulses. Then plot the input, output, and error signals along with the magnitude spectrum of
the transfer function of the complete system. The effectiveness of the perfect reconstruction is shown
through the filter bank described in this example.

Perfect Reconstruction

A system is said to achieve perfect reconstruction when the output of the system is equal to the input
signal or a delayed version of the same. Below is a block diagram of a perfect reconstruction process
which uses ideal filters to separate the signal into its low frequency and high frequency components,
and to recover the signal completely. The perfect reconstruction process requires four filters, two
lowpass filters (H0 and G0) and two highpass filters (H1 and G1). In addition, the process requires a
downsampler and an upsampler between the two lowpass and the two highpass filters. Since the
analysis filters have unit gain, the synthesis filters compensate for the preceeding upsamplers by
having a gain of 2.

Perfect Reconstruction Two-Channel Filter Bank

The DSP System Toolbox™ provides a specialized function called firpr2chfb to design the four
filters required to implement an FIR perfect reconstruction two-channel filter bank. The firpr2chfb
function designs the four FIR filters for the analysis (H0 and H1) and synthesis (G0 and G1) sections of
a two-channel perfect reconstruction filter bank. The design corresponds to orthogonal filter banks
known as power-symmetric filter banks, which are required in order to achieve the perfect
reconstruction.

Design a filter bank with filters of order 99, passband edges of the lowpass and highpass filters at
0.45 and 0.55, respectively:
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N = 99;
[LPAnalysis, HPAnalysis, LPSynthsis, HPSynthesis] = firpr2chfb(N, 0.45);

The magnitude response of these filters is plotted below:

fvt = fvtool(LPAnalysis,1, HPAnalysis,1, LPSynthsis,1, HPSynthesis,1);
fvt.Color = [1,1,1];
legend(fvt,'Hlp Lowpass Decimator','Hhp Highpass Decimator',...
    'Glp Lowpass Interpolator','Ghp Highpass Interpolator');

Note that the analysis path consists of a filter followed by a downsampler, which is a decimator, and
the synthesis path consists of an upsampler followed by a filter, which is an interpolator. The DSP
System Toolbox provides dsp.SubbandAnalysisFilter and dsp.SubbandSynthesisFilter
objects to implement the analysis portion and the synthesis portion of the filter bank, respectively.

% Analysis section
analysisFilter = dsp.SubbandAnalysisFilter(LPAnalysis, HPAnalysis);
% Synthesis section
synthFilter = dsp.SubbandSynthesisFilter(LPSynthsis, HPSynthesis);

For the sake of an example, let p[n] denote the signal

p n = δ n + δ n− 1 + δ n− 2

and let the signal x[n] be defined by

x n = p n + 2p n− 8 + 3p n− 16 + 4p n− 24 + 3p n− 32 + 2p n− 40 + p n− 48
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Note: Since MATLAB® uses one-based indexing, delta[n] = 1 when n = 1.

x = zeros(50,1);
x(1:3)   = 1;
x(8:10)  = 2;
x(16:18) = 3;
x(24:26) = 4;
x(32:34) = 3;
x(40:42) = 2;
x(48:50) = 1;
sigsource = dsp.SignalSource('SignalEndAction', 'Cyclic repetition',...
    'SamplesPerFrame', 50);
sigsource.Signal = x;

To view the results of the simulation, we need four scopes:

1 To compare the input signal with the reconstructed output.
2 To measure the error between the input signal and the reconstructed output
3 To plot the magnitude response of the overall system.
4 To plot the phase response of the overall system.

% Scope to compare input signal with reconstructed output
sigcompare = dsp.ArrayPlot('NumInputPorts', 2, 'ShowLegend', true,...
    'Title', 'Input and reconstructed signals',...
    'ChannelNames',{'Input signal','Reconstructed signal'});

% Scope to plot the RMS error between the input and reconstructed signals
errorPlot = timescope('Title', 'RMS Error', 'SampleRate', 1, ...
    'TimeUnits', 'seconds', 'YLimits', [-0.5 2],...
    'TimeSpanSource', 'property','TimeSpan',100,...
    'TimeSpanOverrunAction','scroll');

% To calculate the transfer function of the cascade of Analysis and
% Synthesis subband filters
tfestimate = dsp.TransferFunctionEstimator('FrequencyRange','centered',...
    'SpectralAverages', 50);
% Scope to plot the magnitude response of the estimated transfer function
magplot = dsp.ArrayPlot('PlotType','Line', ...
    'YLabel', 'Magnitude Response (dB)',...
    'Title','Magnitude response of the estimated transfer function',...
    'XOffset',-25, 'XLabel','Frequency (Hz)',...
    'YLimits',[-5 5]);
% Scope to plot the phase response of the estimated transfer function
phaseplot = dsp.ArrayPlot('PlotType','Line', ...
    'YLabel', 'Phase Response (degrees)',...
    'Title','Phase response of the estimated transfer function',...
    'XOffset',-25, 'XLabel','Frequency (Hz)',...
    'YLimits',[-180 180]);

Simulation of Perfect Reconstruction

Pass the input signal through the subband filters and reconstruct the output. Plot the results on the
scopes.

for i = 1:100
    % Use the same signal as input in each iteration.
    input = sigsource();
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    % Analysis
    [hi, lo] = analysisFilter(input);
    % Synthesis
    reconstructed = synthFilter(hi, lo);

    % Compensate for the delay caused by the filters and compare the
    % signals. Since input signal is periodic, compare the current
    % frames of input and output signals.
    sigcompare(input(2:end), reconstructed(1:end-1));

    % Plot error between signals
    err = rms(input(2:end) - reconstructed(1:end-1));
    errorPlot(err);

    % Estimate transfer function of cascade
    Txy = tfestimate(input(2:end), reconstructed(1:end-1));
    magplot(20*log10(abs(Txy)));
    phaseplot(angle(Txy)*180/pi);
end

release(errorPlot);
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release(magplot);
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release(phaseplot);
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Perfect Reconstruction Output Analysis

The first two plots show that the two-channel filter bank perfectly reconstructs the original signal
x[n]. The initial error in the second plot is due to delay in the filters. The third and the fourth plots
show that the overall system has a magniude response of 0 dB and phase response of 0°, thereby
preserving the frequency characteristics of the signal.

See Also

Related Examples
• “Overview of Filter Banks” on page 7-14
• “Two-Channel Filter Bank Using Halfband Decimators and Halfband Interpolators” on page 7-

19
• “Multilevel Filter Banks” on page 7-28
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Adaptive Line Enhancer (ALE)
This example shows how to apply adaptive filters to signal separation using a structure called an
adaptive line enhancer (ALE). In adaptive line enhancement, a measured signal x(n) contains two
signals, an unknown signal of interest v(n), and a nearly-periodic noise signal eta(n).

The goal is to remove the noise signal from the measured signal to obtain the signal of interest.

Loading the Signal of Interest

First load in a signal of interest, a short clip from Handel's Hallelujah chorus.

audioReader = dsp.AudioFileReader('handel.ogg','SamplesPerFrame',44100);
timeScope = timescope('SampleRate',audioReader.SampleRate,...
    'YLimits',[-1,1],'TimeSpan',1,'TimeSpanOverrunAction','Scroll');

while ~isDone(audioReader)
    x = audioReader() / 2;
    timeScope(x);
end

Listening to the Sound Clip

You can listen to the signal of interest using the audio device writer.

release(audioReader); 
audioWriter = audioDeviceWriter;
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while ~isDone(audioReader)
    x = audioReader() / 2;
    audioWriter(x);
end

Generating the Noise Signal

Now, generate a periodic noise signal, a sinusoid with a frequency of 1000 Hz.

sine = dsp.SineWave('Amplitude',0.5,'Frequency',1000,...
    'SampleRate',audioReader.SampleRate,...
    'SamplesPerFrame',audioReader.SamplesPerFrame);

Plot 10 msec of this sinusoid signal. As expected, the plot shows 10 periods in 10 msec.

eta = sine();
Fs  = sine.SampleRate;
plot(1/Fs:1/Fs:0.01,eta(1:floor(0.01*Fs)));
xlabel('Time [sec]');
ylabel('Amplitude');
title('Noise Signal, eta(n)');

Listening to the Noise

The periodic noise is a pure tone. The following code plays one second (one frame of 44100 samples)
of the noise signal.
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eta = sine();
release(audioWriter);
audioWriter(eta);

Measured Signal

The signal that we actually measure is the sum of these two signals, and we call this signal s(n). A
plot of s(n) shows that the envelope of the music signal is largely obscured. Listening to a 3-second
clip from the measured signal, the noise is clearly prominent.

release(audioReader);
release(timeScope);
release(audioWriter);
count = 1;
while count < 4
    s = (audioReader() / 2) + sine();
    timeScope(s);
    audioWriter(s);
    count = count + 1;
end

Adaptive Filter Configuration

An adaptive line enhancer (ALE) is based on the straightforward concept of linear prediction. A
nearly-periodic signal can be perfectly predicted using linear combinations of its past samples,
whereas a non-periodic signal cannot. So, a delayed version of the measured signal s(n-D) is used as
the reference input signal x(n) to the adaptive filter, and the desired response signal d(n) is made
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equal to s(n). The parameters to choose in such a system are the signal delay D and the filter length L
used in the adaptive linear estimate. The amount of delay depends on the amount of correlation in the
signal of interest. Since we don't have this signal, we shall just pick a value of D=100 and vary it
later. Such a choice suggests that samples of the Hallelujah Chorus are uncorrelated if they are more
than about 12 msec apart. Also, we'll choose a value of L=32 for the adaptive filter, although this too
could be changed.

D = 100;
delay = dsp.Delay(D);

Finally, we shall be using some block adaptive algorithms that require the lengths of the vectors for
x(n) and d(n) to be integer multiples of the block length. We'll choose a block length of N=49 with
which to begin.

Block LMS

The first algorithm we shall explore is the Block LMS algorithm. This algorithm is similar to the well-
known least-mean-square (LMS) algorithm, except that it employs block coefficient updates instead of
sample-by-sample coefficient updates. The Block LMS algorithm needs a filter length, a block length
N, and a step size value mu. Let's start with a value of mu = 0.0001 and refine it shortly.

L  = 32;
N  = 49;
mu = 0.0001;
blockLMSFilter = ...
    dsp.BlockLMSFilter('Length',L,'StepSize',mu,'BlockSize',N);

Running the Filter

The output signal y(n) should largely contain the periodic sinusoid, whereas the error signal e(n)
should contain the musical information, if we've done everything right. Since we have the original
music signal v(n), we can plot e(n) vs. v(n) on the same plot shown above along with the residual
signal e(n)-v(n). It looks like the system is converged after about 5 seconds of adaptation with this
step size. The real proof, however, is obtained by listening.

release(audioReader);
release(timeScope);
release(audioWriter);
while ~isDone(audioReader)
    x = audioReader() / 2;
    s = x + sine();
    d = delay(s);
    [y,e] = blockLMSFilter(s,d);
    timeScope(e);
    audioWriter(e);
end
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Notice how the sinusoidal noise decays away slowly. This behavior is due to the adaptation of the
filter coefficients toward their optimum values.

FM Noise Source

Now, removing a pure sinusoid from a sinusoid plus music signal is not particularly challenging if the
frequency of the offending sinusoid is known. A simple two-pole, two-zero notch filter can perform
this task. So, let's make the problem a bit harder by adding an FM-modulated sinusoidal signal as our
noise source.

eta = 0.5 * sin(2*pi*1000/Fs*(0:396899)' + 10*sin(2*pi/Fs*(0:396899)'));
signalSource = dsp.SignalSource(eta,...
    'SamplesPerFrame',audioReader.SamplesPerFrame,...
    'SignalEndAction','Cyclic repetition');
release(audioReader);
release(timeScope);
release(audioWriter);
while ~isDone(audioReader)
    x = audioReader() / 2;
    s = x + signalSource();
    timeScope(s);
    audioWriter(s);
end
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The "warble" in the signal is clearly audible. A fixed-coefficient notch filter won't remove the FM-
modulated sinusoid. Let's see if the Block LMS-based ALE can. We'll increase the step size value to
mu=0.005 to help the ALE track the variations in the noise signal.

mu = 0.005;
release(blockLMSFilter);
blockLMSFilter.StepSize = mu;

Running the Adaptive Filter

We now filter the noisy music signal with the adaptive filter and compare the error to the noiseless
music signal.

release(audioReader);
release(timeScope);
release(audioWriter);
while ~isDone(audioReader)
    x = audioReader() / 2;
    s = x + signalSource();
    d = delay(s);
    [y,e] = blockLMSFilter(s,d);
    timeScope([x,e]);
    audioWriter(e);
end
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release(audioReader);
release(timeScope);
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release(audioWriter);
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Adaptive Noise Canceling (ANC) Applied to Fetal
Electrocardiography

This example shows how to apply adaptive filters to noise removal using adaptive noise canceling.
The example uses a user interface (UI) which can be launched by typing the command
adaptiveNoiseCancellationExampleApp. For more details, see the 'Example Architecture'
section below.

Introduction

In adaptive noise canceling, a measured signal d(n) contains two signals:

• Unknown signal of interest v(n)
• Interference signal u(n)

The goal is to remove the interference signal from the measured signal by using a reference signal
x(n) that is highly correlated with the interference signal. The example considered here is an
application of adaptive filters to fetal electrocardiography, in which a maternal heartbeat signal is
adaptively removed from a fetal heartbeat sensor signal. This example is adapted from Widrow, et al,
"Adaptive noise canceling: Principles and applications," Proc. IEEE(R), vol. 63, no. 12, pp. 1692-1716,
December 1975.

Creating the Maternal Heartbeat Signal

In this example, we shall simulate the shapes of the electrocardiogram for both the mother and the
fetus using a signal that has a sample rate of 4000 Hz. The heart rate of this signal is approximately
89 beats per minute, and the peak voltage of the signal is 3.5 millivolts.

Creating the Fetal Heartbeat Signal

The heart of a fetus beats noticeably faster than that of its mother, with rates ranging from 120 to
160 beats per minute. The amplitude of the fetal electrocardiogram is also much weaker than that of
the maternal electrocardiogram. The example creates an electrocardiogram signal corresponding to a
heart rate of 139 beats per minute and a peak voltage of 0.25 millivolts for simulating fetal heartbeat.

The Measured Maternal Electrocardiogram

The maternal electrocardiogram signal is obtained from the chest of the mother. The goal of the
adaptive noise canceller in this task is to adaptively remove the maternal heartbeat signal from the
fetal electrocardiogram signal. The canceller needs a reference signal generated from a maternal
electrocardiogram to perform this task. Just like the fetal electrocardiogram signal, the maternal
electrocardiogram signal also contains some additive broadband noise.

The Measured Fetal Electrocardiogram

The measured fetal electrocardiogram signal from the abdomen of the mother is usually dominated
by the maternal heartbeat signal that propagates from the chest cavity to the abdomen. We shall
describe this propagation path as a linear FIR filter with 10 randomized coefficients. In addition, we
shall add a small amount of uncorrelated Gaussian noise to simulate any broadband noise sources
within the measurement.

Applying the Adaptive Noise Canceller

The adaptive noise canceller can use any adaptive procedure to perform its task. For simplicity, we
shall use the least-mean-square (LMS) adaptive filter with 15 coefficients and a step size of 0.00007.
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With these settings, the adaptive noise canceller converges reasonably well after a few seconds of
adaptation.

Recovering the Fetal Heartbeat Signal

The output signal y(n) of the adaptive filter contains the estimated maternal heartbeat signal, which
is not the ultimate signal of interest. What remains in the error signal e(n) after the system has
converged is an estimate of the fetal heartbeat signal along with residual measurement noise. Using
the error signal, you can estimate the heart rate of the fetus.

Example Architecture

The command adaptiveNoiseCancellationExampleApp launches a user interface designed to
interact with the simulation. It also launches a time scope to view the measured fetal heartbeat as
well as themeasured maternal heartbeat and the extracted fetal heartbeat.
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Using a Generated MEX File

Using MATLAB Coder™, you can generate a MEX file for the main processing algorithm by executing
the command HelperAdaptiveNoiseCancellationCodeGeneration. You can use the generated
MEX file by executing the command adaptiveNoiseCancellationExampleApp(true).
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Adaptive Noise Cancellation Using RLS Adaptive Filtering
This example shows how to use an RLS filter to extract useful information from a noisy signal. The
information bearing signal is a sine wave that is corrupted by additive white gaussian noise.

The adaptive noise cancellation system assumes the use of two microphones. A primary microphone
picks up the noisy input signal, while a secondary microphone receives noise that is uncorrelated to
the information bearing signal, but is correlated to the noise picked up by the primary microphone.

Note: This example is equivalent to the Simulink® model 'rlsdemo' provided.

The model illustrates the ability of the Adaptive RLS filter to extract useful information from a noisy
signal.

priv_drawrlsdemo
axis off

The information bearing signal is a sine wave of 0.055 cycles/sample.

signal = sin(2*pi*0.055*(0:1000-1)');
signalSource = dsp.SignalSource(signal,'SamplesPerFrame',100,...
    'SignalEndAction','Cyclic repetition');

plot(0:199,signal(1:200));
grid; axis([0 200 -2 2]);
title('The information bearing signal');
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The noise picked up by the secondary microphone is the input for the RLS adaptive filter. The noise
that corrupts the sine wave is a lowpass filtered version of (correlated to) this noise. The sum of the
filtered noise and the information bearing signal is the desired signal for the adaptive filter.

nvar  = 1.0;                  % Noise variance
noise = randn(1000,1)*nvar;   % White noise
noiseSource = dsp.SignalSource(noise,'SamplesPerFrame',100,...
    'SignalEndAction','Cyclic repetition');

plot(0:999,noise);
title('Noise picked up by the secondary microphone');
grid; axis([0 1000 -4 4]);
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The noise corrupting the information bearing signal is a filtered version of 'noise'. Initialize the filter
that operates on the noise.

lp = dsp.FIRFilter('Numerator',fir1(31,0.5));% Low pass FIR filter

Set and initialize RLS adaptive filter parameters and values:

M      = 32;                 % Filter order
delta  = 0.1;                % Initial input covariance estimate
P0     = (1/delta)*eye(M,M); % Initial setting for the P matrix
rlsfilt = dsp.RLSFilter(M,'InitialInverseCovariance',P0);

Running the RLS adaptive filter for 1000 iterations. As the adaptive filter converges, the filtered noise
should be completely subtracted from the "signal + noise". Also the error, 'e', should contain only the
original signal.

scope = timescope('TimeSpan',1000,'YLimits',[-2,2], ...
                      'TimeSpanOverrunAction','Scroll');
for k = 1:10
    n = noiseSource(); % Noise
    s = signalSource();
    d = lp(n) + s;
    [y,e]  = rlsfilt(n,d);
    scope([s,e]);
end
release(scope);
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The plot shows the convergence of the adaptive filter response to the response of the FIR filter.

H  = abs(freqz(rlsfilt.Coefficients,1,64));
H1 = abs(freqz(lp.Numerator,1,64));

wf = linspace(0,1,64);

plot(wf,H,wf,H1);
xlabel('Normalized Frequency  (\times\pi rad/sample)');
ylabel('Magnitude');
legend('Adaptive Filter Response','Required Filter Response');
grid;
axis([0 1 0 2]);
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System Identification Using RLS Adaptive Filtering
This example shows how to use a recursive least-squares (RLS) filter to identify an unknown system
modeled with a lowpass FIR filter. The dynamic filter visualizer is used to compare the frequency
response of the unknown and estimated systems. This example allows you to dynamically tune key
simulation parameters using a user interface (UI). The example also shows you how to use MATLAB
Coder™ to generate code for the algorithm and accelerate the speed of its execution.

Required MathWorks™ products:

• DSP System Toolbox™

Optional MathWorks products:

• MATLAB Coder for generating C code from the MATLAB simulation
• Simulink® for executing the Simulink version of the example

Introduction

Adaptive system identification is one of the main applications of adaptive filtering. This example
showcases system identification using an RLS filter. The example's workflow is depicted below:

The unknown system is modeled by a lowpass FIR filter. The same input is fed to the FIR and RLS
filters. The desired signal is the output of the unidentified system. The estimated weights of the RLS
filter therefore converges to the coefficients of the FIR filter. The coefficients of the RLS filter and FIR
filter are used by the dynamic filter visualizer to visualize the desired and estimated frequency
response. The learning curve of the RLS filter (the plot of the mean square error (MSE) of the filter
versus time) is also visualized.

Tunable FIR Filter

The lowpass FIR filter used in this example is modeled using a
dsp.VariableBandwidthFIRFilter System object. This object allows you to tune the filter's

 System Identification Using RLS Adaptive Filtering

4-281



cutoff frequency while preserving the FIR structure. Tuning is achieved by multiplying each filter
coefficient by a factor proportional to the current and desired cutoff frequencies.

MATLAB Simulation

HelperRLSFilterSystemIdentificationSim is the function containing the algorithm's implementation. It
instantiates, initializes and steps through the objects forming the algorithm.

The function RLSFilterSystemIDExampleApp wraps around HelperRLSFilterSystemIdentificationSim
and iteratively calls it, providing continuous adapting to the unidentified FIR system. Using
dsp.DynamicFilterVisualizer the application also plots the following:

1 The desired versus estimated frequency transfer functions.
2 The learning curve of the RLS filter.

Plotting occurs when the 'plotResults' input to the function is 'true'.

Execute RLSFilterSystemIDExampleApp to run the simulation and plot the results on scopes. Note
that the simulation runs for as long as the user does not explicitly stop it.

The plots below are the output of running the above simulation for 100 time-steps:
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The fast convergence of the RLS filter towards the FIR filter can be seen through the above plots.

RLSFilterSystemIDExampleApp launches a User Interface (UI) designed to interact with the
simulation. The UI allows you to tune parameters and the results are reflected in the simulation
instantly. For example, moving the slider for the 'Cutoff Frequency' to the right while the simulation is
running, increases the FIR filter's cutoff frequency. Similarly, moving the slider for the 'RLS
Forgetting Factor' tunes the forgetting factor of the RLS filter. The plots reflects your changes as you
tune these parameters. For more information on the UI, please refer to HelperCreateParamTuningUI.

There are also two buttons on the UI - the 'Reset' button resets the states of the RLS and FIR filters
to their initial values, and 'Stop simulation' ends the simulation. If you tune the RLS filter's forgetting
factor to a value that is too low, you will notice that the RLS filter fails to converge to the desired
solution, as expected. You can restore convergence by first increasing the forgetting factor to an
acceptable value, and then clicking the 'Reset' button. Use the UI to control either the simulation or,
optionally, a MEX-file (or standalone executable) generated from the simulation code as detailed
below. If you have a MIDI controller, it is possible to synchronize it with the UI. You can do this by
choosing a MIDI control in the dialog that is opened when you right-click on the sliders or buttons
and select "Synchronize" from the context menu. The chosen MIDI control then works in accordance
with the slider/button so that operating one control is tracked by the other.
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Generating the MEX-File

MATLAB Coder can be used to generate C code for the function
HelperRLSFilterSystemIdentificationSim as well. In order to generate a MEX-file for your platform,
execute the following:

currDir = pwd;  % Store the current directory address
addpath(pwd)
mexDir   = [tempdir 'RLSFilterSystemIdentificationExampleMEXDir']; % Name of                                          
% temporary directory
if ~exist(mexDir,'dir')
    mkdir(mexDir);       % Create temporary directory
end
cd(mexDir);          % Change directory

ParamStruct = HelperRLSCodeGeneration();

Code generation successful: To view the report, open('codegen\mex\HelperRLSFilterSystemIdentificationSim\html\report.mldatx')

By calling the wrapper function RLSFilterSystemIDExampleApp with 'true' as an argument, the
generated MEX-file HelperRLSFilterSystemIdentificationSimMEX can be used instead of
HelperRLSFilterSystemIdentificationSim for the simulation. In this scenario, the UI is still
running inside the MATLAB environment, but the main processing algorithm is being performed by a
MEX-file. Performance is improved in this mode without compromising the ability to tune parameters.
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Click here to call RLSFilterSystemIDExampleApp with 'true' as argument to use the MEX-file
for simulation. Again, the simulation runs till the user explicitly stops it from the UI.

Simulation Versus MEX Speed Comparison

Creating MEX-Files often helps achieve faster run-times for simulations. In order to measure the
performance improvement, let's first time the execution of the algorithm in MATLAB without any
plotting:

clear HelperRLSFilterSystemIdentificationSim
disp('Running the MATLAB code...')

Running the MATLAB code...

tic
nTimeSteps = 100;
for ind = 1:nTimeSteps
     HelperRLSFilterSystemIdentificationSim(ParamStruct);
end
tMATLAB = toc;

Now let's time the run of the corresponding MEX-file and display the results:

clear HelperRLSFilterSystemIdentificationSim
disp('Running the MEX-File...')

Running the MEX-File...

tic
for ind = 1:nTimeSteps
    HelperRLSFilterSystemIdentificationSimMEX(ParamStruct);
end
tMEX = toc;

disp('RESULTS:')

RESULTS:

disp(['Time taken to run the MATLAB System object: ', num2str(tMATLAB),...
     ' seconds']);

Time taken to run the MATLAB System object: 6.1085 seconds

disp(['Time taken to run the MEX-File: ', num2str(tMEX), ' seconds']);

Time taken to run the MEX-File: 0.70268 seconds

disp(['Speed-up by a factor of ', num2str(tMATLAB/tMEX),...
    ' is achieved by creating the MEX-File']);

Speed-up by a factor of 8.6931 is achieved by creating the MEX-File

Clean up Generated Files

The temporary directory previously created can be deleted through:

cd(currDir);
clear HelperRLSFilterSystemIdentificationSimMEX;
rmdir(mexDir, 's');
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Simulink Version

rlsfiltersystemidentification is a Simulink model that implements the RLS System identification
example highlighted in the previous sections.

In this model, the lowpass FIR filter is modeled using the Variable Bandwidth FIR Filter block.
Magnitude response visualization is performed using dsp.DynamicFilterVisualizer.

Double-click the System Identification subsystem to launch the mask designed to interact with the
Simulink model. You can tune the cutoff frequency of the FIR filter and the forgetting factor of the
RLS filter.

The model generates code when it is simulated. Therefore, it must be executed from a folder with
write permissions.
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Acoustic Noise Cancellation (LMS)
This example shows how to use the Least Mean Square (LMS) algorithm to subtract noise from an
input signal. The LMS adaptive filter uses the reference signal on the Input port and the desired
signal on the Desired port to automatically match the filter response. As it converges to the correct
filter model, the filtered noise is subtracted and the error signal should contain only the original
signal.

Exploring the Example

In the dspanc model, the signal output at the upper port of the Acoustic Environment subsystem is
white noise. The signal output at the lower port is composed of colored noise and a signal from a .wav
file. This example model uses an adaptive filter to remove the noise from the signal output at the
lower port. When you run the simulation, you hear both noise and a person playing the drums. Over
time, the adaptive filter in the model filters out the noise so you only hear the drums.

Acoustic Noise Canceler Model

The all-platform floating-point version of the model is shown below.

Utilizing Your Audio Device

By running this model, we can listen to the audio signal in real time (while running the simulation).
The stop time is set to infinity. This allows us to interact with the model while it is running. For
example, we can change the filter or alternate from slow adaptation to fast adaptation (and vice
versa), and get a sense of the real-time audio processing behavior under these conditions.
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Color Codes of the Blocks

Notice the colors of the blocks in the model. These are sample time colors that indicate how fast a
block executes. Here, the fastest discrete sample time (e.g., the 8 kHz audio signal processing
portion) is red, and the second fastest discrete sample time is green. You can see that the color
changes from red to green after down-sampling by 32 (in the Downsample block before the Waterfall
Scope block). For more information on displaying sample time colors, see “View Sample Time
Information” (Simulink).

Waterfall Scope

The Waterfall window displays the behavior of the adaptive filter's filter coefficients. It displays
multiple vectors of data at one time. These vectors represent the values of the filter's coefficients of a
normalized LMS adaptive filter, and are the input data at consecutive sample times. The data is
displayed in a three-dimensional axis in the Waterfall window. By default, the x-axis represents
amplitude, the y-axis represents samples, and the z-axis represents time. The Waterfall window has
toolbar buttons that enable you to zoom in on displayed data, suspend data capture, freeze the
scope's display, save the scope position, and export data to the workspace.

Acoustic Environment Subsystem

You can see the details of the Acoustic Environment subsystem by double clicking on that block.
Gaussian noise is used to create the signal sent to the Exterior Mic output port. If the input to the
Filter port changes from 0 to 1, the Digital Filter block changes from a lowpass filter to a bandpass
filter. The filtered noise output from the Digital Filter block is added to the signal coming from a .wav-
file to produce the signal sent to the Pilot's Mic output port.

Available Example Versions

Floating-point version: dspanc

Fixed-point version: dspanc_fixpt (Uses Fixed-Point Designer)

References
[1] Haykin, S., Adaptive Filter Theory, 3rd Ed., Prentice-Hall, 1996.
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Adaptive Filter Convergence
This example compares the rate of convergence for adaptive filters using different LMS algorithms.

Introduction

An adaptive filter adapts its filter coefficients so that its output matches the output of a desired
unknown system. A major application of adaptive filters is filter identification, where the reference
signal is filtered by an unknown convolution filter, as illustrated here. The same signal is passed
through the adaptive filter and the unknown system, and the adaptive filter tries to adjust its
coefficients such that the error between the two outputs is minimal. Adaptive filters typically have
large error on their outputs initially and the error tends to go down with time, as the filter converges.

Adaptive filters using the Least Mean Squares (LMS) algorithm adjust their coefficients such that the
error between the two outputs is minimal in mean square sense. This example considers 4 different
variants of the the LMS algorithm and compares the rate of convergence for adaptive filters using
these algorithms.

• LMS - Least Mean Square algorithm
• NLMS - Normalized LMS algorithm
• SELMS - Sign-Error LMS algorithm
• SSLMS - Sign-Sign LMS algorithm

 Adaptive Filter Convergence

4-289



Setup

Use a zero mean white Gaussian noise with a variance of 0.01 as the input signal to the filters.
Choose an FIR filter of length 13 with all coefficients set to 1 as the desired unknown filter. You can
optionally add a Gaussian noise of variance 1e-5 to these weights by toggling the Manual Switch. Set
the switch towards the Constant block of value 0 for now, so that the weights do not contain any
noise. Set the initial weights of the adaptive filters to 0. Use a step size of 0.2 for the LMS, NLMS and
Sign-Error LMS blocks. For the Sign-Sign LMS algorithm, choose a more suitable step size of 0.02.
Each of the adaptive filters can be enabled or disabled separately. Use a Moving RMS block to
compute the energy of the desired output and the error signals. Visualize these signals in dB scale on
a Time Scope. To examine the convergence of the adaptive filter weights, subtract the adaptive filter
weights from the desired filter weights and plot the error using another Time Scope.
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From the first plot, it can be seen that the error signal from the NLMS filter converges to zero much
faster than the other variants, with a steady state error of more than 300 dB. The LMS filter is also
able to match the output of the unknown filter closely with an SNR of more than 150 dB. From the
second plot, the weights of the NLMS and LMS filters are also observed to converge to the desired
filter weights with minimal final error between the weights.The Sign-Error LMS and Sign-Sign LMS
filters appear to start converging faster than the LMS filter initially, but these filters have a larger
steady state error in the filter output (SNR of approximately 20 dB) and filter weights.

See Also

Related Examples
• “System Identification of FIR Filter Using LMS Algorithm” on page 6-9
• “System Identification of FIR Filter Using Normalized LMS Algorithm” on page 6-17
• “Signal Enhancement Using LMS and NLMS Algorithms” on page 6-34
• “Compare Convergence Performance Between LMS Algorithm and Normalized LMS Algorithm”

on page 6-20
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Noise Canceler (RLS)
This example shows how to subtract noise from an input signal using the Recursive Least Squares
(RLS) algorithm. The RLS adaptive filter uses the reference signal on the Input port and the desired
signal on the Desired port to automatically match the filter response in the Noise Filter block. As it
converges to the correct filter, the filtered noise should be completely subtracted from the "Signal
+Noise" signal, and the "Error Signal" should contain only the original signal.
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Time-Delay Channel Estimation Through Adaptive Filtering
This example shows how to adaptively estimate the time delay for a noisy input signal using the LMS
adaptive FIR algorithm.

Assume a signal  where  is a white Gaussian process and  is deterministic.
The signal is measured with an echo of  samples and attenuation  (both are unknown), resulting
in the overall measurement:

The goal is to estimate the delay  and the echo attenuation . One can determine these parameters
by solving the filter identification problem  for , combined with the prior

. Provided that the filter  can be identified from the measurements signal 
and the original signal , one can derive  and 

Such a filter identification problem can be posed in terms of adaptive LTI filtering. The reference
signal is , the input feed is , and the adaptive filter is . Clearly, if the adaptation
process concludes with  then the error signal  vanishes.

There are numerous adaptive filtering algorithms. For this paricular problem setup and signal model,
the normalized LMS algorithm is suitable, and is available in the LMS Filter block.

Run the simulation. The peaks in the filter taps vector indicates the time-delay estimate. In this case
 and .

For details, see S. Haykin, Adaptive Filter Theory, 3rd Ed., Prentice-Hall 1996.
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See Also

Related Examples
• “System Identification of FIR Filter Using LMS Algorithm” on page 6-9
• “Signal Enhancement Using LMS and NLMS Algorithms” on page 6-34
• “Acoustic Noise Cancellation (LMS)” on page 4-287
• “Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter” on page 6-43
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Time Scope Measurements
This example shows how to measure performance characteristics of a pulse width modulated
sinusoid. The example contains a model which you can modify to view the effects of parameter
changes on rise time, fall time, overshoot, undershoot, pulse width, pulse period, and duty cycle
measurements. The example also shows an example of a rising edge trigger and is set up to perform
basic statistical operations (mean, median, RMS, maximum, minimum) and measure the frequency
and period of the pulse period via cursors and peak finding.

The example model contains several measurements and their corresponding setups.

Triggers

The first section shows how to use a trigger to stabilize a noisy sinusoid in the display. You can see
how the sinusoid is constructed by double-clicking on the Noisy Sinusoid block.
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The sinusoidal signal is fed into a Time Scope block with triggers enabled.

You can experiment with the trigger position by dragging the markers around the display. You can
trigger upon rising or falling edges. This example includes 0.1 V of hysteresis to help stabilize the
sinusoid in the presence of noise. The hysteresis ensures that the signal traverses at least 0.1 V below
the trigger level before registering a positive-going transition.

If you close the triggers, you will see that the sinusoid no longer stays fixed in the screen. You can
bring the triggers back by clicking on the trigger icon.
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Measurements of a Pulse Width Modulated Source

In this example, a pulse width modulated source is connected to several time scopes that contain
measurements.

You can view the source by clicking on it:

The model constructs sinusoidal pulse width modulation by applying a bias to the desired sine wave
and subsequently subtracting a periodic sawtooth wave. The resulting waveform is then fed into a
comparator to form the shape of the pulse. Noise is then added to the signal and then sent to a filter
with an underdamped response.

You can modify the amount of additive noise on the input by clicking on the Random Source and
modifying the variance of the Gaussian distribution.

You can similarly modify the response of the filter by changing its coefficients.

Transitions

You can view some basic information about the rising and falling transitions of the waveform by
viewing the Transitions panel of the Bilevel Measurements dialog.
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Viewing the results, you can see that the pulse has a high voltage level of +1 V and a low voltage
level of -1 V.

The example above captures two rising (positive) edges and two falling (negative) edges with rise
times and fall times of around 340 ns. If you zoom into just one edge of the waveform you can see the
measurements for just that edge.

Note that the edges of the pulses are fairly steep, having a slew rate of about 4 V/us. An
underdampened filter was used to achieve this rate. Changing the filter to be overdamped would
decrease the rate at which the edge of each pulse could transition between pulse levels. The output of
an underdampened filter exhibits significant ringing immediately after changing between low and
high states. To quantify this ringing behavior, you can use the measurements in the Overshoots /
Undershoots panel.

Overshoot and Undershoot

The Bilevel Measurements dialog also contains measurements that relate to an under-damped
environment. You can view the transition aberrations by opening the Overshoots / Undershoots panel:
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The average overshoot of the rising edges is about 42%. The undershoot is 34%. Large overshoots
can sometimes damage logic devices which are designed to accept only a small voltage range. Large
undershoots can cause devices to detect incorrect logic states. In this example the transitions settle
on average within 7.3 microseconds.

You can reduce the amount of ringing by experimenting with the filter coefficients at the output of the
modulated source.

Pulse Cycles

You can also view how the pulse width and duty cycle vary as functions of time by opening the Cycles
panel in the Bilevel Measurements dialog:
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This example shows three positive-polarity pulses but only two negative-polarity pulses. The pulse
frequency is 10 kHz. You can observe the encoded sinusoid by watching how the duty cycle and pulse
width change over time.

Peak Finder

Alternatively, you can measure the amplitudes and the times of significant peaks by invoking the Peak
Finder dialog.
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The voltage at the tip of each overshoot is about 1.8 V and the next largest ringing component of the
first pulse is at 1.14 V.

Expand the settings panel to change the number of peaks shown. You can also filter based on height
or distance between peaks. You can also change the text annotation shown in the display.

Cursor Measurements

You can measure the relative distances between events of the waveform by using cursor
measurements. Here the cursors are at the start of each pulse and confirm that the pulse period is 10
kHz.
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Experiment with the settings to move the cursors anywhere on the screen or measure the locations of
other signals. You can move the cursors with the arrow keys and also snap them to either the nearest
data point or screen pixel.

Signal Statistics

You can view basic signal statistics of the captured wave with the Signals Statistics measurement
dialog.
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You can observe the minimum and maximum values of the displayed signal and other signal metrics,
such as the peak-to-peak, mean, median, and RMS values.

References

• IEEE Std. 181-2003 IEEE Standard on Transitions, Pulse, and Related Waveforms

See Also
Time Scope

Related Examples
• “Configure Time Scope Block” on page 25-59
• “Configure Time Scope MATLAB Object” on page 25-89
• “Spectrum Analyzer Measurements” on page 4-307
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Spectrum Analyzer Measurements
This example shows how to perform measurements using the Spectrum Analyzer block. The example
contains a typical setup to perform harmonic distortion measurements (THD, SNR, SINAD, SFDR),
third-order intermodulation distortion measurements (TOI), and adjacent channel power ratio
measurements (ACPR). The example also shows how to view time-varying spectra by using a
spectrogram and automatic peak detection.

Several measurements and their corresponding setups are contained in the example model.

Exploring the Example

The model consists of five simple models of an amplifier, each of which is set up to perform specific
measurements.

Open an amplifier model by double-clicking on an Amplifier block. The first amplifier model is shown
below:
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The input is first combined with a Gaussian noise source and then run through a high-order
polynomial to model non-linear distortion.

You can modify the amount of additive noise on the input by clicking on the Noise Source and
modifying the variance of the Gaussian distribution.

You can modify the parameters of the amplifier by changing the polynomial coefficients. The
coefficients are arranged from highest-to-lowest order. If you edit the last coefficient you change the
DC voltage offset of the amplifier. If you change the next-to-last coefficient, you change the voltage
gain of the amplifier. If you change other coefficients, you can change the higher-order harmonics of
the amplifier.

Harmonic Distortion

You can measure harmonic distortion by stimulating the amplifier with a sinusoidal input and viewing
the harmonics in a spectrum analyzer. The harmonic distortion measurements can be invoked from
the Measurements option in the Tools menu, or by clicking its corresponding icon in the toolbar
(shown depressed in the figure, below).
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Viewing the results in the Distortion Measurement panel you see the amplitudes of the fundamental
and the harmonics as well as their SNR, SINAD, THD and SFDR values, which are referenced with
respect to the fundamental output power.

Third Order Intermodulation Distortion

Amplifiers typically have significant odd-order harmonics. If you stimulate the amplifier with two
closely spaced sinusoids of equal amplitude, you can produce intermodulation products at the output.
Typically the distortion products decay away from the fundamental tones, the largest of which
correspond to the third-order sum and difference frequencies of the input waveform. You can
measure output third-order intermodulation (TOI) distortion by selecting intermodulation distortion
measurements from the drop-down menu in the distortion measurement panel.
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Also in the Distortion Measurement panel you see the intermodulation products highlighted and the
output TOI displayed. Adjust the polynomial coefficients in the amplifier to change the harmonics
shown in the signal.

ACPR

If you stimulate an amplifier that is broadcasting a communications channel, you may see spectral
growth leaking into the bandwidth of neighboring channels due to intermodulation distortion. You can
measure how much power leaks into these adjacent channels by measuring the adjacent channel
power ratio (ACPR). You can see the measurements both before and after the amplifier by toggling
the measurement input in the Trace Selection Dialog. ACPR measurements can be selected from the
drop-down menu in the Channel Measurements dialog. This dialog can be invoked from the
Measurements option in the Tools menu, or by clicking its corresponding icon in the toolbar (shown
depressed in the figure, below).
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Adjust the polynomial coefficients in the amplifier to obtain different amounts of spreading of the
central power due to intermodulation distortion. You can observe the ACPR readings at the specified
offset frequencies.

In the above example you can see approximately 0.5 dB of compression between the input source
(blue trace) and the output of Amplifier4 (yellow trace). The peak-to-average power ratio (PAPR) for
the input channel is 3.3 dB whereas the PAPR for the output channel is 2.8 dB. This loss of dynamic
range suggests that there is too much input power applied to the amplifier.

Spectrogram

You can view time-varying spectral information by using the Spectrogram Mode of the spectrum
analyzer. If you stimulate the amplifier with a chirp waveform you can observe how the harmonics
behave as time progresses. Select "Spectrogram" from the "Type" dropdown menu in the Spectrum
Settings dialog, which is invoked from the Spectrum Settings dialog in the View menu (not shown).
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You can use cursors to make measurements of the period of the chirp and to confirm that the other
spectral components are harmonically related. The Cursor Measurements dialog can be invoked from
the Measurements option in the Tools menu, or by clicking its corresponding icon in the toolbar
(shown depressed in the figure, above).

Peak Finder

You can track time-varying spectral components by using the Peak Finder measurement dialog. You
can show and optionally label up to 100 peaks. The Peak Finder dialog can be invoked from the
Measurements option in the Tools menu, or by clicking its corresponding icon in the toolbar (shown
depressed in the figure, above).

4 DSP System Toolbox Featured Examples

4-312



References

• IEEE Std. 1057-1994 IEEE Standard for Digitizing Waveform Recorders
• Allan W. Scott, Rex Frobenius, RF Measurements for Cellular Phones and Wireless Data Systems,

John Wiley & Sons, Inc. 2008

See Also
Spectrum Analyzer

Related Examples
• “Configure Spectrum Analyzer” on page 25-25
• “Obtain Measurements Data Programmatically for Spectrum Analyzer Block” on page 10-5
• “Time Scope Measurements” on page 4-298
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Generate a Multithreaded MEX File from a MATLAB Function
Using Unfolding

This example shows how to use the dspunfold function to generate a multithreaded MEX file from a
MATLAB® function.

Note: The following assumes that the current host computer has at least 2 physical CPU cores. The
presented screenshots, speedup, and latency values were collected using a host computer with 8
physical CPU cores.

Required MathWorks™ products:

• DSP System Toolbox™
• MATLAB® Coder™

Introduction

dspunfold generates a multithreaded MEX file from a MATLAB function using unfolding technology.
This MATLAB function can contain an algorithm which is stateless (has no states) or stateful (has
states).

Using dspunfold

Consider the MATLAB function spectralAnalysisExample. The function performs the following
algorithm:

1) Compute the one-sided spectrum estimate of the input

2) Compute the total harmonic distortion (THD), signal to noise ratio (SNR), signal to noise and
Distortion ratio (SINAD) and the spurious free dynamic range (SFDR) of the spectrum

type spectralAnalysisExample

function [THD,SNR,SINAD,SFDR] = spectralAnalysisExample(x)
%

% Copyright 2015-2016 The MathWorks, Inc.

persistent powerSpectrum
if isempty(powerSpectrum)
  powerSpectrum  = dsp.SpectrumEstimator('FrequencyRange','onesided',...
                              'SampleRate',8000,...
                              'SpectralAverages',1);  
end

% Get one-sided spectrum estimate
Pxx = powerSpectrum(x); 

% Compute measurements
[amp, harmSum, totalNoise, maxSpur] = ...
    getHarmonicDistortion(...
    getFrequencyVector(powerSpectrum), Pxx, getRBW(powerSpectrum), 6);

THD   = 10*log10(harmSum/amp(1));              
SNR   = 10*log10(amp(1)/totalNoise);               
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SINAD = 10*log10(amp(1)/(harmSum + totalNoise));
SFDR  = 10*log10(amp(1)/maxSpur);                

To accelerate the algorithm, a common approach is to generate a MEX file using the codegen
function. Below is an example of how to do so when using an input of 4096 doubles. The generated
MEX file, dspunfoldDCTExample_mex, is single-threaded.

codegen spectralAnalysisExample -args {(1:4096)'}

Code generation successful.

To generate a multithreaded MEX file, use the dspunfold function. The argument -s indicates that the
algorithm in spectralAnalysisExample has no states.

dspunfold spectralAnalysisExample -args {(1:4096)'} -s 0

State length: 0 frames, Repetition: 1, Output latency: 40 frames, Threads: 20
Analyzing: spectralAnalysisExample.m
Creating single-threaded MEX file: spectralAnalysisExample_st.mexw64
Creating multi-threaded MEX file: spectralAnalysisExample_mt.mexw64
Creating analyzer file: spectralAnalysisExample_analyzer.p

This will generate the following files:

• multithreaded MEX file, spectralAnalysisExample_mt
• single-threaded MEX file, spectralAnalysisExample_st (which is identical to the MEX file

obtained using the codegen function)
• self-diagnostic analyzer function, spectralAnalysisExample_analyzer

To measure the speedup of the multithreaded MEX file relative to the single-threaded MEX file, see
the example function dspunfoldBenchmarkSpectrumExample:

type dspunfoldBenchmarkSpectrumExample

function dspunfoldBenchmarkSpectrumExample
% Function used to measure the speedup of the multi-threaded MEX file
% obtained using dspunfold vs the single-threaded MEX file

% Copyright 2015 The MathWorks, Inc.

clear spectralAnalysisExample_st;  % for benchmark precision purpose
clear spectralAnalysisExample_mt;  % for benchmark precision purpose

numFrames = 1e5;
inputFrame = (1:4096)';

% exclude first run from timing measurements
spectralAnalysisExample_st(inputFrame); 
tic;  % measure execution time for the single-threaded MEX
for frame = 1:numFrames 
    spectralAnalysisExample_st(inputFrame);
end
timeSingleThreaded = toc;

% exclude first run from timing measurements
spectralAnalysisExample_mt(inputFrame); 
tic;  % measure execution time for the multi-threaded MEX
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for frame = 1:numFrames
    spectralAnalysisExample_mt(inputFrame);
end
timeMultiThreaded = toc;
fprintf('Speedup = %.1fx\n',timeSingleThreaded/timeMultiThreaded);

dspunfoldBenchmarkSpectrumExample measures the execution time taken by
spectralAnalysisExample_st and spectralAnalysisExample_mt to process 'numFrames'
frames. Finally it prints the speedup, which is the ratio between the multithreaded MEX file execution
time and single-threaded MEX file execution time.

dspunfoldBenchmarkSpectrumExample;

Speedup = 2.2x

The speedup could be improved even more by increasing the Repetition value, which will be
discussed later.

DSP unfolding generates a multithreaded MEX file which buffers multiple signal frames and then
processes these frames simultaneously, using multiple cores. This process introduces some
deterministic output latency. Executing 'help spectralAnalysisExample_mt' displays more information
about the multithreaded MEX file, one of them being the value of the output latency. For this
example, the output of the multithreaded MEX file has a latency of 16 frames relative to its input,
which is not the case for the single-threaded MEX file. Below is the plot generated by
dspunfoldShowLatencySpectrumExample, which displays the outputs of the single-threaded and
multithreaded MEX files. Notice that the output of the multithreaded MEX is delayed by 16 frames,
relative to that of the single-threaded MEX.

dspunfoldShowLatencySpectrumExample;
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Verify Resulting Multithreaded MEX with the Generated Analyzer

When creating a multithreaded MEX file using dspunfold, the single-threaded MEX file is also created
along with an analyzer function. For this example, the name of the analyzer is
spectralAnalysisExample_analyzer.

The goal of the analyzer is to provide a quick way to measure the speedup of the multithreaded MEX
relative to the single-threaded MEX, and also check if the outputs of the multithreaded MEX and
single-threaded MEX match. Outputs usually do not match when an incorrect state length value is
specified.

The example below executes the analyzer for the multithreaded MEX file, dspunfoldFIRExample_mt.

Fs = 8000;
NumFrames = 10;
t  = (1/Fs) * (0:4096*NumFrames-1); t = t.';
f = 100;
x  = sin(2*pi*f*t) + .01 * randn(size(t));
spectralAnalysisExample_analyzer(x)

Analyzing multi-threaded MEX file spectralAnalysisExample_mt.mexw64. For best results, please refrain from interacting with the computer and stop other processes until the analyzer is done.
Latency = 40 frames
Speedup = 2.5x

ans = struct with fields:
    Latency: 40
    Speedup: 2.4725
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       Pass: 1

Each input to the analyzer corresponds to the inputs of the dspunfoldFIRExample_mt MEX file.
Notice that the length (first dimension) of each input is greater than the expected length. For
example, dspunfoldFIRExample_mt expects a frame of 4096 doubles for its first input, while
4096*10 samples were provided to spectralAnalysisExample_analyzer. The analyzer interprets
this input as 10 frames of 4096 samples. The analyzer alternates between these 10 input frames (in a
circular fashion) while checking if the outputs of the multithreaded and single-threaded MEX files
match.

Note: For the analyzer to correctly check for the numerical match between the multithreaded MEX
and single-threaded MEX, it is recommended that you provide at least 2 frames with different values
for each input.

Specifying State and Repetition Values

Let us modify the spectral measurement example by setting the spectral average length of the
spectrum estimate to 4 instead of 1. The spectrum estimate is now a running average of the current
estimate and the three previous estimate. This algorithm has a state length of 3 frames. The MATLAB
function spectralAnalysisWithStatesExample contains the modified algorithm:

type spectralAnalysisWithStatesExample

function [THD,SNR,SINAD,SFDR] = spectralAnalysisWithStatesExample(x)
%

% Copyright 2015-2016 The MathWorks, Inc.

persistent powerSpectrum
if isempty(powerSpectrum)
  powerSpectrum  = dsp.SpectrumEstimator('FrequencyRange','onesided',...
                              'SampleRate',8000,...
                              'SpectralAverages',4);  
end

% Get one-sided spectrum estimate
Pxx = powerSpectrum(x); 

% Compute measurements
[amp, harmSum, totalNoise, maxSpur] = ...
    getHarmonicDistortion(...
    getFrequencyVector(powerSpectrum), Pxx, getRBW(powerSpectrum), 6);

THD   = 10*log10(harmSum/amp(1));              
SNR   = 10*log10(amp(1)/totalNoise);               
SINAD = 10*log10(amp(1)/(harmSum + totalNoise));
SFDR  = 10*log10(amp(1)/maxSpur);                

To build the multithreaded MEX file, we have to provide the state length corresponding to the two
FIR filters. Specifying -s 3 when invoking dspunfold indicates that the state length does not exceed 3
frames.

The speedup can be increased even more by increasing the repetition (-r) provided when invoking
dspunfold. The default repetition value is 1. Increasing this value makes the multithreaded MEX
buffer more frames internally, before it starts processing them, increasing the efficiency of the
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multithreading, but at the cost of a higher output latency. Also note that the maximum state length
allowed is (threads-1)*Repetition*FrameSize frames. If the specified state length exceeds that value,
dspunfold falls back a single-threaded MEX. If latency may be tolerated by the application, increasing
the value of repetition allows generating a multithreaded MEX with a longer state.

The command below generates a multithreaded MEX function using a repetition value of 5 and a
state length of 3 frames:

dspunfold spectralAnalysisWithStatesExample -args {(1:4096)'} -s 3 -r 5

State length: 3 frames, Repetition: 5, Output latency: 200 frames, Threads: 20
Analyzing: spectralAnalysisWithStatesExample.m
Creating single-threaded MEX file: spectralAnalysisWithStatesExample_st.mexw64
Creating multi-threaded MEX file: spectralAnalysisWithStatesExample_mt.mexw64
Creating analyzer file: spectralAnalysisWithStatesExample_analyzer.p

The analyzer may be used to validate the numerical results of the multithreaded MEX and provide
speed-up and latency information:

L = 4096;
NumFrames = 10;
sine  = dsp.SineWave('SamplesPerFrame',L * NumFrames,'SampleRate',8000);
x     = sine() + 0.01 * randn(L * NumFrames, 1);
spectralAnalysisWithStatesExample_analyzer(x)

Analyzing multi-threaded MEX file spectralAnalysisWithStatesExample_mt.mexw64. For best results, please refrain from interacting with the computer and stop other processes until the analyzer is done.
Latency = 200 frames
Speedup = 3.3x

ans = struct with fields:
    Latency: 200
    Speedup: 3.2876
       Pass: 1

Simulation Example

The function dspunfoldNoisySineExample demonstrates the usage of the multithreaded MEX to
estimate spectral characteristics of a noisy sine wave. The measurements are plotted on a time scope.
Performance of the multithreaded MEX is compared to the MATLAB simulation and the single-
threaded MEX performance. The gains of the multithreaded MEX are still apparent even with the
overhead brought by the plotting and input signal generation of the testbench.

dspunfoldNoisySineExample
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MATLAB Sim/Single-threaded MEX speedup: 2.6
MATLAB Sim/Multi-threaded MEX speedup: 4.3

References
[1] DSP unfolding on Wikipedia : Unfolding (DSP implementation)
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Generate Standalone Executable and Interact with it Using
UDP

This example shows how to generate a standalone executable for streaming statistics using
MATLAB® Coder™ and tune the generated executable using a user interface (UI) that is running in
MATLAB®.

Introduction

Most algorithms in DSP System Toolbox™ support C code generation using MATLAB Coder.

One of the options of MATLAB Coder is to generate a standalone executable that can be run outside
of the MATLAB environment by launching the executable directly from a terminal or command
prompt.

For algorithms that are tunable, it is desirable to interact with the algorithm at run-time using a UI.
One way to achieve this is by sending/receiving information via UDP.

This example uses UDP to exchange between MATLAB and a generated standalone executable at run-
time. The variance, bias, and exponential weighting values are sent from MATLAB to the executable.
The actual random signal along with mean, RMS, and variance estimates are sent from the
standalone executable back to MATLAB for plotting.

Example Architecture

The architecture of the example consists of two primary sections:

1 streamingStatsCodegenExampleApp: A MATLAB function that creates the user interface (UI)
to change the variance, bias, and exponential weighting values. This function also plots the data
received from the standalone executable.

2 HelperStreamingStatsEXEProcessing: This is the function from which the standalone
executable is generated. This function generates a random signal of a given bias and variance
and computes mean, RMS, and variance estimates of such a signal. The noise signal along with
the statistics that are computed are sent over UDP for plotting (or any further processing).
Anytime during the simulation, it can also respond to the changes in the sliders of the MATLAB
UI.

Generating Code and Building an Executable File

You can use MATLAB Coder to generate readable and standalone C-code from the streaming statistics
algorithm code. Because UDP is used, there are additional dependencies for the generated code and
executable file. These are available in the /bin directory of your MATLAB installation.

Running the script HelperStreamingStatsGenerateEXE will invoke MATLAB Coder to
automatically generate C-code and a standalone executable from the algorithm code present in
HelperStreamingStatsEXEProcessing.

Running the Example

Once you have generated the executable, run the function streamingStatsCodegenExampleApp to
launch the executable and a user interface (UI) designed to interact with the simulation. The UI
allows you to tune parameters and the results are reflected in the simulation instantly. For example,
moving the slider for the 'Variance' while the simulation is running, will affect the noise signal along
with the RMS and variance estimates that are plotted.
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There are also two buttons on the UI - the 'Pause Simulation' button will hold the simulation until you
press on it again. The simulation may be terminated by clicking on the 'Stop simulation' button.
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Threading

The standalone executable is executed as a separate process. This means that the graphics can run in
parallel with the statistics computation. This can be an attractive approach for high performance
computations involving graphics.

Manually Invoking the Executable

In lieu of using the system command to launch the executable from within MATLAB, the executable
can be launched manually from a terminal or command prompt. Because this executable includes
UDP calls, it is necessary that the dlls be on the path for proper behavior. See “How To Run a
Generated Executable Outside MATLAB” on page 19-27 for more information.

Copyright 2016-2021The MathWorks, Inc.
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Code Generation for Parametric Audio Equalizer
This example shows how to model an algorithm specification for a three band parametric equalizer
which will be used for code generation.

Required MathWorks™ products:

• MATLAB®
• DSP System Toolbox™
• Simulink®
• MATLAB® Coder™
• Simulink® Coder™
• Embedded Coder™

Introduction

Parametric equalizers are often used to adjust the frequency response of an audio system. For
example, a parametric equalizer can be used to compensate for physical speakers which have peaks
and dips at different frequencies.

The parametric equalizer algorithm in this example provides three second-order (biquadratic) filters
whose coefficients can be adjusted to achieve a desired frequency response. A user interface is used
in simulation to dynamically adjust filter coefficients and explore behavior. For code generation, the
coefficient variables are named and placed in files such that they could be accessed by other software
components that dynamically change the coefficients while running on the target processor.

The following sections will describe how the parametric equalizer algorithm is specified, how the
behavior can be explored through simulation, and how the code can be generated and customized.
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Specify Algorithm

The parametric equalizer algorithm is specified in two parts: a model specification and a
parameterized data specification. The model specification is a Simulink subsystem that specifies the
signal flow of the algorithm. The model specification also accesses parameterized data that exists in
the MATLAB workspace. The parameterized data specification is a MATLAB script that creates the
data that is accessed by the Simulink model.
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For this example, the model specification is the Equalizer subsystem of the Simulink model
dspparameqcodegen. In this subsystem, the input is passed through three cascaded bands of
equalization. Coefficient changes within each band are smoothed through a leaky integrator before
being passed into a Biquad Filter block. Each Biquad Filter block is configured to use a different filter
structure. Different filter structures are selected to show the differences in code generation later in
this example.

For this example, the parameterized data specification is the MATLAB script dspparameq_data.m.
This MATLAB script specifies the initial filter coefficients as well as code generation attributes. When
you open the model dspparameqcodegen, the model's PreLoadFcn callback is configured to run the
dspparameq_data.m script that creates the parameter data in the MATLAB workspace.

Explore Behavior Through Simulation

You can use a simulation test bench to explore the behavior of the algorithm. In this example, the test
bench consists of the simulation model, dspparameqcodegen, as a well as custom user interface (UI)
programmed in MATLAB.
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This UI can be launched by clicking the 'Launch Parameter Tuning UI' link. The UI enables dynamic
adjustment of coefficient parameter data in the MATLAB workspace during the simulation.
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Generate C Code for the Equalizer Subsystem

Once you achieve the desired simulation behavior, you can generate C code for the Equalizer
subsystem based on the algorithm specification. This model is configured to show some common code
generation customizations accessible from Embedded Coder product. These customizations ease the
code review and integration process. The following sections show some of the code customizations for
this model and provide references to documentation that describe these customizations in more
detail.
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To generate C code, right-click on the Equalizer subsystem, select Code Generation > Build
Subsystem, then click the Build button when prompted for tunable parameters. You can also generate
code by clicking the following hyperlink: Generate Code for the Equalizer Subsystem.

Code Generation Report with Links to and from the Model

The model is configured to generate an HTML report that can be used to navigate the generated
source and header files. The report also enables bidirectional linking between the generated code and
the model. For example, each Biquad Filter block is configured to implement a different filter
structure. You can trace from the block to the associated code by right clicking on any of the Biquad
Filter blocks and then selecting Code Generation > Navigate to code.

For more information on traceability between the model and code see “Trace Simulink Model
Elements in Generated Code” (Embedded Coder).

Calling the Generated Code

You can integrate the generated code into an application by making calls to the model initialization
and model step functions. An example ert_main.c file is generated that shows how to call the
generated code. Note that the example main() calls Equalizer_initialize() to initialize states.
The example rt_OneStep() shows how a periodic mechanism such as an interrupt would call
Equalizer_step() from the file Equalizer.c.
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For more information about how to integrate generated code into another application see “Deploy
Generated Standalone Executable Programs To Target Hardware” (Embedded Coder).

Input and Output Data Interface

The parameterized data specification file, dspparameq_data.m, creates in and out signal data
objects in the MATLAB workspace. These data objects are associated with signal lines in the model
and are used to specify descriptions and storage classes of the corresponding variables in the
generated code. For example, the signals in and out are declared as a global variable in
Equalizer.c. To run the model step function, an application writes data to in, calls the
Equalizer_step() function, and then reads the results from out.

For more information on Data Objects see “Create Data Objects for Code Generation with Data Object
Wizard” (Embedded Coder).

Text Annotations in Code Comments

You can insert design documentation entered as text in the model into the comments of the generated
code. The Equalizer subsystem contains annotation text with the keyword S:Description. The
code generator identifies that the text starts with this keyword and inserts the text following the
keyword as comments into the generated code.

For more information on inserting annotation text into code comments see “Add Global Comments in
the Generated Code” (Embedded Coder).

Function Partitioning

To ease navigation of the generated code, each subsystem for the equalizer bands is configured to be
atomic and create its own function. You can see the calling order in the Equalizer_step()
function.
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For more information on customizing function naming and placement see “About Nonvirtual
Subsystem Code Generation” (Embedded Coder).

Coefficient File Placement

The parameterized data specification file, dspparameq_data.m creates parameter data objects for the
coefficients in the MATLAB workspace. These data objects are configured to define and declare
coefficient variables in separate files biquad_coeffs.c and biquad_coeffs.h respectively.
Partitioning coefficients into separate files enables other software components to access this data.
For example, in a deployed application, you could schedule another software component to modify
these variables at runtime before they are used by Equalizer_step().

For more information about file placement of Data Objects see “Control Placement of Global Data
Definitions and Declarations in Generated Files” (Embedded Coder).

Filter Design Parameters in Coefficient Variable Comments

When coefficients are calculated (in the parameterized data file or by the graphical user interface),
the filter design parameters are stored in the Description field of the coefficient parameter data
objects. The model is configured to insert the design parameters as comments in the generated code.
This enables reviewers of the code to easily identify which design parameters were used to design the
filters.

For more information on customizing the comments of Data Objects in the generated code see “Add
Custom Comments for Variables in the Generated Code” (Embedded Coder).

Package Generated Files

The generated files referenced by the HTML report exist in the Equalizer_ert_rtw directory. In
addition to the files in this directory, other files in the MATLAB application install directory may be
required for integration into a project. To ease porting the generated code to other environments, this
model is configured to use the PackNGo feature, which packages up all of the required files into the
zip file Equalizer.zip. Note that the zip file contains all of the required files, but might also
contain additional files that may not be required.

For more information on packaging files for integration into other environments, see “Relocate or
Share Generated Code” (Simulink Coder).
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Generate DSP Applications with MATLAB Compiler
This example shows how to use the MATLAB® Compiler™ to create a standalone application from a
MATLAB® function that uses System objects from DSP System Toolbox™.

Introduction

In this example, you start with the function RLSFilterSystemIDCompilerExampleApp that uses RLS
filter for system identification. You generate an executable application from this function using
MATLAB Compiler and then run the application. The advantage of generating such standalone
applications is that they can be run even on systems that do not have MATLAB installed. These only
need an installation of MATLAB Runtime.

System Identification Algorithm

Recursive Least-Squares (RLS) filters are adaptive filters that can be used to identify an unknown
system. RLSFilterSystemIDCompilerExampleApp uses RLS filters to identify a system that has a
variable cutoff frequency. The system is a lowpass FIR filter implemented using
dsp.VariableBandwidthFIRFilter. The RLS filter is implemented using dsp.RLSFilter.

For more information on the algorithm and setup, follow the example: “System Identification Using
RLS Adaptive Filtering” on page 4-281.

MATLAB Simulation

To verify the behavior of RLSFilterSystemIDCompilerExampleApp, run the function in MATLAB.
It takes an optional input which is number of iteration steps. The default value is 300 iterations.

RLSFilterSystemIDCompilerExampleApp;
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A user interface (UI) comes up which has two parameters that you can control:

1 Cutoff Frequency (Hz) - Cutoff frequency of the lowpass filter to be identified, specified as a
scalar in the range [0, 5000] Hz.

2 RLS Forgetting Factor - Forgetting factor for the RLS filter used for system identification,
specified as a scalar in the range [0, 1].
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When the simulation finishes or when you click on Stop Simulation button, you will see a plot of
the changes you made to these parameters and how it affected the mean-squared error (MSE) of the
RLS filter.
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Create a Temporary Directory for Compilation

Once you are satisfied with the function's simulation in MATLAB, you can compile the function.
Before compiling, create a temporary directory in which you have write permissions. Copy the main
MATLAB function and the associated helper files into this temporary directory.

compilerDir = fullfile(tempdir,'compilerDir'); % Name of temporary directory
if ~exist(compilerDir,'dir')
    mkdir(compilerDir); % Create temporary directory
end
copyfile(which('RLSFilterSystemIDCompilerExampleApp'),compilerDir,'f');
copyfile(which('HelperRLSFilterSystemIdentificationSim'),compilerDir,'f');
copyfile(which('HelperCreateParamTuningUI'),compilerDir,'f');
copyfile(which('HelperUnpackUIData'),compilerDir,'f');
curDir = cd(compilerDir);

Compile the MATLAB Function into a Standalone Application

In the temporary directory you just created, run mcc (MATLAB Compiler) command on the MATLAB
function RLSFilterSystemIDCompilerExampleApp. mcc invokes the MATLAB Compiler which
compiles the MATLAB function into a standalone executable that is saved in the current directory.
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Use the mcc (MATLAB Compiler) function from MATLAB Compiler to compile
RLSFilterSystemIDCompilerExampleApp into a standalone application. Specify the '-m' option to
generate a standalone application, '-N' option to include only the directories in the path specified
through the '-p' option.

mcc('-mN', 'RLSFilterSystemIDCompilerExampleApp', ...
    '-p', fullfile(matlabroot,'toolbox','dsp'));

This step takes a few minutes to complete.

Run the Deployed Application

Use thesystem command to run the generated standalone application. Note that running the
standalone application using the system command uses the current MATLAB environment and any
library files needed from this installation of MATLAB. To deploy this application on a machine which
does not have MATLAB installed, refer to the “Relocate Code Generated from MATLAB Code to
Another Development Environment” on page 19-17

if ismac
    status = system(fullfile('RLSFilterSystemIDCompilerExampleApp.app', ...
        'Contents', 'MacOS', 'RLSFilterSystemIDCompilerExampleApp'));    
else
    status = system(fullfile(pwd, 'RLSFilterSystemIDCompilerExampleApp'));
end
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Similar to the MATLAB example “System Identification Using RLS Adaptive Filtering” on page 4-281,
running this executable application also launches a UI. The UI allows you to tune parameters and the
results are reflected in the simulation instantly. For example, move the slider for the 'Cutoff frequency
(Hz)' to the left while the simulation is running. You will see a drop in the plot for cutoff frequency
and a corresponding fluctuation in the MSE of RLS filter. You can use the buttons on the UI to pause
or stop the simulation.

Clean up Generated Files

After generating and deploying the executable, you can clean up the temporary directory by running
the following in the MATLAB command prompt:

cd(curDir);
rmdir(compilerDir,'s');
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Optimized Fixed-Point FIR Filters
This example shows how to optimize fixed-point FIR filters. The optimization can refer to the
characteristics of the filter response such as the stopband attenuation or the number of bits required
to achieve a particular specification. This functionality is particularly useful for users targeting
hardware that have a number of configurable coefficients of a specific wordlength and/or in cases
typically found on ASICs and FPGAs where there is a large design space to explore. A hardware
designer can usually trade off more coefficients for less bits or vice-versa to optimize for different
ASICs or FPGAs.

This example illustrates various techniques based on the noise shaping procedure that yield
optimized fixed-point FIR filter coefficients. The example shows how to:

• minimize coefficients wordlength,
• constrain coefficients wordlength,
• maximize stopband attenuation.

Theoretical Background

The noise shaping algorithm essentially moves the quantization noise out of a critical frequency band
(usually the stopband) of a fixed-point FIR filter at the expense of increasing it in other bands. The
block diagram below illustrates the process of noise shaping. Essentially, the filter coefficients are
passed through a system that resembles a digital filter, but with a quantizer in the middle. The system
is computing the quantization error for each coefficient, then passing the error through a simple IIR
highpass filter defined by the b1, b2 and b3 coefficients. The 'round' block rounds the input to the
nearest quantized value. After this, the quantized value is subtracted from the original floating point
value. The values of the initial state in each delay block can be set to random noise between -LSB and
+LSB.

The output of the system is the new, quantized and noise shaped filter coefficients. By repeating this
procedure many times with different random initial states in the delay blocks, different filters can be
produced.

Minimize Coefficients Wordlength

To begin with, we want to determine the minimum wordlength fixed-point FIR filter that meets a
single-stage or multistage design specification. We take the example of a halfband filter with a
normalized transition width of .08 and a stopband attenuation of 59 dB. A Kaiser window design
yields 91 double-precision floating-point coefficients to meet the specifications.

TW = .08;   % Transition Width
Astop = 59; % Stopband Attenuation (dB)
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f  = fdesign.halfband('TW,Ast', TW, Astop);
Hd = design(f, 'kaiserwin');

To establish a baseline, we quantize the filter by setting its 'Arithmetic' property to 'fixed' and by
iterating on the coefficients' wordlength until the minimum value that meets the specifications is
found. Alternatively, we can use the minimizecoeffwl() to speed up the process. The baseline fixed-
point filter contains 91 17-bit coefficients.

Hqbase = minimizecoeffwl(Hd,...
    MatchRefFilter=true, NoiseShaping=false, ...
    Astoptol=0);       % 91 17-bit coefficients, Astop = 59.1 dB

The 17-bit wordlength is unappealing for many hardware targets. In certain situations we may be
able to compromise by using only 16-bit coefficients. Notice however that the original specification is
no longer strictly met since the maximum stopband attenuation of the filter is only 58.8 dB instead of
the 59 dB desired.

Hq1 = copy(Hqbase);
Hq1.CoeffWordLength = 16; % 91 16-bit coefficients, Astop = 58.8 dB
m1 = measure(Hq1) 

m1 = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.46                      
3-dB Point       : 0.49074                   
6-dB Point       : 0.5                       
Stopband Edge    : 0.54                      
Passband Ripple  : 0.017157 dB               
Stopband Atten.  : 58.8741 dB                
Transition Width : 0.08                      
 

Alternatively, we can set a tolerance to control the stopband error that is acceptable. For example,
with a stopband tolerance of .15 dB we can save 3 bits and get a filter with 91 14-bit coefficients.

Hq2 = minimizecoeffwl(Hd,...
                      MatchRefFilter=true, NoiseShaping=false, ...
                      Astoptol=.15);      % 91 14-bit coefficients, Astop = 58.8 dB

The saving in coefficients wordlength comes at the price of the fixed-point design no longer meeting
the specifications. Tolerances can vary from one application to another but this strategy may have
limited appeal in many situations. We can use another degree of freedom by relaxing the
'MatchRefFilter' constraint. By setting the 'MatchRefFilter' property to false, we no longer try to
match the filter order (for minimum-order designs) or the filter transition width (for fixed order
designs) of Hd. Allowing a re-design of the intermediate floating-point filter results in fixed-point filter
that meets the specifications with 93 13-bit coefficients. Compared to the reference fixed-point
designs, we saved 4 bits but ended up with 2 extra (1 non zero) coefficients.

Hq3 = minimizecoeffwl(Hd,...
                      MatchRefFilter=false, NoiseShaping=false); % 93 13-bit coefficients

A better solution yet is to use noise shaping to maximize the stopband attenuation of the quantized
filter. The noise shaping procedure is stochastic. You may want to experiment with the 'NTrials'
option and/or to initialize RAND in order to reproduce the results below. Because 'MatchRefFilter'
is false by default and 'NoiseShaping' is true, we can omit them. The optimized fixed-point filter
meets the specifications with 91 13-bit coefficients. This represents a saving of 4 bits over the
reference fixed-point design with the same number of coefficients.

 Optimized Fixed-Point FIR Filters

4-341



Hq4 = minimizecoeffwl(Hd, Ntrials=10);  % 91 13-bit coefficients
hfvt = fvtool(Hqbase,Hq4, ShowReference='off',Color='white');
legend(hfvt, '17-bit Reference Filter', '13-bit Noise-Shaped Filter');

As a trade-off of the noise being shaped out of the stopband, the passband ripple of the noise-shaped
filter increases slightly, which is usually not a problem. Also note that there is no simple relationship
of passband ripple to frequency after the noise-shaping is applied.

zoom(hfvt,[0 0.5060 -0.0109 0.0109])
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Constrain Coefficients Wordlength

We have seen previously how we can trade-off more coefficients (or a larger transition width for
designs with a fixed filter order) for a smaller coefficients wordlength by setting the
'MatchRefFilter' parameter of the minimizecoeffwl() method to 'false'. We now show how we
can further control this trade-off by relaxing this constraint.

fm = fdesign.lowpass('Fp,Fst,Ap,Ast',0.1,0.12,1,70);
Hm  = design(fm);

We first match the order of the floating-point design and obtain a noise-shaped fixed-point filter that
meets the specifications with 237 coefficients of a 20-bits wordlength.

Hmref = minimizecoeffwl(Hm, MatchRefFilter=true);
disp(Hmref)

     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'fixed'          
           Numerator: [1x237 double]   
    PersistentMemory: false            
                                       
     CoeffWordLength: 20             
      CoeffAutoScale: true           
              Signed: true           
                                     
     InputWordLength: 16             
     InputFracLength: 15             
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     FilterInternals: 'FullPrecision'
                                     

By relaxing the matching requirement (thus letting the filter order increase), we get 247 coefficients
(a modest increase over the previous case) with a reduced wordlength of 15-bits.

Hq5 = minimizecoeffwl(Hm, MatchRefFilter=false); 
disp(Hq5);

     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'fixed'          
           Numerator: [1x247 double]   
    PersistentMemory: false            
                                       
     CoeffWordLength: 15             
      CoeffAutoScale: true           
              Signed: true           
                                     
     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'
                                     

For better control of the final wordlengths, use the constraincoeffwl() method. For example,
constrain the design to 16 bits coefficients.

WL = 16;
Hqc = constraincoeffwl(Hm,WL);
disp(Hqc)

     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'fixed'          
           Numerator: [1x243 double]   
    PersistentMemory: false            
                                       
     CoeffWordLength: 16             
      CoeffAutoScale: true           
              Signed: true           
                                     
     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'
                                     

Maximize Stopband Attenuation

When designing for shelf filtering engines (ASSPs) that have a number of configurable coefficients of
a specific wordlength, it is desirable to maximize the stopband attenuation of a filter with a given
order and a constrained wordlength. In the next example, we wish to obtain 69 dB of stopband
attenuation with a 70th order halfband decimator while using 14 bits to represent the coefficients.

fh = fdesign.halfband('N,Ast',70,69);
Hb1 = design(fh, 'equiripple');

If we simply quantize the filter with 14-bit coefficients, we get only 62.7 dB of attenuation.
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Hb1.Arithmetic= 'fixed';
Hb1.CoeffWordLength = 14;
mb1 = measure(Hb1)

mb1 = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.44518                   
3-dB Point       : 0.48816                   
6-dB Point       : 0.5                       
Stopband Edge    : 0.55482                   
Passband Ripple  : 0.010552 dB               
Stopband Atten.  : 62.7048 dB                
Transition Width : 0.10963                   
 

By shaping the noise out of the stopband we can improve the attenuation by almost 1.5 dB to 64.18
dB but we still cannot meet the specifications.

Hbq1 = maximizestopband(Hb1, 14);
mq1 = measure(Hbq1)

mq1 = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.44562                   
3-dB Point       : 0.48812                   
6-dB Point       : 0.5                       
Stopband Edge    : 0.55367                   
Passband Ripple  : 0.010959 dB               
Stopband Atten.  : 63.8364 dB                
Transition Width : 0.10805                   
 

The next step is to over design a floating-point filter with 80 dB of attenuation. We pay the price of
the increased attenuation in the form of a larger transition width. The attenuation of the 14-bit non
noise-shaped filter improved from 62.7 dB to 66.2 dB but is still not meeting the specifications.

fh.Astop = 80;
Hb2 = design(fh,'equiripple');
Hb2.Arithmetic= 'fixed';
Hb2.CoeffWordLength = 14;
mb2 = measure(Hb2)

mb2 = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.43464                   
3-dB Point       : 0.48704                   
6-dB Point       : 0.5                       
Stopband Edge    : 0.56536                   
Passband Ripple  : 0.0076847 dB              
Stopband Atten.  : 66.2266 dB                
Transition Width : 0.13073                   
 

The noise shaping technique gives us a filter that finally meets the specifications by improving the
stopband attenuation by more than 3 dB, from 66.2 dB to 69.4 dB.

Hbq2 = maximizestopband(Hb2,14);
mq2 = measure(Hbq2)
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mq2 = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.43584                   
3-dB Point       : 0.4871                    
6-dB Point       : 0.5                       
Stopband Edge    : 0.56287                   
Passband Ripple  : 0.0053253 dB              
Stopband Atten.  : 69.4039 dB                
Transition Width : 0.12703                   
 

The transition width of the fixed-point filter is increased compared to the floating-point design. This is
the price to pay to get 69 dB of attenuation with only 14-bit coefficients as it would take 24-bit
coefficients to match both the transition width and the stopband attenuation of the floating-point
design.

close(hfvt);
hfvt = fvtool(reffilter(Hb1),Hbq2, ShowReference='off', Color='white');
legend(hfvt,'Floating-Point Filter','14-bit Noise-Shaped Filter');

close(hfvt)

Summary

We have seen how the noise shaping technique can be used to minimize the coefficients wordlength
of a single stage or multistage FIR fixed-point filter or how it can be used to maximize the stopband
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attenuation instead. We have also seen how bits can be traded for more coefficients in case of
minimum order designs or for a larger transition width in case of designs with a fixed order.
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Floating-Point to Fixed-Point Conversion of IIR Filters
This example shows how to use the Fixed-Point Converter App to convert an IIR filter from a floating-
point to a fixed-point implementation. Second-order sections (also referred as biquadratic) structures
work better when using fixed-point arithmetic than structures that implement the transfer function
directly. We will show that the surest path to a successful "float-to-fixed" conversion consists of the
following steps:

• Select a Second-Order Sections (SOS) structure, i.e. dsp.BiquadFilter
• Perform dynamic range analysis for each node of the filter, i.e. use a test bench approach with

simulation minimum and simulation maximum instrumentation
• Compare alternative biquadratic scaling implementations and view quantization effects due to
different choices using 'fvtool' and spectrumAnalyzer for analysis and verification.

Introduction

An efficient way to implement an IIR filter is using a Second Order Section (SOS) Biquad filter
structure. Suppose for example that we need to remove an interfering high frequency tone signal
from a system. One way to achieve this is to use a lowpass filter design.

Design a Lowpass Elliptic Filter

Use a minimum-order lowpass Elliptic Direct-Form I design for the purpose of this example. The
design specifications of the filter are:

• Passband frequency edge: 0 . 4π
• Stopband frequency edge: 0 . 45π
• Passband ripple: 0 . 5dB
• Stopband attenuation: 80dB

Visualize the cumulative filter response of all the second-order sections using the Filter Visualization
Tool.

biquad = design(fdesign.lowpass('Fp,Fst,Ap,Ast',0.4,0.45,0.5,80), ...
    'ellip',FilterStructure='df1sos', SystemObject=true);
fvt = fvtool(biquad, Legend='on');
fvt.SosviewSettings.View = 'Cumulative';
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Obtain Filter Coefficients (SOS, B, A) for Float vs. Fixed Comparison

Note that the SOS filter coefficient values lead to a nearly identical filter response (whether they are
double or 16-bit fixed-point values).

sosMatrix = biquad.SOSMatrix;
sclValues = biquad.ScaleValues;
fvt_comp = fvtool(sosMatrix,fi(sosMatrix,1,16));
legend(fvt_comp,'Floating-point (double) SOS','Fixed-point (16-bit) SOS');
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b = repmat(sclValues(1:(end-1)),1,3) .* sosMatrix(:,(1:3));
a = sosMatrix(:,(5:6));
num = b'; % matrix of scaled numerator sections
den = a'; % matrix of denominator sections

close(fvt);      % clean up
close(fvt_comp); % clean up

Default Floating-Point Operation

Verify the filter operation by streaming some data through it and viewing its input-output response.
First try filtering a (floating-point) pseudorandom noise signal (sampled at 300 Hz) with an
interfering additive high-frequency tone, to see if the tone is removed. This will also serve later as our
reference signal for a test bench.

Wo           = 75/(300/2); % 75 Hz tone; system running at 300 Hz
inp_len      = 4000;       % Number of input samples (signal length)
inp_itf      = 0.5 .* sin((pi*Wo) .* (0:(inp_len-1))'); % tone interferer
scope = spectrumAnalyzer(SampleRate=300, ...
    PlotAsTwoSidedSpectrum=false, ...
    ShowLegend=true, YLimits=[-85 25], ...
    Title='Floating-Point Input Signal and Filter Output Signal', ...
    ChannelNames={'Floating-Point Input','Filter Output'});
rng(12345); % seed the rng for repeatable results
biquadLPFiltFloat = dsp.BiquadFilter(SOSMatrixSource='Input port', ...
    ScaleValuesInputPort=false);
for k = 1:10
    inp_sig = rand(inp_len,1) - 0.5; % random values in range (-0.5, 0.5)
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    input = inp_sig + inp_itf; % combined input signal, range (-1.0, 1.0)
    out_1 = biquadLPFiltFloat(input,num,den); % filter
    scope([input,out_1]) % visualize input and filtered output
end

clear scope biquadLPFiltFloat; % clean up

Default Fixed-Point Operation

Now run some fixed-point data through the filters, using the object default settings. Note that the
default fixed-point behavior leads to incorrect results.

scope = spectrumAnalyzer(SampleRate=300, ...
    PlotAsTwoSidedSpectrum=false, ...
    ShowLegend=true, YLimits=[-85 25], ...
    Title='Fixed-Point Input Signal and Filter Output Signal', ...
    ChannelNames={'Fixed-Point Input','Default (Incorrect) Fixed-Point Output'});
rng(12345); % seed the rng for repeatable results
bqLPFiltFixpt = dsp.BiquadFilter(SOSMatrixSource='Input port', ...
    ScaleValuesInputPort=false);
for k = 1:10
    inp_sig = rand(inp_len,1) - 0.5;  % random values in range (-0.5, 0.5)
    inputFi = fi(inp_sig + inp_itf, 1, 16, 15); % signal range (-1.0, 1.0)
    out_2 = bqLPFiltFixpt(inputFi,fi(num,1,16),fi(den,1,16));
    scope([inputFi,out_2]) % visualize
end
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clear scope bqLPFiltFixpt; % clean up

Convert Floating-Point Biquad IIR Filter Function to Fixed-Point

Instead of relying on the default fixed-point settings of the object, convert the object to fixed-point
using the Fixed-Point Converter App. This approach yields more visibility and control over individual
fixed-point types within the filter implementation, and leads to more correct fixed-point operation.

To first prepare for using the Fixed-Point Converter App, create a function to convert, setting all filter
data type choices to ''Custom'':

type myIIRLowpassBiquad;

function output = myIIRLowpassBiquad(inp,num,den)
%myIIRNotchBiquad Biquad lowpass filter implementation
%   Used as part of a MATLAB Fixed Point Converter App example.

%   Copyright 2016-2021 The MathWorks, Inc.
persistent bqLPFilter;
if isempty(bqLPFilter)
    bqLPFilter = dsp.BiquadFilter(        ...
        'SOSMatrixSource','Input port',  ...
        'ScaleValuesInputPort', false,    ...
        'SectionInputDataType',           'Custom', ...
        'SectionOutputDataType',          'Custom', ...
        'NumeratorProductDataType',       'Custom', ...
        'DenominatorProductDataType',     'Custom', ...
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        'NumeratorAccumulatorDataType',   'Custom', ...
        'DenominatorAccumulatorDataType', 'Custom', ...
        'StateDataType',                  'Custom', ...
        'OutputDataType',                 'Custom');
end
output = bqLPFilter(inp, num, den);
end

Create Test Bench Script

Create a test bench to simulate and collect instrumented simulation minimum and simulation
maximum values for all of our data type controlled signal paths. This will allow the tool to later
propose autoscaled fixed-point settings. Use parts of the code above as a test bench script, starting
with floating-point inputs and verifying the test bench before simulating and collecting minimum and
maximum data. Afterward, use the Fixed-Point Converter App to convert the floating-point function
implementation to a fixed-point function implementation.

type myIIRLowpassBiquad_tb.m;

%% Test Bench for myIIRLowpassBiquad.m

%   Copyright 2016-2021 The MathWorks, Inc.

%% Pre-designed filter (coefficients stored in MAT file):
% f = design(fdesign.lowpass('Fp,Fst,Ap,Ast',0.4,0.45,0.5,80), ...
%            'ellip', FilterStructure='df1sos',SystemObject=true);
% sosMatrix = f.SOSMatrix;
% sclValues = f.ScaleValues;
% b = repmat(sclValues(1:(end-1)),1,3) .* sosMatrix(:,(1:3));
% a = sosMatrix(:,(5:6));
% num = b';
% den = a';
% save('myIIRLowpassBiquadDesign.mat', 'b', 'a', 'num', 'den');
load('myIIRLowpassBiquadDesign.mat');

%% Interference signal, using values in range (-0.5, 0.5)
Wo      = 75/(300/2); % 75 Hz tone; system running at 300 Hz
inp_len = 4000; sinTvec = (0:(inp_len-1))';
inp_itf = 0.5 .* sin((pi*Wo) .* sinTvec);

%% Filtering and visualization
% Filter an input signal, including an interference
% tone, to see if the tone is successfully removed.
rng(12345); % seed the rng for repeatable results
scope = spectrumAnalyzer(SampleRate=300,...
    PlotAsTwoSidedSpectrum=false,ShowLegend=true,YLimits=[-125 25],...
    Title='Input Signal and Filter Output Signal', ...
    ChannelNames={'Input', 'Filter Output'});

for k = 1:10
    inp_sig = rand(inp_len,1) - 0.5; % random values in range (-0.5, 0.5)
    inp = inp_sig + inp_itf;
    out_1 = myIIRLowpassBiquad(inp,num,den); % filter
    scope([inp,out_1]); % visualize
end
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Convert to Fixed-Point Using the Fixed-Point Converter App

• Launch the Fixed-Point Converter App. There are two ways to launch the tool: via the MATLAB®
APPS menu or via the command 'fixedPointConverter'.

• Enter the function to convert in the Entry-Point Functions field.

• Define inputs by entering the test bench script name.
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• Click 'Analyze' to collect ranges by simulating the test bench.
• Observe the collected 'Sim Min', 'Sim Max', and 'Proposed Type' values.

 Floating-Point to Fixed-Point Conversion of IIR Filters

4-355



• Make adjustments to the 'Proposed Type' fields as needed.
• Click 'Convert' to generate the fixed-point code and view the report.
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Resulting Fixed-Point MATLAB Implementation

The generated fixed-point function implementation is as follows:

type myIIRLowpassBiquad_fixpt;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                          %
%           Generated by MATLAB 9.3 and Fixed-Point Designer 6.0           %
%                                                                          %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%#codegen
function output = myIIRLowpassBiquad_fixpt(inp,num,den)
%myIIRNotchBiquad Biquad lowpass filter implementation
%   Used as part of a MATLAB Fixed Point Converter App example.
%   Copyright 2016 The MathWorks, Inc.
fm = get_fimath();

persistent bqLPFilter;
if isempty(bqLPFilter)
    bqLPFilter = dsp.BiquadFilter(        ...
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        'SOSMatrixSource', 'Input port',  ...
        'ScaleValuesInputPort', false,    ...
        'SectionInputDataType',           'Custom', ...
        'SectionOutputDataType',          'Custom', ...
        'NumeratorProductDataType',       'Custom', ...
        'DenominatorProductDataType',     'Custom', ...
        'NumeratorAccumulatorDataType',   'Custom', ...
        'DenominatorAccumulatorDataType', 'Custom', ...
        'StateDataType',                  'Custom', ...
        'OutputDataType',                 'Custom' , ...
        'CustomSectionInputDataType', numerictype([], 16, 8), ...
        'CustomSectionOutputDataType', numerictype([], 16, 8), ...
        'CustomNumeratorProductDataType', numerictype([], 32, 26), ...
        'CustomDenominatorProductDataType', numerictype([], 32, 23), ...
        'CustomNumeratorAccumulatorDataType', numerictype([], 32, 24), ...
        'CustomDenominatorAccumulatorDataType', numerictype([], 32, 23), ...
        'CustomStateDataType', numerictype([], 16, 8), ...
        'CustomOutputDataType', numerictype([], 16, 15));
end
output = fi(bqLPFilter(inp, num, den), 1, 16, 15, fm);
end

function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor',...
         'OverflowAction', 'Wrap',...
         'ProductMode','FullPrecision',...
         'MaxProductWordLength', 128,...
         'SumMode','FullPrecision',...
         'MaxSumWordLength', 128);
end

Automation of Fixed-Point Conversion Using the Command Line API

Alternatively the fixed-point conversion may be automated using the command line API:

type myIIRLowpassF2F_prj_script;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Script generated from project 'myIIRLowpassBiquad.prj' on 16-Oct-2014.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create configuration object of class 'coder.FixPtConfig'.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cfg = coder.config('fixpt');

cfg.TestBenchName = { sprintf('S:\\Work\\15aFeatureExamples\\biquad_notch_f2f\\myIIRLowpassBiquad_tb.m') };
cfg.DefaultWordLength = 16;
cfg.LogIOForComparisonPlotting = true;
cfg.TestNumerics = true;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define argument types for entry-point 'myIIRLowpassBiquad'.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ARGS = cell(1,1);
ARGS{1} = cell(3,1);
ARGS{1}{1} = coder.typeof(0,[4000   1]);
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ARGS{1}{2} = coder.typeof(0,[3 5]);
ARGS{1}{3} = coder.typeof(0,[2 5]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Invoke MATLAB Coder.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
codegen -float2fixed cfg myIIRLowpassBiquad -args ARGS{1}

Test the Converted MATLAB Fixed-Point Implementation

Run the converted fixed-point function and view input-output results.

scope = spectrumAnalyzer(SampleRate=300, ...
    PlotAsTwoSidedSpectrum=false, ...
    ShowLegend=true, YLimits=[-85 25], ...
    Title='Fixed-Point Input Signal and Filter Output Signal', ...
    ChannelNames={'Fixed-Point Input','Fixed-Point Filter Output'});
rng(12345); % seed the rng for repeatable results
for k = 1:10
    inp_sig = rand(inp_len,1) - 0.5;  % random values in range (-0.5, 0.5)
    inputFi = fi(inp_sig + inp_itf, 1, 16, 15); % signal range (-1.0, 1.0)
    out_3 = myIIRLowpassBiquad_fixpt(inputFi,fi(num,1,16),fi(den,1,16));
    scope([inputFi,out_3]) % visualize
end

clear scope; % clean up
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The error between the floating-point and fixed-point outputs is shown on the next plot. The error
seems rather high. The reason for these differences in output values is dominated by the choice of
scaling and ordering of the second-order sections. In the next section, we illustrate a way to reduce
this error earlier in the implementation.

fig = figure;
subplot(3,1,1);
plot(out_1);
title('Floating-point filter output');
subplot(3,1,2);
plot(out_3);
title('Fixed-point filter output');
subplot(3,1,3);
plot(out_1 - double(out_3));
axis([0 4000 -4e-2 7e-2]);
title('Error');

close(fig); % clean up

Re-designing the Elliptic Filter Using Infinity-Norm Scaling

Elliptic filter designs have the characteristic of being relatively well scaled when using the 'Linf'
second-order section scaling (i.e., infinity norm). Using this approach often leads to smaller
quantization errors.

biquad_Linf = design(fdesign.lowpass('Fp,Fst,Ap,Ast',0.4,0.45,0.5,80), ...
    'ellip',FilterStructure='df1sos', ...
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    SOSScaleNorm='Linf', SystemObject=true);
fvt_Linf = fvtool(biquad_Linf,Legend='on');
fvt_Linf.SosviewSettings.View = 'Cumulative';

Notice that none of the cumulative internal frequency responses, measured from the input to the
filter to the various states of each section, exceed 0 dB. Thus, this design is a good candidate for a
fixed-point implementation.

Obtain Linf-norm Filter Coefficients for Float vs. Fixed Comparison

Note that the SOS filter coefficient values lead to a nearly identical filter response (whether they are
double or 16-bit fixed-point values).

sosMtrLinf = biquad_Linf.SOSMatrix;
sclValLinf = biquad_Linf.ScaleValues;
fvt_comp_Linf = fvtool(sosMtrLinf,fi(sosMtrLinf,1,16));
legend(fvt_comp_Linf,'Floating-point (double) SOS, Linf Scaling', ...
    'Fixed-point (16-bit) SOS, Linf Scaling');
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bLinf = repmat(sclValLinf(1:(end-1)),1,3) .* sosMtrLinf(:,(1:3));
aLinf = sosMtrLinf(:,(5:6));
numLinf = bLinf'; % matrix of scaled numerator sections
denLinf = aLinf'; % matrix of denominator sections

close(fvt_Linf);      % clean up
close(fvt_comp_Linf); % clean up

Test the Converted MATLAB Fixed-Point Linf-Norm Biquad Filter

After following the Fixed-Point Converter procedure again, as above, but using the Linf-norm scaled
filter coefficient values, run the new converted fixed-point function and view input-output results.

scope = spectrumAnalyzer(SampleRate=300, ...
    PlotAsTwoSidedSpectrum=false,ShowLegend=true, ...
    YLimits=[-85 25],...
    Title='Fixed-Point Input Signal and Linf-Norm Filter Output Signal', ...
    ChannelNames={'Fixed-Point Input','Fixed-Point Linf-Norm Filter Output'});
rng(12345); % seed the rng for repeatable results
for k = 1:10
    inp_sig = rand(inp_len,1) - 0.5;  % random values in range (-0.5, 0.5)
    inputFi = fi(inp_sig + inp_itf, 1, 16, 15); % signal range (-1.0, 1.0)
    out_4 = myIIRLinfBiquad_fixpt( ...
        inputFi,fi(numLinf,1,16),fi(denLinf,1,16));
    scope([inputFi,out_4]) % visualize
end
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clear scope; % clean up

Reduced Fixed-Point Implementation Error Using Linf-norm SOS Scaling

Infinity-norm SOS scaling often produces outputs with lower error.

fig1 = figure;
subplot(3,1,1);
plot(out_1);
title('Floating-point filter output');
subplot(3,1,2);
plot(out_4);
title('Fixed-point (Linf-norm SOS) filter output');
subplot(3,1,3);
plot(out_1 - double(out_4));
axis([0 4000 0 1e-3]);
title('Error');
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fig2 = figure;
subplot(2,1,1);
plot(out_1 - double(out_3));
axis([0 4000 -4e-2 7e-2]);
title('Fixed-point error (default SOS filter scaling)');
subplot(2,1,2);
plot(out_1 - double(out_4));
axis([0 4000 0 1e-3]);
title('Fixed-point error (''Linf'' SOS filter scaling)');
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close(fig1); % clean up
close(fig2); % clean up

Summary

We have outlined a procedure to convert a floating-point IIR filter to a fixed-point implementation.
The dsp.BiquadFilter objects of the DSP System Toolbox™ are equipped with Simulation
Minimum and Maximum instrumentation capabilities that help the Fixed-Point Converter App
automatically and dynamically scale internal filter signals. In addition, various 'fvtool' and
spectrumAnalyzer analyses provide tools to the user to perform verifications at each step of the
process.
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GSM Digital Down Converter in MATLAB
This example shows how to simulate steady-state behavior of a fixed-point digital down converter for
GSM (Global System for Mobile) baseband conversions. The example uses signal processing System
objects to emulate the operation of the TI Graychip 4016 Quad Digital Down Converter and requires a
Fixed-Point Designer™ license.

Introduction

The Digital Down Converter (DDC) is an important component of a digital radio. It performs
frequency translation to convert the high input sample rate down to a lower sample rate for efficient
processing. In this example the DDC accepts a bandpass signal with a sample rate around 70
megasamples per seconds (MSPS) and performs the following operations:

• Digital mixing or down conversion of the input signal using a Numerically Controlled Oscillator
(NCO) and a mixer.

• Narrowband low-pass filtering and decimation using a filter chain of Cascaded Integrator-Comb
(CIC) and FIR filters.

• Gain adjustment and final resampling of the data stream.

The DDC produces a baseband signal with a sample rate of 270 kilosamples per seconds (KSPS) that
is ready for demodulation. A block diagram of a typical DDC is shown below.
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if ~isfixptinstalled
    error(message('dsp:dspDigitalDownConverter:noFixptTbx'));
end

Initialization

Create and configure a sine wave source System object™ to model the GSM source. You set the
object's frequency to 69.1e6*5/24 MSPS because, after digital mixing, the object will have a baseband
frequency of around 48 KSPS. Because the system you are modeling resamples the input by a factor
of 4/(3*256), you need to set the object's frame size to be the least common multiplier of these
factors.

Fs = 69.333e6;
FrameSize = 768;
sine = dsp.SineWave( ...
            'Frequency', 69.1e6*5/24, ...
            'SampleRate', Fs, ...
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            'Method', 'Trigonometric function', ...
            'SamplesPerFrame', FrameSize);

Create and configure an NCO System object to mix and down convert the GSM signal. The TI
Graychip requires the tuning frequency (PhaseIncrement property) to be a 32-bit data type with 32-
bit fraction length. The phase offset needs to be a 16-bit data type with 16-bit fraction length. To
reduce the amplitude quantization noise and spread the spurious frequencies across the available
bandwidth, add a dither signal to the accumulator phase values. Typically, the number of dither bits
(14) is the difference between the accumulator word length (32) and the table address word length
(18).

nco = dsp.NCO( ...
            'PhaseIncrementSource', 'Property', ...
            'PhaseIncrement', int32((5/24) *2^32), ... 
            'PhaseOffset', int16(0), ...
            'NumDitherBits', 14, ...
            'NumQuantizerAccumulatorBits', 18, ...
            'Waveform', 'Complex exponential', ...
            'SamplesPerFrame', FrameSize, ...
            'AccumulatorDataType', 'Custom', ...
            'CustomAccumulatorDataType', numerictype([],32), ...
            'OutputDataType', 'Custom', ...
            'CustomOutputDataType', numerictype([],20,18));

Create and configure a CIC decimator System object that decimates the mixer output by a factor of
64. CIC filters can achieve high decimation or interpolation rates without using any multipliers. This
feature makes them very useful for digital systems operating at high rates.

M1 = 64;
cicdec = dsp.CICDecimator( ...
            'DecimationFactor', M1, ...
            'NumSections', 5, ...
            'FixedPointDataType', 'Minimum section word lengths', ...
            'OutputWordLength', 20);

Create and configure an FIR decimator System object to compensate for the passband droop caused
by the CIC filter. This filter also decimates by a factor of 2.

gsmcoeffs; % Read the CFIR and PFIR coeffs
M2 = 2;
cfir = dsp.FIRDecimator(M2, cfir, ...
            'CoefficientsDataType', 'Custom', ...
            'CustomCoefficientsDataType', numerictype([],16), ...
            'FullPrecisionOverride', false,...
            'OutputDataType', 'Custom', ...
            'CustomOutputDataType', numerictype([],20,-12));

Create and configure an FIR decimator System object to reduce the sample rate by another factor of
2.

M3 = 2;
pfir = dsp.FIRDecimator(M3, pfir, ...
            'CoefficientsDataType', 'Custom', ...
            'CustomCoefficientsDataType', numerictype([],16), ...
            'FullPrecisionOverride',false, ...
            'OutputDataType', 'Custom', ...
            'CustomOutputDataType', numerictype([],20,-12));
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Create and configure an FIR rate converter System object to resample the final output by a factor of
4/3.

firrc = dsp.FIRRateConverter(4, 3, fir1(31,0.25),...
    'CoefficientsDataType', 'Custom', ...
    'CustomCoefficientsDataType', numerictype([],12), ...
    'FullPrecisionOverride',false, ...
    'OutputDataType', 'Custom', ...
    'CustomOutputDataType', numerictype([],24,-12));

Create a fi object of specified numerictype to act as a data type conversion for the sine output.

gsmsig = fi(zeros(768,1),true,14,13);

Create a fi object of specified numerictype to store the fixed-point mixer output.

mixsig = fi(zeros(768,1),true,20,18);

Create and configure two Time Scope System objects to plot the real and imaginary parts of the FIR
rate converter filter output.

timeScope1 = timescope(...
  'Name', 'Rate Converter Output: Real Signal', ...
  'SampleRate', Fs/256*4/3, ...
  'TimeSpan', 1.2e-3, ...
  'YLimits', [-2e8 2e8], ...
  'TimeSpanOverrunAction', 'Scroll');
pos = timeScope1.Position;
timeScope1.Position(1:2) = [pos(1)-0.8*pos(3) pos(2)+0.7*pos(4)];

timeScope2 = timescope(...
  'Name', 'Rate Converter Output: Imaginary Signal', ...
  'Position', [pos(1)-0.8*pos(3) pos(2)-0.7*pos(4) pos(3:4)], ...
  'SampleRate', Fs/256*4/3, ...
  'TimeSpan', 1.2e-3, ...
  'YLimits', [-2e8 2e8], ...
  'TimeSpanOverrunAction', 'Scroll');

Create and configure two Spectrum Analyzer System objects to plot the power spectrum of the NCO
output and of the compensated CIC decimator output.

specScope1 = spectrumAnalyzer(...
  'Method','welch', ...
  'Name','DSPDDC: NCO Output',...
  'SampleRate',Fs,...
  'FrequencySpan','start-and-stop-frequencies',...
  'StartFrequency',0,'StopFrequency',Fs/2,... 
  'RBWSource', 'property', 'RBW', 4.2e3,...
  'Title', 'Power spectrum of NCO output',...
  'Position',[pos(1)+.8*pos(3) pos(2)+0.7*pos(4) pos(3:4)]);

FsCICcomp = Fs/(M1*M2);
specScope2 = spectrumAnalyzer(...
  'Method','welch', ...
  'Name','DSPDDC: Compensated CIC Decimator Output',...
  'SampleRate',FsCICcomp,...
  'FrequencySpan','start-and-stop-frequencies',...
  'StartFrequency',0, 'StopFrequency',FsCICcomp/2,...
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  'RBWSource', 'property', 'RBW', 4.2e3,...  
  'Title', 'Power spectrum of compensated CIC decimator output',...
  'Position',[pos(1)+.8*pos(3) pos(2)-0.7*pos(4) pos(3:4)]);

Processing Loop

In the processing loop, the mixer front-end digitally down converts the GSM signal to baseband. The
CIC decimation and compensation filters downsample the signal by a factor of 128 and the
programmable FIR filter decimates by another factor of 2 to achieve an overall decimation of 256.
The resampling back-end performs additional application-specific filtering. Running the processing
loop for 100 iterations is equivalent to processing around 1.1 ms of the resampled output.

for ii = 1:100
    gsmsig(:) = sine();         % GSM signal
    ncosig    = nco();          % NCO signal
    mixsig(:) = gsmsig.*ncosig; % Digital mixer
    
    % CIC filtering and compensation
    ycic = cfir(cicdec(mixsig));
    
    % Programmable FIR and sample-rate conversion
    yrcout = firrc(pfir(ycic));
    
    % Frequency and time-domain plots
    timeScope1(real(yrcout));
    timeScope2(imag(yrcout));
    specScope1(ncosig);
    specScope2(ycic);
end
release(timeScope1);
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release(timeScope2);
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release(specScope1);
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release(specScope2);
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Conclusion

In this example, you used DSP System Toolbox™ System objects to simulate the steady-state behavior
of a fixed-point GSM digital down converter. The Time Scope and Spectrum Analyzer System objects
enable you to analyze the various stages of a DDC.

4 DSP System Toolbox Featured Examples

4-374



Cochlear Implant Speech Processor
This example shows how to simulate the design of a cochlear implant that can be placed in the inner
ear of a profoundly deaf person to restore partial hearing. Signal processing is used in cochlear
implant development to convert sound to electrical pulses. The pulses can bypass the damaged parts
of a deaf person's ear and be transmitted to the brain to provide partial hearing.

This example highlights some of the choices made when designing cochlear implant speech
processors that can be modeled using the DSP System Toolbox™. In particular, the benefits of using a
cascaded multirate, multistage FIR filter bank instead of a parallel, single-rate, second-order-section
IIR filter bank are shown.

Human Hearing

Converting sound into something the human brain can understand involves the inner, middle, and
outer ear, hair cells, neurons, and the central nervous system. When a sound is made, the outer ear
picks up acoustic waves, which are converted into mechanical vibrations by tiny bones in the middle
ear. The vibrations move to the inner ear, where they travel through fluid in a snail-shaped structure
called the cochlea. The fluid displaces different points along the basilar membrane of the cochlea.
Displacements along the basilar membrane contain the frequency information of the acoustic signal.
A schematic of the membrane is shown here (not drawn to scale).
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Frequency Sensitivity in the Cochlea

Different frequencies cause the membrane to displace maximally at different positions. Low
frequencies cause the membrane to be displaced near its apex, while high frequencies stimulate the
membrane at its base. The amplitude of the displacement of the membrane at a particular point is
proportional to the amplitude of the frequency that has excited it. When a sound is composed of many
frequencies, the basilar membrane is displaced at multiple points. In this way the cochlea separates
complex sounds into frequency components.

Each region of the basilar membrane is attached to hair cells that bend proportionally to the
displacement of the membrane. The bending causes an electrochemical reaction that stimulates
neurons to communicate the sound information to the brain through the central nervous system.

Alleviating Deafness with Cochlear Implants

Deafness is most often caused by degeneration or loss of hair cells in the inner ear, rather than a
problem with the associated neurons. This means that if the neurons can be stimulated by a means
other than hair cells, some hearing can be restored. A cochlear implant does just that. The implant
electrically stimulates neurons directly to provide information about sound to the brain.

4 DSP System Toolbox Featured Examples

4-376



The problem of how to convert acoustic waves to electrical impulses is one that Signal Processing
helps to solve. Multichannel cochlear implants have the following components in common:

• A microphone to pick up sound
• A signal processor to convert acoustic waves to electrical signals
• A transmitter
• A bank of electrodes that receive the electrical signals from the transmitter, and then stimulate

auditory nerves.

Just as the basilar membrane of the cochlea resolves a wave into its component frequencies, so does
the signal processor in a cochlear implant divide an acoustic signal into component frequencies, that
are each then transmitted to an electrode. The electrodes are surgically implanted into the cochlea of
the deaf person in such a way that they each stimulate the appropriate regions in the cochlea for the
frequency they are transmitting. Electrodes transmitting high-frequency (high-pitched) signals are
placed near the base, while those transmitting low-frequency (low-pitched) signals are placed near
the apex. Nerve fibers in the vicinity of the electrodes are stimulated and relay the information to the
brain. Loud sounds produce high-amplitude electrical pulses that excite a greater number of nerve
fibers, while quiet ones excite less. In this way, information both about the frequencies and
amplitudes of the components making up a sound can be transmitted to the brain of a deaf person by
a cochlear implant.

Exploring the Example

The block diagram at the top of the model represents a cochlear implant speech processor, from the
microphone which picks up the sound (Input Source block) to the electrical pulses that are generated.
The frequencies increase in pitch from Channel 0, which transmits the lowest frequency, to Channel
7, which transmits the highest.

To hear the original input signal, double-click the Original Signal block at the bottom of the model. To
hear the output signal of the simulated cochlear implant, double-click the Reconstructed Signal block.

There are a number of changes you can make to the model to see how different variables affect the
output of the cochlear implant speech processor. Remember that after you make a change, you must
rerun the model to implement the changes before you listen to the reconstructed signal again.
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Simultaneous Versus Interleaved Playback

Research has shown that about eight frequency channels are necessary for an implant to provide
good auditory understanding for a cochlear implant user. Above eight channels, the reconstructed
signal usually does not improve sufficiently to justify the rising complexity. Therefore, this example
resolves the input signal into eight component frequencies, or electrical pulses.

The Speech Synthesized from Generated Pulses block at the bottom left of the model allows you to
either play each electrical channel simultaneously or sequentially. Oftentimes cochlear implant users
experience inferior results with simultaneous frequencies, because the electrical pulses interact with
each other and cause interference. Emitting the pulses in an interleaved manner mitigates this
problem for many people. You can toggle the Synthesis mode of the Speech Synthesized From
Generated Pulses block to hear the difference between these two modes. Zoom in on the Time Scope
block to observe that the pulses are interleaved.

Adjusting for Noisy Environments

Noise presents a significant challenge to cochlear implant users. Select the Add noise parameter in
the Input Source block to simulate the effects of a noisy environment on the reconstructed signal.
Observe that the signal becomes difficult to hear. The Denoise block in the model uses a Soft
Threshold block to attempt to remove noise from the signal. When the Denoise parameter in the
Denoise block is selected, you can listen to the reconstructed signal and observe that not all the noise
is removed. There is no perfect solution to the noise problem, and the results afforded by any
denoising technology must be weighed against its cost.

Signal Processing Strategy
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The purpose of the Filter Bank Signal Processing block is to decompose the input speech signal into
eight overlapping subbands. More information is contained in the lower frequencies of speech signals
than in the higher frequencies. To get as much resolution as possible where the most information is
contained, the subbands are spaced such that the lower-frequency bands are more narrow than the
higher-frequency bands. In this example, the four low-frequency bands are equally spaced, while each
of the four remaining high-frequency bands is twice the bandwidth of its lower-frequency neighbor.
To examine the frequency contents of the eight filter banks, run the model using the Chirp Source
type in the Input Source block.

Two filter bank implementations are illustrated in this example: a parallel, single-rate, second-order-
section IIR filter bank and a cascaded, multirate, multistage FIR filter bank. Double click on the
Design Filter Banks button to examine their design and frequency specifications.

Parallel Single-Rate SOS IIR Filter Bank: In this bank, the sixth-order IIR filters are implemented as
second-order-sections (SOS). Notice that the DSP System Toolbox™ scale function is used to obtain
optimal scaling gains, which is particularly essential for the fixed-point version of this example. The
eight filters are running in parallel at the input signal rate. You can look at their frequency responses
by double clicking the Plot IIR Filter Bank Response button.

Cascaded Multirate Multistage FIR Filter Bank: The design of this filter bank is based on the
principles of an approach that combines downsampling and filtering at each filter stage. The overall
filter response for each subband is obtained by cascading its components. Double click on the Design
Filter Banks button to examine how design functions from the DSP System Toolbox are used in
constructing these filter banks.

Since downsampling is applied at each filter stage, the later stages are running at a fraction of the
input signal rate. For example, the last filter stages are running an one-eighth of the input signal rate.
Consequently, this design is very suitable for implementations on the low-power DSPs with limited
processing cycles that are used in cochlear implant speech processors. You can look at the frequency
responses for this filter bank by double clicking on the Plot FIR Filter Bank Response button.
Notice that this design produces sharper and flatter subband definition compared to the parallel
single-rate SOS IIR filter bank. This is another benefit of a multirate, multistage filter design
approach. For a related example see "Multistage Design Of Decimators/Interpolators" in the DSP
System Toolbox FIR Filter Design examples.

Available Example Versions

Floating-point version: dspcochlear

Fixed-point version: dspcochlear_fixpt

References
[1] Loizou, Philip C., "Mimicking the Human Ear," IEEE® Signal Processing Magazine, Vol. 15, No.

5, pp. 101-130, 1998.
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Three-Channel Wavelet Transmultiplexer
This example shows how to reconstruct three independent combined signals transmitted over a single
communications link using a Wavelet Transmultiplexer (WTM). The example illustrates the perfect
reconstruction property of the discrete wavelet transform (DWT).

Introduction

This WTM combines three source signals for transmission over a single link, then separates the three
signals at the receiving end of the channel. The example demonstrates a three-channel
transmultiplexer, but the method can be extended to an arbitrary number of channels.

The operation of a WTM is analogous to a frequency-domain multiplexer (FDM) in several respects. In
an FDM, baseband input signals are filtered and modulated into adjacent frequency bands, summed
together, then transmitted over a single link. On the receiving end, the transmitted signal is filtered
to separate adjacent frequency channels, and the signals are demodulated back to baseband. The
filters also must strongly attenuate the adjacent signal to provide a sharp transition from the filter
passband to its stopband. This step limits the amount of crosstalk, or signal leakage, from one
frequency band to the next. In addition, FDM often employs an unused frequency band between the
three modulated frequency bands, known as a guard band, to relax the requirements on the FDM
filters.

In a WTM, the filtering performed by the synthesis and analysis wavelet filters is analogous to the
filtering steps in the FDM, and the interpolation in the synthesis stage is equivalent to frequency
modulation. From a frequency domain perspective, the wavelet filters are fairly poor spectral filters
as compared to the filters required by a FDM implementation, exhibiting slow transitions from
passband to stopband, and providing significant distortion in their response. What makes the WTM
special is that the analysis and synthesis filters together completely cancel the filter distortions and
signal aliasing, producing perfect reconstruction of the input signals and thus perfect extraction of
the multiplexed inputs. Ideal spectral efficiency can be achieved, since no guard band is required.
Practical limitations in the implementation of channel filters create out-of-band leakage and
distortion. In the conventional FDM approach, each channel within the same communications system
requires its own filter and is susceptible to crosstalk from neighboring channels. With the WTM
method, only a single bandpass filter is required for the entire communications channel, while
channel-to-channel interference is eliminated.

Note that a noisy link can cause imperfect reconstruction of the input signals, and the effects of
channel noise and other impairments in the recovered signals can differ in FDM and WTM. This can
be modeled, for example, by adding a noise source to the data link.

Initialization

Creating and initializing your System objects before they are used in a processing loop is critical to
get optimal performance. Initialize variables used in the example such as the standard deviation of
the channel noise.

load dspwlets;    % load filter coefficients and input signal
NumTimes = 14;    % for-loop iterations
stdnoise = .2^.5; % standard deviation of channel noise

Create a sine wave System object to generate the Channel 1 signal.

sine = dsp.SineWave('Frequency',       fs/68, ...
                     'SampleRate',      fs, ...
                     'SamplesPerFrame', fs*2);
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Create a random number generator stream for the channel noise.

strN = RandStream.create('mt19937ar','seed',1);

Create a chirp System object to generate the Channel 2 signal.

chirpSignal = dsp.Chirp( ...
    'Type', 'Swept cosine', ...
    'SweepDirection', 'Bidirectional', ...
    'InitialFrequency', fs/5000, ...
    'TargetFrequency', fs/50, ...
    'TargetTime', 1000, ...
    'SweepTime', 1000, ...
    'SampleRate', 1/ts, ...
    'SamplesPerFrame', fs);

Create and configure a dyadic analysis filter bank System object for subband decomposition of the
signal.

dyadicAnalysis = dsp.DyadicAnalysisFilterBank( ...
    'CustomLowpassFilter', lod, ...
    'CustomHighpassFilter', hid, ...
    'NumLevels', 2 );

Create three System objects for inserting delays in each channel to compensate for the system delay
introduced by the wavelet components.

delay1 = dsp.Delay(4);
delay2 = dsp.Delay(6);
delay3 = dsp.Delay(6);

Create and configure a dyadic synthesis filter bank System object for reconstructing the signal from
different subbands of the signal.

dyadicSynthesis = dsp.DyadicSynthesisFilterBank( ...
    'CustomLowpassFilter',[0 lor], ...
    'CustomHighpassFilter',[0 hir], ...
    'NumLevels', 2 );

Create time scope System objects to plot the original, reconstructed and error signals.

scope1 = timescope('Name', 'Three Channel WTM: Original (delayed)', ...
  'SampleRate', fs, ...
  'TimeSpan', 30, ...
  'YLimits', [-2 2], ...
  'ShowLegend', true, ...
  'TimeSpanOverrunAction', 'Scroll');
pos = scope1.Position;
pos(3:4) = 0.9*pos(3:4);
scope1.Position = [pos(1)-1.1*pos(3) pos(2:4)];

scope2 = timescope('Name', 'Three Channel WTM: Reconstructed', ...
  'Position', pos, ...
  'SampleRate', fs, ...
  'TimeSpan', 30, ...
  'YLimits', [-2 2], ...
  'ShowLegend', true, ...
  'TimeSpanOverrunAction', 'Scroll');
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scope3 = timescope('Name', 'Three Channel WTM: Error', ...
  'Position', [pos(1)+1.1*pos(3) pos(2:4)], ...
  'SampleRate', fs, ...
  'TimeSpan', 30, ...
  'YLimits', [-5e-11 5e-11], ...
  'ShowLegend', true, ...
  'TimeSpanOverrunAction', 'Scroll');

Tx_Ch3 = [ones(35,1);zeros(45,1)];   % Generate the Channel 3 signal

Stream Processing Loop

Create a processing loop to simulate the three channel transmultiplexer. This loop uses the System
objects you instantiated above.

for ii = 1:NumTimes
    Tx_Ch1 = sine() + ...
        stdnoise*randn(strN,fs*2,1);      % Generate Channel 1 signal
    Tx_Ch1_delay = delay1(Tx_Ch1);

    Tx_Ch2 = chirpSignal();               % Generate Channel 2 signal
    Tx_Ch2_delay = delay2(Tx_Ch2);

    Tx_Ch3_delay = delay3(Tx_Ch3);        % Delayed Channel 3 signal

    % Concatenate the three channel signals
    Tx = [Tx_Ch1; Tx_Ch2; Tx_Ch3];
    
    % Synthesis stage equivalent to frequency modulation.
    y = dyadicSynthesis(Tx);
    
    % Analysis stage
    Rx = dyadicAnalysis(y);
    
    % Separate out the three channels
    Rx_Ch1 = Rx(1:160);
    Rx_Ch2 = Rx(161:240);
    Rx_Ch3 = Rx(241:320);

    % Calculate the error between TX and RX signals
    err_Ch1 = Tx_Ch1_delay - Rx_Ch1;
    err_Ch2 = Tx_Ch2_delay - Rx_Ch2;
    err_Ch3 = Tx_Ch3_delay - Rx_Ch3;

    % Plot the results. 
    scope1(Tx_Ch1_delay, Tx_Ch2_delay, Tx_Ch3_delay);
    scope2(Rx_Ch1, Rx_Ch2, Rx_Ch3);
    scope3(err_Ch1, err_Ch2, err_Ch3);
end
release(scope1);
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release(scope2);
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release(scope3);
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Summary

In this example you used the DyadicAnalysisFilterBank and DyadicSynthesisFilterBank
System objects to implement a Wavelet Transmultiplexer. The perfect reconstruction property of the
analysis and synthesis wavelet filters enables perfect extraction of multiplexed inputs.
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Arbitrary Magnitude and Phase Filter Design
This example shows how to design filters with customized magnitude and phase specifications. Many
filter design problems focus on the magnitude response only, while assuming a linear phase response
through symmetry. In some cases, however, the desired filter needs to satisfy constraints on both
magnitude and phase.

For example, custom magnitude and phase design specifications can be used for the equalization of
magnitude and phase distortions found in data transmission systems (channel equalization) or in
oversampled ADC (compensation for non-ideal hardware characteristics). Another application is the
design of filters that have smaller group delays than linear phase filters and less distortion than
minimum-phase filters for a given order.

Frequency Response Specification and Filter Design

Filter responses are usually specified by frequency intervals (bands) along with the desired gain on
each band. Custom magnitude and phase filter specifications are similar, but also include phase
response, usually as a complex value encoding both gain and phase response. In most

cases, the response specification is comprised of a frequencies vector F = [f1, ..., fN] of N increasing
frequencies, and a frequency responses vector H = [h1, ..., hN] corresponding to the filter's complex
response values. In DSP System Toolbox™, you can create a filter specification object with a desired
frequency response using fdesign.arbmagnphase. Once a specification object has been created,
you can design an FIR or an IIR filter using the design function. For more information about FIR and
IIR design algorithms, see [1].

FIR Designs

In this first example, we compare several FIR design methods to model the magnitude and phase of a
complex RF bandpass filter. First, load the desired filter specification: frequencies to the vector F,
and the complex response values to the vector H. Plot the gain and phase frequency responses on the
the left and the right graphs respectively.

load('gainAndPhase','F','H') % Load frequency response data
plotResponse(F, H) % A helper plotting function used in this demo

Create a specification object using fdesign.arbmagnphase with the 'N,F,H' specification pattern.
This specification accepts the desired filter order N, along with the frequency response vectors F and
H. The 'N,F,H' pattern defines the desired response on the entire Nyquist range (that is, a single-
band specification with no relaxed "don't care" regions). In this example, the desired response data
vectors F and H have 655 points, which is relatively dense across the frequency domain.

N = 100;
f = fdesign.arbmagnphase('N,F,H', N,F,H); 
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Determine which design methods can be used for this specification object using the designmethods
function. In this case, the methods are: equiripple, firls (least squares), and freqsamp
(frequency sampling).

designmethods(f,'fir')

FIR Design Methods for class fdesign.arbmagnphase (N,F,H):

equiripple
firls
freqsamp

Design the filters with the design function using the desired method from the list above. You can
also specify 'allfir' to design using all available methods, in which case the function returns a cell
array of System objects.

Hd = design(f,'allfir', SystemObject = true);

Plot the filters' frequency responses and the nominal response in a dashed line. The equiripple design
Hd(1) appears to approximate very well on the passband, but slightly deviates in other regions. The
least squares design Hd(2) is optimized for uniformly weighted quadratic norm (not favoring one
region or another), and the frequency sampled FIR design Hd(3) appears to exhibit the worst
approximation of all three.

hfvt = fvtool(Hd{:});
legend(hfvt,'Equiripple Hd(1)', 'FIR Least-Squares Hd(2)','Frequency Sampling  Hd(3)', ...
    Location = 'NorthEast')
ax = hfvt.CurrentAxes; 
ax.NextPlot = 'add';
plot(ax,F,20*log10(abs(H)),'k--')
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hfvt(2) = fvtool(Hd{:}, Analysis = 'phase');
legend(hfvt(2),'Equiripple Hd(1)', 'FIR Least-Squares Hd(2)','Frequency Sampling Hd(3)')

ax = hfvt(2).CurrentAxes; 
ax.NextPlot = 'add';
plot(ax,F,unwrap(angle(H))+2*pi,'k--')
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IIR Designs

In the next part, we design an IIR filter. The desired filter is a halfband highpass filter with a linear
phase on the passband. The specification is given by 100 points on the frequency domain as shown in
the following figure.

F = [linspace(0,.475,50) linspace(.525,1,50)];
H = [zeros(1,50) exp(-1j*pi*13*F(51:100))];
plotResponse(F, H)

Create a specification object using a single-band design spec 'Nb, Na, F, H', which takes the
desired IIR orders Na = 10 (denominator order) and Nb = 12 (numerator order) as inputs. There is
only one design method available for this specification - the least squares IIR design (iirls).

Nb = 12;
Na = 10;
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f = fdesign.arbmagnphase('Nb,Na,F,H',Nb,Na,F,H);
designmethods(f)

Design Methods for class fdesign.arbmagnphase (Nb,Na,F,H):

iirls

The iirls design method allows to specify different weights for different frequencies, giving more
control over the approximation quality of each band. Design the filter with a weight of 1 on the
stopband and a weight of 100 on the passband. The high weight given to the passband makes the
approximation more accurate on this region.

W = 1*(F<=0.5) + 100*(F>0.5);
Hd = design(f,'iirls', Weights = W, SystemObject = true);

When using IIR design techniques, the stability of the filter is not guaranteed. Check the IIR stability
using the isstable function. To do a more complete analysis, examine the poles and how close they
are to the unit circle.

isstable(Hd)

ans = logical
   1

Plot the IIR design response. Note that the approximation on the passband is better than on the
stopband, and the phase response is less significant wherever the magnitude gain is small (low dB).

hfvt = fvtool(Hd);
legend(hfvt,'IIR Least-Squares', Location = 'NorthWest')
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hfvt(2) = fvtool(Hd,Analysis='phase');
legend(hfvt(2),'IIR Least-Squares', Location = 'NorthEast')
ax = hfvt(2).CurrentAxes; 
ax.NextPlot = 'add';
plot(ax,F,unwrap(angle(H))+2*pi,'r--')
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Bandpass FIR Design with a Low Group Delay

An interesting application of arbitrary magnitude and phase designs is the design of asymmetric FIR
filters that sacrifice linear phase in favor of a shorter group delay. Such filters can still be designed to
maintain a good approximation of a linear phase on the passband. Suppose we have three bands for
the bandpass filter: a stopband on F1 = [0, 0 . 3  and on F3 = (0 . 6, 1], and a passband on
F2 = 0 . 3, 0 . 6 . On the passband, the desired frequency response is H ω = e− jπω ⋅ gd, which has a
linear phase reponse with a group delay of gd.

F1 = linspace(0,.25,30);  % Lower stopband
F2 = linspace(.3,.56,40); % Passband
F3 = linspace(.62,1,30);  % Higher stopband

% Define the desired frequency response on the bands
gd = 12; % Desired Group Delay
H1 = zeros(size(F1));
H2 = exp(-1j*pi*F2*gd);
H3 = zeros(size(F3));
F = [F1 F2 F3];
H = [H1 H2 H3];

Plot the desired frequency response.

plotResponse(F, H)
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Create a filter specification object using the 'N,B,F,H' specification pattern. Here, N = 50 is the
desired filter order, B = 3 stands for the number of bands, followed by B pairs of F and H vectors as
before.

N = 50;  % Filter Order
B = 3;   % Number of bands
f = fdesign.arbmagnphase('N,B,F,H',N,B, F1,H1, F2,H2, F3,H3); 
Hd_mnp = design(f,'equiripple', SystemObject = true);

This design does not have a linear phase, as can be seen by calling the islinphase function.

islinphase(Hd_mnp)

ans = logical
   0

Now, create a magnitude-only filter specification using fdesign.arbmag. The 'N,B,F,A'
specification pattern for this object is similar to the 'N,B,F,H' specification of the
fdesign.argmagnphase object. The difference between the two is that the complex filter response
H in 'N,B,F,H' is replaced with a magnitude only (nonnegative real) response A in 'N,B,F,A'.

f_magonly = fdesign.arbmag('N,B,F,A',N,3,F1,abs(H1),F2,abs(H2),F3,abs(H3)); 
Hd_mo = design(f_magonly,'equiripple', SystemObject = true);

The magnitude-only specification yields symmetric design with a linear phase.

islinphase(Hd_mo)

ans = logical
   1

subplot(1,2,1);
stem(Hd_mnp.Numerator)
title('Magnitude and Phase Design (asymetric)')
subplot(1,2,2);
stem(Hd_mo.Numerator)
title('Magnitude-only Design (symmetric)')
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Compare the two designs. Note that they have a very similar bandpass magnitude response.

hfvt = fvtool(Hd_mnp,Hd_mo);
legend(hfvt,'Magnitude and Phase Design (Low Group Delay)', ...
    'Magnitude Only (Linear Phase, High Group Delay)', Location = 'NorthEast')

Plot the group delay. The arbitrary magnitude and phase design has a slightly varying group delay.
However, the variation is small and on average is 12.5 samples. This group delay is half the group
delay of the magnitude only design, which is 25 samples.

hfvt(2) = fvtool(Hd_mnp,Hd_mo, Analysis = 'grpdelay');
legend(hfvt(2),'Magnitude and Phase Design (Low Group Delay)', ...
    'Magnitude Only (Linear Phase, High Group Delay)', Location = 'NorthEast')
hfvt(2).zoom([.3 .56 0 35]);
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The difference in group delays can also be seen in the phase response. The shallower slope indicates
a smaller group delay.

hfvt(2).Analysis = 'phase';
hfvt(2).zoom([.3 .56 -30 10]);
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Passband Equalization of a Chebyshev Lowpass Filter

Another common application of arbitrary magnitue-phase designs is the equalization of nonlinear-
phase responses of IIR filters. Consider a third order Chebyshev Type I lowpass filter with a
normalized passband frequency of 1/16 and passband ripples of 0.5 dB.

Fp = 1/16;  % Passband frequency 
Ap = .5;    % Passband ripples
f = fdesign.lowpass('N,Fp,Ap',3,Fp,Ap);
Hcheby = design(f,'cheby1', SystemObject = true); 
close(hfvt(1));
close(hfvt(2));
hfvt = fvtool(Hcheby);
legend(hfvt, 'Chebyshev Lowpass');
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Plot the group delay. There is a significant group delay distorition on the passband with group delays
ranging from 10 to 20 samples.

hfvt(2) = fvtool(Hcheby, Analysis = 'grpdelay');
legend(hfvt(2), 'Chebyshev Lowpass');
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To mitigate the distortion in the group delay, an FIR equalizer Heq ω can be used after the IIR filter.
Ideally, the combined filter is an ideal lowpass. The combined filter has the passband response
G ω = Hch ω Heq ω = e− jgdω, eliminating the magnitude ripples to a flat magnitude response and a
constant group delay of gd samples. The target group gd is tied to the allotted FIR length for causal
filter designs. In this example, gd = 35 makes a reasonable choice.

To summarize, the equalizer design has two bands:

• On the passband, the desired frequency response of the equalizer should be
Heq ω = e− jgdω/Hch ω .

• On the stopband, the desired response is Heq ω = 0, consistent with Hch.

This two-band design specification ensures that the FIR approximation of the equalizer focuses on the
passband and the stopband only. The remaining parts of the frequency domain are considered don't-
care regions.

gd = 35;    % Passband Group Delay of the equalized filter (linear phase)
F1 = 0:5e-4:Fp; % Passband
D1 = exp(-1j*gd*pi*F1)./freqz(Hcheby,F1*pi); 

Fst = 3/16; % Stopband
F2 = linspace(Fst,1,100); 
D2 = zeros(1,length(F2));
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There are several FIR design methods that can be used to implement this equalizer FIR specification.
Compare the performance using two design methods: a least squares design, and an equiripple
design.

feq = fdesign.arbmagnphase('N,B,F,H',51,2,F1,D1,F2,D2);
Heq_ls = design(feq,'firls', SystemObject = true);      % Least-Squares design
Heq_er = design(feq,'equiripple', SystemObject = true); % Equiripple design

% Create the cascaded filters
Gls = cascade(Hcheby,Heq_ls);
Geq = cascade(Hcheby,Heq_er);

Plot the magnitude responses of the cascaded systems for both filters.

hfvt = fvtool(Hcheby,Gls,Geq);
legend(hfvt,'Chebyshev Lowpass (no equalization)','Least-Squares Equalization (cascade)', ...
    'Equiripple Equalization (cascade)', Location = 'NorthEast')

Zoom in around the passband. The passband ripples are attenuated after equalization from 0.5 dB in
the original filter to 0.27 dB with the least-squares designed equalizer, and to 0.16 dB with the
equiripple designed equalizer.

hfvt(2) = fvtool(Hcheby,Gls,Geq);
legend(hfvt(2),'Chebyshev Lowpass (no equalization)', ...
    'Least-Squares Equalization (cascade)', ...
    'Equiripple Equalization (cascade)', Location = 'NorthEast')
hfvt(2).zoom([0 .1 -0.8 .5]);
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We now turn to the phase (and group delay) equalization. The combined group delay is nearly
constant around 35 samples (the target group delay) on the passband. Outside the passband, the
combined group delay is seemingly divergent, but this is insignificant as the gain of the filter vanishes
on that region.

hfvt(2).Analysis = 'grpdelay';
hfvt(2).zoom([0 1 0 40]);

4 DSP System Toolbox Featured Examples

4-400



Zoom in around the passband. The group delay in the passband is equalized from a peak-to-peak
difference of 8.8 samples to 0.51 samples with the least-squares equalizer, and to 0.62 samples with
the equiripple equalizer. Both equalizers perform equally well.

hfvt(3) = fvtool(Hcheby,Gls,Geq,Analysis='grpdelay');
legend(hfvt(3),'Chebyshev Lowpass (no equalization)', ...
    'Least-Squares Equalization (cascade)', ...
    'Equiripple Equalization (cascade)', Location = 'NorthEast')
hfvt(3).zoom([0 Fp 34 36]);
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See Also

Related Examples
• “Least Pth-Norm Optimal FIR Filter Design” on page 4-159
• “FIR Nyquist (L-th band) Filter Design” on page 4-102
• “IIR Filter Design Given a Prescribed Group Delay” on page 4-93
• “Design of Fractional Delay FIR Filters” on page 4-197
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G.729 Voice Activity Detection
This example shows how to implement the ITU-T G.729 Voice Activity Detector (VAD)

Introduction

Voice Activity Detection (VAD) is a critical problem in many speech/audio applications including
speech coding, speech recognition or speech enhancement. For instance, the ITU-T G.729 standard
uses VAD modules to reduce the transmission rate during silence periods of speech.

Algorithm

At the first stage, four parametric features are extracted from the input signal. These parameters are
the full-band and low-band frame energies, the set of line spectral frequencies (LSF) and the frame
zero crossing rate. If the frame number is less than 32, an initialization stage of the long-term
averages takes place, and the voice activity decision is forced to 1 if the frame energy from the LPC
analysis is above 21 dB. Otherwise, the voice activity decision is forced to 0. If the frame number is
equal to 32, an initialization stage for the characteristic energies of the background noise occurs.

At the next stage, a set of difference parameters is calculated. This set is generated as a difference
measure between the current frame parameters and running averages of the background noise
characteristics. Four difference measures are calculated:

a) A spectral distortion

b) An energy difference

c) A low-band energy difference

d) A zero-crossing difference

The initial voice activity decision is made at the next stage, using multi-boundary decision regions in
the space of the four difference measures. The active voice decision is given as the union of the
decision regions and the non-active voice decision is its complementary logical decision. Energy
considerations, together with neighboring past frames decisions, are used for decision smoothing.
The running averages have to be updated only in the presence of background noise, and not in the
presence of speech. An adaptive threshold is tested, and the update takes place only if the threshold
criterion is met.

VAD Implementation

vadG729 is the function containing the algorithm's implementation.

Initialization

Set up an audio source. This example uses an audio file reader.

audioSource = dsp.AudioFileReader(SamplesPerFrame=80,...
                               Filename='speech_dft_8kHz.wav',...
                               OutputDataType='single');
% Note: You can use a microphone as a source instead by using an audio
% device reader (NOTE: audioDeviceReader requires an Audio Toolbox
% (TM) license)
% audioSource = audioDeviceReader(OutputDataType='single', ...
%                              NumChannels=1, ...
%                              SamplesPerFrame=80, ...
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%                              SampleRate=8000);
% Create a time scope to visualize the VAD decision (channel 1) and the
% speech data (channel 2)
scope = timescope(SampleRate=[8000/80 8000], ...
                  TimeSpanSource='property', ...
                  TimeSpan=10, ...
                  YLimits=[-0.3 1.1], ...
                  Title='Decision speech and speech data', ...
                  TimeSpanOverrunAction='Scroll');

Stream Processing Loop

% Initialize VAD parameters
VAD_cst_param = vadInitCstParams;
clear vadG729
% Run for 10 seconds
numTSteps = 1000;
while(numTSteps)
  % Retrieve 10 ms of speech data from the audio recorder
  speech = audioSource();
  % Call the VAD algorithm
  decision = vadG729(speech, VAD_cst_param);
  % Plot speech frame and decision: 1 for speech, 0 for silence
  scope(decision, speech);
  numTSteps = numTSteps - 1;
end
release(scope);
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Cleanup

Close the audio input device and release resources

release(audioSource);

Generating and Using the MEX-File

MATLAB Coder can be used to generate C code for the function vadG729. In order to generate a
MEX-file, execute the following command.

codegen vadG729 -args {single(zeros(80,1)), coder.Constant(VAD_cst_param)}

Code generation successful.

Speed Comparison

Creating MEX-Files often helps achieve faster run-times for simulations. The following lines of code
first measure the time taken by the MATLAB function and then measure the time for the run of the
corresponding MEX-file. Note that the speedup factor may be different for different machines.

audioSource = dsp.AudioFileReader('speech_dft_8kHz.wav', ...
                              SamplesPerFrame=80, ...
                              OutputDataType='single');
clear vadG729
VAD_cst_param = vadInitCstParams;                          
tic;
while ~isDone(audioSource)
  speech = audioSource();
  decision = vadG729(speech, VAD_cst_param);
end
t1 = toc;

reset(audioSource);

tic;
while ~isDone(audioSource)
  speech = audioSource();
  decision = vadG729_mex(speech, VAD_cst_param);
end
t2 = toc;

disp('RESULTS:')

RESULTS:

disp(['Time taken to run the MATLAB code: ', num2str(t1), ' seconds']);

Time taken to run the MATLAB code: 0.68034 seconds

disp(['Time taken to run the MEX-File: ', num2str(t2), ' seconds']);

Time taken to run the MEX-File: 0.15386 seconds

disp(['Speed-up by a factor of ', num2str(t1/t2),...
    ' is achieved by creating the MEX-File']);
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Speed-up by a factor of 4.4219 is achieved by creating the MEX-File

References
[1] ITU-T Recommendation G.729 - Annex B: A silence compression scheme for G.729 optimized for

terminals conforming to ITU-T Recommendation V.70
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IF Subsampling with Complex Multirate Filters
This example shows how to use complex multirate filters in the implementation of Digital Down-
Converters (DDC). The DDC is a key component of digital radios. It performs the frequency
translation necessary to convert the high input sample rates typically found at the output of an
analog-to-digital (A/D) converter down to lower sample rates for further and easier processing. In this
example, we will see how an audio signal modulated with a 450 kHz carrier frequency can be brought
down to a 20 kHz sampling frequency. After a brief review of the conventional DDC architecture, we
will describe an alternative solution known as Intermediate Frequency (IF) subsampling and we will
compare the respective implementation cost of these two solutions. This example requires a Fixed-
Point Designer™ license.

Conventional Digital Down Converter

A conventional down conversion process starts with sampling the analog signal at a rate that satisfies
the Nyquist criterion for the carrier. A possible option would be to sample the 450 kHz input signal at
2.0 MHz, then using a digital down converter to perform complex translation to baseband, filter and
down sample by 25 with a Cascaded Integrator-Comb (CIC) filter, and then down sample by 4 with a
pair of half band filters. Such an implementation is shown below:

CIC Filter Design

The first filter of the conventional DDC is usually a CIC filter. CIC filters are efficient, multiplier-less
structures which are used in high-decimation or interpolation systems. In our case it will bring the 2
MHz signal down to 2.0 MHz/25 = 80 kHz.

Fs_normDDC = 2e6;          % Sampling frequency
R          = 25;           % Decimation factor
Fpass      = 10e3;         % Passband Frequency
Astop      = 60;           % Aliasing Attenuation(dB)
D          = 1;            % Differential delay
dcic = fdesign.decimator(R,'cic',D,Fpass,Astop,Fs_normDDC);
cic = design(dcic,'SystemObject',true);
cicgain = dsp.FIRFilter('Numerator',1/gain(cic)); % Normalize gain of CIC

Compensation FIR Decimator Design

The second filter of the conventional DDC compensates for the passband droop caused by the CIC.
Since the CIC has a sinc-like response, it can be compensated for the droop with a lowpass filter that
has an inverse-sinc response in the passband.

Nsecs = cic.NumSections;       % Number of sections
Fpass  = 10e3;                 % Passband Frequency
Fstop  = 25e3;                 % Stopband Frequency
Apass  = 0.01;                 % Passband Ripple (dB)
Astop  = 80;                   % Stopband Attenuation (dB)
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dcp = fdesign.decimator(2,'ciccomp', ...
    D,Nsecs,Fpass,Fstop,Apass,Astop,dcic.Fs_out);
cfir = design(dcp,'equiripple', ...
    'StopBandShape','linear','StopBandDecay',60,'SystemObject',true);

Halfband Filter Design

We finally use a 20th order halfband filter to bring the 40 kHz signal down to 20 kHz.

dhbfilter = fdesign.decimator(2,'halfband','N',20,dcp.Fs_out);
hbfilter = design(dhbfilter,'SystemObject',true);

The conventional DDC filter is obtained by cascading the three stages previously designed.

normDDCFilter = cascade(cicgain,cic,cfir,hbfilter);

IF Subsampling

Since the carrier frequency is discarded as part of the signal extraction, there is no need to preserve
it during the data-sampling process. The Nyquist criterion for the carrier can actually be violated as
long as Nyquist criterion for the bandwidth of complex envelope is satisfied.

This narrowband interpretation of the Nyquist criterion leads to an alternate data collection process
known as IF subsampling. In this process, the A/D converter's sample rate is selected to be less than
the signal's center frequency to intentionally alias the center frequency. Since Nyquist criterion is
being intentionally violated, the analog signal must be conditioned to prevent multiple frequency
intervals from aliasing to the same frequency location as the desired signal component will alias.

The variable y represents approximately 3 sec of an audio signal modulated with a 450 kHz carrier
frequency. The discrete signal ys represents the output of a 120 kHz A/D converter.

[y,ys,Fs] = loadadcio;
Fs_altDDC = 1.2e5;   % Sampling frequency

[Hys,Fys] = periodogram(ys,[],[],Fs,'power','centered');
N = length(Fys);

figure('color','white')
periodogram(y,[],[],Fs,'power','centered');
clear y;
hold on;
plot((-(ceil(N/2*9)-1):floor(N/2*9))/N*Fs_altDDC/1000, ...
        repmat(10*log10(Hys),9,1),'r:');
axis([-50 500 -160 0])
legend('Input of A/D Converter','Aliased Output of A/D Converter', ...
    'Location','NorthEast');
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The frequency band around 450 kHz aliased around -30 kHz. Aliasing to a quarter of the sampling
frequency maximizes the separation between positive and negative frequency aliases. This permits
maximum transition bandwidth for the analog bandpass filter and therefore minimize its cost.

The choice of a 120 kHz sampling frequency also eases the subsequent task of down converting to 20
kHz which is accomplished by down sampling by a factor of 6. The down conversion can be achieved
in two stages. First a 3-to-1 downsampling is performed by a complex bandpass filter followed by a 2-
to-1 conversion with a half band filter. The structure of this aliasing DDC is shown below.

Complex Bandpass Filter Design

To obtain a complex bandpass filter, we translate a lowpass decimator prototype to quarter sample
rate by multiplying the filter coefficients with the heterodyne terms exp(-j*pi/2*n). Notice that while
the coefficients of the lowpass filter are real, the coefficients of the translated filter are complex. The
figure below depicts the magnitude responses of these filters.
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M = 3;               % Decimation Factor
TW   = Fstop-Fpass;  % Transition Width (Hz)
designLowpass = fdesign.decimator(M,'nyquist',M,TW,Astop,Fs_altDDC);
lpfilter = design(designLowpass,'SystemObject',true); % Lowpass prototype
n = 0:length(lpfilter.Numerator)-1;
complexBPFilter = dsp.FIRDecimator(M,lpfilter.Numerator.*exp(-1i*pi/2*n));
fvt = fvtool(lpfilter,complexBPFilter,'Fs',Fs_altDDC,'Color','White');
legend(fvt,'Lowpass Decimator','Complex Bandpass Decimator', ...
    'Location','NorthEast')

We now apply the complex bandpass decimator to the output of A/D converter. It can be shown that a
signal at a quarter sample-rate will always alias to a multiple of the quarter sample-rate under
decimation by any integer factor. In our example the -30 kHz centered signal will alias to 40/4 = 10
kHz.

ycbp = complexBPFilter(ys);
figure('color','white')
periodogram(ycbp,[],[],designLowpass.Fs_out,'power','centered');
legend('Output of Complex Bandpass Decimator')
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The output sequence ycbp is then heterodyned to zero.

yht = ycbp.*(-1i).^(0:length(ycbp)-1).';
figure('color','white')
periodogram(yht,[],[],designLowpass.Fs_out,'power','centered');
legend('Heterodyned Sequence')
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Finally the heterodyned sequence is passed as input to the half band filter and decimated by 2. We
can reuse the same halfband filter as in the conventional DDC.

yf = hbfilter(yht);
figure('color','white')
periodogram(yf,[],[],dhbfilter.Fs_out,'power','centered');
legend('Output of Aliasing DDC')

4 DSP System Toolbox Featured Examples

4-412



Play the audio signal at the output of the "aliasing" DDC. (Copyright 2002 FingerBomb)

player = audioDeviceWriter('SampleRate',dhbfilter.Fs_out);
player(real(yf));

Implementation Cost Comparison

Before we proceed to the cost analysis let's verify that the magnitude responses of the filters in the
two DDC solutions are comparable. We exclude both the complex translation to baseband in the
conventional DDC case and the heterodyne in the IF subsampling case. Furthermore, we use the
lowpass prototype decimator in the later case since it has the same transition width, passband ripples
and stopband attenuation as the complex band pass decimator.

altDDCFilter = cascade(lpfilter,hbfilter);

We verify that the filters used in both cases have very similar magnitude responses: less that 0.04 dB
passband ripple, a 6dB cutoff frequency of 10 kHz and a 55 dB stopband attenuation at 13.4 kHz. It is
therefore fair to proceed to the cost analysis.

set(fvt, ...
    'Filters',{normDDCFilter,altDDCFilter}, ...
    'FrequencyRange','Specify freq. vector', ...
    'FrequencyVector',linspace(0,100e3,2048), ...
    'Fs',[Fs_normDDC,Fs_altDDC], ...
    'ShowReference','off', ...
    'Color','White');
legend(fvt,'Conventional DDC Filter', ...
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    'Equivalent Digital IF Subsampling Filter', ...
    'Location','NorthEast');

In the case of the conventional DDC, we must first take into account the cost of the baseband
translation. We are assuming it is done with only one multiplier working at 2 MHz. We must then add
the cost of the CIC and halfband filters. In the IF subsampling case, we must consider the cost of the
heterodyne. We are assuming it is done with only one multiplier working at 40 kHz. We must then add
the cost of the complex bandpass and halfband filters.

% Cost of CIC and halfband filters
c_normDDC = cost(normDDCFilter);
% Cost of complex bandpass and halfband filters
c_altDDC  = cost(cascade(complexBPFilter,hbfilter));
ddccostcomp(Fs_normDDC,c_normDDC,Fs_altDDC,c_altDDC)

ans = 
    'Total Cost                      : Conventional DDC | IF subsampling
     -------------------------------------------------------------------
     Number of Coefficients          :               36 |             42
     Number of States                :               50 |             62
     Multiplications per microsecond :             5.18 |            1.5
     Additions per microsecond       :             9.44 |            1.4'

The number of multipliers, adders and states required in the IF subsampling case is comparable to
that of conventional DDC but the number of operations per second is significantly reduced since it
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saves 71% of the number of multiplications per second and 85% of the number of additions per
second.

Using dsp.ComplexBandpassDecimator

We can design the complex bandpass filter more easily by using the dsp.ComplexBandpassDecimator
System object. The object designs the bandpass filter based on the specified decimation factor, center
frequency, and sample rate. There is no need to translate lowpass coefficients to bandpass as we did
in the design above: the object will do it for us. Moreover, the object will derive the frequency to
which the filtered signal is aliased, and mix it back to zero Hz for us.

% Design a complex bandpass filter. Include the decimate-by-2 halfband
% filter into the design by specifying a decimation factor of 2*M:
bp = dsp.ComplexBandpassDecimator(M*2 , -30e3, Fs_altDDC,...
                                  'TransitionWidth',TW);
% Visualize the filter response                              
visualizeFilterStages(bp); 

% Filter the output of the 120 kHz A/D converter
yf = bp(ys);
figure('color','white')
periodogram(yf,[],[],dhbfilter.Fs_out,'power','centered');
legend('Output of complex bandpass decimator')
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player(real(yf));

Summary

This example showed how complex multirate filters can be used when designing IF subsampling-
based digital down converters. The IF subsampling technique can be cost efficient alternative to
conventional DDCs in many applications. For more information on IF subsampling see Multirate
Signal Processing for Communication Systems by fredric j harris, Prentice Hall, 2004.
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Design and Analysis of a Digital Down Converter
This example shows how to use the digital down converter (DDC) System object™ to emulate the TI
Graychip 4016 digital down converter in a simple manner. We base the example on a comparison with
the “GSM Digital Down Converter in Simulink” on page 4-54 example. We show how the DDC System
object can be used to design and analyze the decimation filters and to quickly explore different design
options that meet various passband and stopband frequency and attenuation specifications. This
example requires a Fixed-Point Designer™ license.

if ~isfixptinstalled
    error(message('dsp:dspDigitalDownConverterDesign:noFixptTbx'));
end

Introduction

The “GSM Digital Down Converter in Simulink” on page 4-54 example presents the steps required to
emulate the TI Graychip 4016 digital down converter that brings a passband signal centered at 14.44
MHz to baseband, and down samples the signal by a factor of 256 to bring the input sample rate of
69.333 MHz down to 270.83 KHz. In that example you go through the following steps:

1) Design a numerically controlled oscillator to generate a mixer frequency of 14.44 MHz.

2) Load a pre-defined set of coefficients to generate a CIC decimator filter, a CIC compensator filter,
and an FIR filter with a passband frequency of 80 KHz.

3) Frequency down convert a GSM signal (simulated as a complex exponential) and down sample the
down converted output with the cascade of decimation filters.

4) Perform data casting to obtain the desired fixed-point data types across the different down
converter sections.

The “GSM Digital Down Converter in Simulink” on page 4-54 example also creates an FIR rate
converter to resample the data at the output of the third filter stage. The DDC System object does not
contain a rate converter; therefore, this example does not include implementing one.

This example shows how to use the DDC System object to design the set of decimation filters. It also
shows how the DDC object achieves the down conversion process with fewer and simpler steps.

The following DDC System object block diagram contains the data types at each stage and the data
rates for the example at hand. You control the input data type of the filters using the
FiltersInputDataType and CustomFiltersInputDataType properties. You control the output data type
using the OutputDataType and CustomOutputDataType properties.
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Defining the DigitalDownConverter System Object

Create a DDC System object. Set the input sample rate of the object to 69.333 mega samples per
second (MSPS), and the decimation factor to 256 to achieve an output sample rate of 270.83 KHz.
The DDC object automatically factors the decimation value so that the CIC filter decimates by 64, the
CIC compensator decimates by 2, and the third stage filter decimates by 2.

ddc = dsp.DigitalDownConverter('SampleRate',69.333e6, ...
    'DecimationFactor',256);

Decimation Filter Design

The “GSM Digital Down Converter in Simulink” on page 4-54 example uses a predefined set of filter
coefficients to generate two FIR decimators and a CIC decimator System object. Designing
decimation filters so that their cascade response meets a given set of passband and stopband
attenuation and frequency specifications can be a cumbersome process where you have to choose the
correct combination of passband and stopband frequencies for each filter stage. Choosing stopband
frequencies properly ensures lower order filter designs.

The DDC object automatically designs the decimation filters based on a set of passband and stopband
attenuation and frequency specifications.
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Minimum Order Filter Designs

The DDC object obtains minimum order decimation filter designs with the passband and stopband
attenuation and frequency specifications you provide. Set the MinimumOrderDesign property to
true to obtain minimum order filter designs.

ddc.MinimumOrderDesign = true;

The down converter processes a GSM signal with a double-sided bandwidth of 160 KHz. Set the
Bandwidth property of the DDC object to 160 KHz so that the passband frequency of the decimation
filter cascade equals 160e3/2 = 80 KHz.

Set the StopbandFrequencySource property to 'Auto' so that the DDC object sets the cutoff
frequency of the cascade response approximately at the output Nyquist rate, i.e. at 270.83e3/2 =
135.4 KHz, and the stopband frequency at 2Fc-Fpass = 2*135.4e3 - 160e3/2 = 190.8 KHz, where Fc
is the cutoff frequency and Fpass is the passband frequency. When you set
StopbandFrequencySource to 'Auto', the DDC object relaxes the stopband frequency as much as
possible to obtain the lowest filter orders at the cost of allowing some aliasing energy in the
transition band of the cascade response. This design tradeoff is convenient when your priority is to
minimize filter orders.

ddc.Bandwidth = 160e3; % Passband frequency equal to 80 KHz
ddc.StopbandFrequencySource = 'Auto'; % Allow aliasing in transition band

Finally, set a stopband attenuation of 55 dB and a passband ripple of 0.04 dB.

ddc.StopbandAttenuation = 55; 
ddc.PassbandRipple = .04;

You can analyze the response of the cascade of decimation filters by calling the fvtool method of the
DDC object. Specify a fixed-point arithmetic so that the DDC object quantizes the filter coefficients to
an optimum number of bits that allow the cascade response to meet the stopband attenuation
specifications.

fvt = fvtool(ddc,'Arithmetic','Fixed-point');

Get the designed filter orders and the coefficient word lengths for the CIC compensator and third
stage FIR design.

ddcFilters = getFilters(ddc,'Arithmetic','Fixed-point');
n = getFilterOrders(ddc);

CICCompensatorOrder = n.SecondFilterOrder %#ok<NASGU> 

CICCompensatorOrder = 12

ThirdStageFIROrder = n.ThirdFilterOrder %#ok<NASGU> 

ThirdStageFIROrder = 18

CICCompensatorCoefficientsWordLength = ...
    ddcFilters.SecondFilterStage.CustomCoefficientsDataType.WordLength

CICCompensatorCoefficientsWordLength = 11

ThirdStageFIRWordLength = ...
    ddcFilters.ThirdFilterStage.CustomCoefficientsDataType.WordLength
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ThirdStageFIRWordLength = 11

If aliasing in the transition band is not acceptable, set the stopband frequency to an arbitrary value
by setting the StopbandFrequencySource property to 'Property'. Obtain a narrower transition
band by setting the stopband frequency to 128 KHz at the expense of a larger third stage filter order.

ddc.StopbandFrequencySource = 'Property';
ddc.StopbandFrequency = 128e3;

close(fvt)
fvt = fvtool(ddc,'Arithmetic','fixed-point');

n= getFilterOrders(ddc);
CICCompensatorOrder = n.SecondFilterOrder

CICCompensatorOrder = 10

ThirdStageFIROrder = n.ThirdFilterOrder

ThirdStageFIROrder = 34

Visualize the response of each individual filter stage and of the overall cascade using the
visualizeFilterStages method of the DDC object.

close(fvt)
fvt = visualizeFilterStages(ddc,'Arithmetic','fixed-point');

Controlling the Filter Orders

There are cases when filter orders are the main design constraint. You use the DDC object to design
decimation filters with a specified order by setting the MinimumOrderDesign property to false. You
can still specify the required passband and stopband frequencies of the cascade response. Note
however that the stopband attenuation and ripple are now controlled by the order of the filters and
not by property values.

Oscillator Design

The DDC object designs a numerically controlled oscillator based on a small set of parameters. Set
the Oscillator property to 'NCO' to chose a numerically controlled oscillator. Use 32 accumulator
bits, and 18 quantized accumulator bits. Set the center frequency to 14.44 MHz and chose 14 dither
bits.

ddc.Oscillator = 'NCO';
ddc.CenterFrequency = 14.44e6;
ddc.NumAccumulatorBits = 32;
ddc.NumQuantizedAccumulatorBits = 18;
ddc.NumDitherBits = 14;

Fixed-Point Settings

You can set different properties on the DDC object to control the fixed-point data types along the
down conversion path.

Cast the word and fraction lengths at the input of each filter to 20 and 19 bits respectively by setting
the CustomFiltersInputDataType property to numerictype([],20,19). Note that the DDC
object scales the data at the output of the CIC decimator. The fact that this scaling is not done in the
“GSM Digital Down Converter in Simulink” on page 4-54 example explains the difference in the
fraction length values chosen in each example.
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Set the output data type to have a word length of 24 bits and a fraction length of 23 bits.

ddc.FiltersInputDataType = 'Custom';
ddc.CustomFiltersInputDataType = numerictype([],20,19);
ddc.OutputDataType = 'Custom';
ddc.CustomOutputDataType = numerictype([],24,23);

Processing Loop

Initialize a sine wave generator to simulate a GSM source. Initialize a buffer to cast the input signal
data type to 19 bits word length and 18 bits fraction length. Configure figures for plotting spectral
estimates of signals.

Fs = 69.333e6;
FrameSize = 768;
sine = dsp.SineWave('Frequency', 14.44e6+48e3, 'SampleRate', Fs, ...
    'PhaseOffset', 0, 'SamplesPerFrame', FrameSize);

gsmsig = fi(zeros(FrameSize,1),true,19,18);             
inputSpectrum = spectrumAnalyzer( ...
    'SampleRate',sine.SampleRate, ...
    'Title','Power spectrum of input signal');
outputSpectrum = spectrumAnalyzer( ...
    'SampleRate',sine.SampleRate/ddc.DecimationFactor, ...
    'Title','Power spectrum of down-converter signal');

Main simulation loop

for ii = 1:1000
    % Create GSM signal with 19 bits of word length and 18 bits of fraction
    % length.
    gsmsig(:) = sine();
    
    % Down convert GSM signal
    downConvertedSig = ddc(gsmsig); 
    
    % Frequency domain plots
    inputSpectrum(gsmsig);
    outputSpectrum(downConvertedSig);
end

% Release objects
release(sine);
release(ddc);
release(inputSpectrum);
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release(outputSpectrum);
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Notice the simplification of steps required to down convert a signal when compared to the “GSM
Digital Down Converter in Simulink” on page 4-54 example.

Conclusion

In this example, you compared the steps required to design a digital down converter as shown in the
“GSM Digital Down Converter in Simulink” on page 4-54 example with the steps required when using
a DDC System object. The DDC object allows you to obtain down converter designs in one simple
step. It provides tools to design decimation filters that meet passband frequency, passband ripple,
stopband frequency, and stopband attenuation specifications. The DDC object also provides
convenient tools to visualize and analyze the decimation filter responses.

Further Exploration

You can use the dsp.DigitalUpConverter System object to design a digital up converter system.
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Comparison of LDM, CVSD, and ADPCM
This example shows how to compare three different delta-modulation (DM) waveform quantization/
coding techniques.

What are DM, LDM, CVSD, and ADPCM?

Delta-modulation (DM) is a differential waveform quantization or coding technique. A DM encoder
uses the error between the original signal to be coded and the coded signal itself to create a
differentially quantized data stream. This data stream, usually the computed error signal, is a lower-
bit-rate signal that can be decoded by a matched decoder on the receiver side in order to achieve
data compression, and therefore low data transmission rates.

Linear Delta-Modulation (LDM), Continuously Variable Slope Delta-Modulation (CVSD), and Adaptive
Differential Pulse Code Modulation (ADPCM) are differential waveform coding techniques. Each
employ two-level, or one-bit, encoders, and may be performed at many different sampling or data
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rates. The encoded bit rate is usually directly proportional to the input signal sample rate. For
example, in both LDM and CVSD, one bit per sample is used to compute the encoded data stream.

In LDM, a constant step-size is used to approximate the input signal with a single bit per signal
sample. In the encoded bit stream, each 1 bit increases the amplitude by the step-size as compared to
the previous decoded signal sample. Each 0 bit decreases the amplitude by the step-size. Using LDM,
the encoder performance can suffer due to a condition known as "slope overload" when the input
signal slope changes too rapidly for the encoder to track it accurately, for instance during high
frequency content.

CVSD is LDM with the addition of an adaptive step-size. By adjusting or adapting the step-size to the
changes in slope of the input signal, the encoder is able to represent low-frequency signals with
greater accuracy without sacrificing as much performance due to slope overload at higher
frequencies. When the slope of the input signal changes too quickly for the encoder to keep up with
it, the step-size is increased. Conversely, when the input signal slope changes slowly, the step-size is
decreased. A slope-overload detector and syllabic filter are used in conjunction with a pulse
amplitude modulator (PAM) to accomplish the step-size adaptation.

CVSD is used in both commercial and military communications where "toll quality" or
"communications quality" is required, yet low computation complexity and low memory requirements
are desirable. Two examples of this technique are U.S. MIL-STD-188-113 (16 kbs and 32kbs CVSD)
and U.S. Federal Standard 1023 (12 kbs CVSD). In addition, encoded CVSD data can be encrypted
and made more secure, which is desirable for many wireless communications applications including
speech and general-purpose audio coding.

ADPCM is similar to CVSD, however it provides more accuracy and therefore preserved frequency
bandwidth at the expense of additional computational requirements for the adaptation step-size
calculations.

Comparison of Techniques

The model's scopes show the behavior of the three coding techniques. The first display in each scope
shows the original signal in yellow and the recovered signal in magenta that has been encoded and
then decoded. You can observe the response of each technique to both constant and rapidly changing
signal regions.

Because LCM uses a constant step size, it exhibits slope overload while the signal is changing rapidly
and granular noise while the signal is constant. Both CVSD and ADPCM mitigate these problems
using a variable step size.

For both CVSD and ADPCM the variable step size is shown in the center display. For all three
techniques the one-bit encoded transmission signal is shown in the lower display.
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Digital Up and Down Conversion for Family Radio Service
This example shows how to use the digital up converter (DUC) and digital down converter (DDC)
System objects to design a Family Radio Service (FRS) transmitter and receiver. These objects
provide tools to design interpolation/decimation filters and simplify the steps required to implement
the up/down conversion process. This example illustrates both MATLAB® and Simulink®
implementations. The MATLAB version uses System objects for DUC and DDC, whereas the Simulink
version uses blocks for DUC and DDC. In both versions, speech signal is used as an input, and the
signal after transmission is played back.

FRS is an improved walkie talkie FM radio system authorized in the United States since 1996. This
personal radio service uses channelized frequencies in the ultra high frequency (UHF) band. Devices
operating in the FRS band must be authorized under Part 95 Subpart B "Family Radio Service"
(Sections 95.191 through 95.194) of the FCC rules. The authorized bandwidth of FRS channels is 12.5
KHz and the center frequency separation between channels is 25 KHz.

Introduction

This example discusses the digital up conversion of a signal to be transmitted through an FRS
channel, and the down conversion of the signal coming from the FRS radio transmitter.

The 8 KHz speech is first resampled to 50KHz. The DUC at the transmitter up converts the signal
from 50 KHz to 2 MHz and shifts the signal to an IF frequency of 455 KHz.

The receiver has an analog front end that brings the received signal to an IF frequency of 455 KHz.
The signal is then sampled at a rate of 2 MHz. The DDC at the receiver brings the signal back to
baseband with a sample rate of 50 KHz. This is brought back to 8 KHz speech range.

Digital Up Converter Design

You design a digital up converter by creating a DUC System object. The DUC object consists of a
cascade of three interpolation filters and an oscillator that up converts the interpolated signal to a
specified passband frequency. A block diagram of the DUC object is shown next.

The DUC object provides options to define the interpolation filters. For instance, you can design the
oscillator using either a sine wave generator or a numerically controlled oscillator. The following
section showcases the different options available to design the interpolation filters for the FRS
transmitter.

Designing Interpolation Filters

The DUC object implements the interpolation filter using three filter stages. When the DUC object
designs the filters internally, the first stage consists of a halfband, or a lowpass filter, the second
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stage consists of a CIC compensator, and the third stage consists of a CIC interpolation filter. The
DUC object allows you to specify several characteristics that define the response of the cascade for
the three filters, including passband and stopband frequencies, passband ripple, and stopband
attenuation.

Minimum Order Filter Designs

By default (when the MinimumOrderDesign property is set to true) the DUC object obtains minimum
order interpolation filter designs using the passband and stopband specifications you provide.

For this FRS example, you must up sample the transmitted signal from 50 KHz to 2 MHz. This yields
an interpolation factor of 40. The DUC object automatically factors the interpolation value so that the
first filter stage interpolates by 2, the second filter stage interpolates by 2, and the CIC filter
interpolates by 10.

The FRS channel double sided bandwidth is 12.5 KHz. Set the Bandwidth property of the DUC object
to 12.5 KHz so that the passband frequency of the cascade response of the interpolation filters is
12.5e3/2 = 6.25 KHz.

Set the passband ripple to a small value of 0.05 dB to avoid distortion of the FRS signal. Set the
stopband attenuation to 60 dB.

By default (when the StopbandFrequencySource property is set to 'Auto') the DUC object sets the
cutoff frequency of the cascade response approximately at the input Nyquist rate of 25 KHz. The
object also sets the stopband frequency at 2Fc-Fpass = 2*25e3 - 12.5e3/2 = 43.75 KHz, where Fc is
the cutoff frequency and Fpass is the passband frequency. In this scenario, the DUC object relaxes
the stopband frequency as much as possible, obtaining the lowest filter orders at the cost of allowing
some energy of interpolation replicas in the transition band of the cascade response. This design
tradeoff is convenient when your priority is to minimize filter orders.

DUC = dsp.DigitalUpConverter(...
  'SampleRate',50e3,...
  'InterpolationFactor',40,...
  'Bandwidth',12.5e3,...
  'PassbandRipple',0.05,...
  'StopbandAttenuation',60);

Visualize the cascade response of the decimation filters using the fvtool or
visualizeFilterStages methods of the DUC object. Specify the arithmetic as 'double' so that
the filter coefficients and operations are double-precision.

fvt = fvtool(DUC,'Arithmetic','double');
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close(fvt)
fvt = visualizeFilterStages(DUC,'Arithmetic','double');
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Get the orders of the designed filters using the getFilterOrders method.

s = getFilterOrders(DUC);
s.FirstFilterOrder

ans = 10

s.SecondFilterOrder

ans = 12

The FRS channel separation is 25 KHz. Most commercial FRS radios offer 50 dB or higher adjacent
channel rejection (ACR). Clearly, the cascade response of the decimation filters designed above does
not achieve a 50 dB attenuation at 25 KHz. One possible solution to this problem is to filter the
baseband FRS signal with a lowpass filter with the required transition width and stopband
attenuation before passing the signal through the DUC object. Another solution is to set the DUC
object so that it designs a cascade response with a narrower transition bandwidth that meets the
required spectral mask. To design an overall filter response with a narrower transition bandwidth, set
the StopbandFrequencySource property to 'Property' and the StopbandFrequency property
to a desired value.

Design the filters so that the cascade response has a stopband frequency at the edge of the passband
of the adjacent FRS channel, i.e. at 25e3-12.5e3/2 = 18.75 KHz. Set the StopbandAttenuation
property to 60 dB to achieve a 60 dB ACR.

DUC.StopbandFrequencySource = 'Property';
DUC.StopbandFrequency = 18.75e3;
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DUC.StopbandAttenuation = 60;
close(fvt)
fvt = fvtool(DUC,'Arithmetic','double');

Get the filter orders

s = getFilterOrders(DUC);
s.FirstFilterOrder

ans = 23

s.SecondFilterOrder

ans = 7

The new cascade response achieves 60 dB attenuation at 25 KHz, i.e., at the center of the adjacent
FRS channel. The order of the first stage filter (lowpass interpolator) increases from 10 to 23. Note
however that the order of the second stage filter (CIC compensator) decreases from 12 to 7. Because
the first stage response has a narrower bandwidth, the second stage stopband can be relaxed even
more to the edge of the left stopband of the first replica of the first stage filter. Since the second filter
stage operates at a higher rate, this is a very convenient order reduction.

Controlling the Filter Orders

There are cases when filter orders are the main design constraint. Set the MinimumOrderDesign
property to false to design interpolation filters with a specific order. In this configuration, you can still
specify the required passband and stopband frequencies. The orders of the filters control the
stopband attenuation and ripple of the cascade response.
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To meet a constraint of a maximum of 20 coefficients in the first filter stage, set the
FirstFilterOrder property to 20. Set the SecondFilterOrder property to 7, and the number of
CIC sections to 4.

% Keep a copy of the minimum order design so that we can use it later on
% this example.
DUCMinOrder = clone(DUC);

% Specify the filter orders and visualize the cascade response.
DUC.MinimumOrderDesign = false;
DUC.FirstFilterOrder = 20;
DUC.SecondFilterOrder = 7;
DUC.NumCICSections = 4;

close(fvt)
fvt = fvtool(DUC,'Arithmetic','double');

The new design has lower stopband attenuation and larger passband ripple due to the reduced first
filter order.

Oscillator Design

Use the Oscillator property to select the type of oscillator the object uses to perform the
frequency up conversion. Set the property to 'Sine wave' to obtain an oscillator signal from a
sinusoidal computed using samples of the trigonometric function. Alternatively, set the property to
'NCO' so the object designs a numerically controlled oscillator. Set the center frequency of the
oscillator to the IF frequency of 455 KHz.
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DUC.Oscillator = 'Sine wave';
DUC.CenterFrequency = 455e3;

Digital Down Converter Design

You design a digital down converter (DDC) by creating a DDC System object. The DDC System object
consists of an oscillator that down converts an input signal from a specific passband frequency to 0
Hz. The object down samples the down converted signal using a cascade of three decimation filters.
The following block diagram shows the DDC object.

As in the DUC case, the DDC object offers different options for defining decimation filters. For
instance, you can design the oscillator using either a sine wave generator or a numerically controlled
oscillator. Alternatively, you can provide an oscillator signal as an input.

Designing Decimation Filters

The DDC object implements decimation using three filter stages. When the object designs the filters
internally, the first stage consists of a CIC decimator, the second stage consists of a CIC compensator,
and the third stage consists of a halfband, or a lowpass, decimation filter. As in the DUC case, the
DDC object allows you to specify characteristics that define the response of the cascade of the three
filters, including passband and stopband frequencies, passband ripple, and stopband attenuation.

Design minimum order decimation filters to receive an FRS signal centered at an IF frequency of 455
KHz. Decimate the signal by 40 to downsample it from 2 MHz to 50 KHz. Set the
StopbandFrequencySource property to 'Property' and the stopband attenuation to 60 dB to
design a cascade response that achieves an ACR of 60 dB.

DDCMinOrder = dsp.DigitalDownConverter(...
  'SampleRate',2e6,...
  'DecimationFactor',40,...
  'Bandwidth',12.5e3,...
  'PassbandRipple',0.05,...
  'StopbandAttenuation',60,...
  'StopbandFrequencySource', 'Property',...
  'StopbandFrequency',18.75e3,...
  'CenterFrequency',455e3);

Analyze the responses of the decimator filters and verify that the cascade response achieves an
attenuation of 60 dB at 25 KHz. Note how the DDC relaxes the response of the second stage (CIC
compensator) to the edge of the left stopband of the first alias of the third stage (lowpass decimator)
to minimize order.

close(fvt)
fvt = visualizeFilterStages(DDCMinOrder,'Arithmetic','double');
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Similar to the DUC case, you can define the filter orders by setting the MinimumOrderDesign
property to false.

MATLAB Processing Loop

The FCC Part 95 specifies an FM modulation with maximum frequency deviation of 2.5 KHz and a
maximum audio frequency of 3.125 KHz. Frequency-modulate the audio signal to obtain the FRS
baseband signal (the signal does not include a squelch tone). Up convert and down convert the
baseband FRS signal using the DUC and DDC objects that were designed in the previous sections
using minimum order filters. Demodulate the signal and play it using audio player.

% Initialize simulation parameters
close(fvt)
Fs = 50e3;
frameLength = 1000;
maxAudioFrequency = 3.125e3; % Maximum allowed audio frequency for FRS radios
deltaF = 2.5e3; % Maximum allowed frequency deviation for FRS radios
freqSensitivityGain = deltaF*2*pi/Fs;    % K=FD/A*(2*pi*Ts)

ModulationFilter = dsp.IIRFilter('Numerator',1,'Denominator',[1, -1]);
DemodulationDelay = dsp.Delay(1);

audioReader = dsp.AudioFileReader('speech_dft_8kHz.wav', ...
    'PlayCount', 3, 'SamplesPerFrame', frameLength);

SRCTx = dsp.SampleRateConverter('InputSampleRate', audioReader.SampleRate, ...
    'OutputSampleRate', Fs, 'Bandwidth', 6.25e3);
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SRCRx = dsp.SampleRateConverter('InputSampleRate', Fs, ...
    'OutputSampleRate', audioReader.SampleRate, 'Bandwidth', 6.25e3);

audioWriter = audioDeviceWriter('SampleRate', 8e3);

DUCMinOrder.CenterFrequency = 455e3;

basebandSignalSpectrum = spectrumAnalyzer(...
        'Method', 'welch', 'AveragingMethod', 'exponential', ...
        'ForgettingFactor', 0.1, ...
        'SampleRate', Fs, 'ShowLegend', true, ...
        'ChannelNames', {'Baseband input', 'Down-converted output'}, ...
        'Title', 'Power spectrum of baseband signal');
    
upConvertedSignalSpectrum = spectrumAnalyzer(...
        'Method', 'welch', 'AveragingMethod', 'exponential', ...
        'ForgettingFactor', 0.1, ...
        'SampleRate', Fs*DUCMinOrder.InterpolationFactor, ...
        'Title', 'Power spectrum of signal after DUC');

Stream data

while ~isDone(audioReader)
  % Input speech signal
  audioIn = audioReader();
  
  % Resample
  audioIn_200kHz = SRCTx(audioIn);
  
  % FM Modulation
  xFMBaseband = exp(1j * freqSensitivityGain * ModulationFilter(audioIn_200kHz));
  
  % Up conversion  
  xUp = DUCMinOrder(xFMBaseband);
  upConvertedSignalSpectrum(xUp);

  % Down conversion
  xDown = DDCMinOrder(xUp);
  basebandSignalSpectrum([xFMBaseband, xDown]);
  
  % FM Demodulation
  audioOut_200kHz = angle(DemodulationDelay(xDown) .* conj(xDown));
  
  % Resample
  audioOut = SRCRx(audioOut_200kHz);
  
  % Play audio
  audioWriter(audioOut);  
end
  
% Cleanup
release(audioReader);
release(SRCTx);
release(ModulationFilter);
release(DUCMinOrder);
release(DDCMinOrder);
release(DemodulationDelay);
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release(SRCRx);
release(basebandSignalSpectrum);

release(upConvertedSignalSpectrum);
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release(audioWriter);

Simulink Version

The setup for Family Radio Service shown above can be modeled in Simulink using the Digital Down-
Converter and Digital Up-Converter blocks. This is implemented in the model
familyRadioServiceExample.slx. While the simulation is running, you can listen to either the input
speech signal or the signal after processing using a switch in the model.

open_system('familyRadioServiceExample');
sim('familyRadioServiceExample');
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Using Dataflow in Simulink

You can configure this example to use data-driven execution by setting the Domain parameter to
dataflow for Dataflow Subsystem. With dataflow, blocks inside the domain execute based on the
availability of data as opposed to Simulink's sample time. Simulink automatically partitions the
system into concurrent threads. This autopartitioning accelerates simulation and increases data
throughput. To learn more about dataflow and how to run this example using multiple threads, see
“Multicore Execution using Dataflow Domain” on page 8-17

Conclusions

In this example you designed a digital up and down converter for an FRS transmitter and receiver
using DUC/DDC System objects. The example has explored the different options offered by the
DUC/DDC objects to design interpolation and decimation filters. The example has also explored the
filter analysis tools available in the DDC/DUC objects such as the visualizeFilterStages,
fvtool, and getFilterOrders methods. A Simulink implementation for the configuration was also
modeled.

The DUC/DDC objects designed in this example operate with double-precision filter coefficients and
double-precision arithmetic. See the “Design and Analysis of a Digital Down Converter” on page 4-
417 example if you are interested in designing a DUC or DDC that operates with fixed-point inputs.

close_system('familyRadioServiceExample', 0);
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Parametric Audio Equalizer
This example shows how to model an algorithm specification for a three band parametric equalizer

Introduction

Parametric equalizers are often used to adjust the frequency response of an audio system. For
example, a parametric equalizer can be used to compensate for physical speakers which have peaks
and dips at different frequencies.

The parametric equalizer algorithm in this example provides three second-order (biquadratic) filters
whose coefficients can be adjusted to achieve a desired frequency response. A user interface (UI) is
used in simulation to dynamically adjust filter coefficients and explore behavior.

This example describes how the parametric equalizer algorithm is specified and how the behavior can
be explored through simulation.

Open and run the model.

Parametric Equalizer

In this example, the equalizer is implemented in the Equalizer subsystem of the model. In this
subsystem, the input is passed through three cascaded bands of equalization. Coefficient changes
within each band are smoothed through a leaky integrator before being passed into a Biquad Filter
block.
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Equalizer Specifications

This example allows tuning of each equalizer band's center frequency, bandwidth, and peak (or dip)
gain. The bandwidth is defined at the arithmetic mean between the base of the filter (1 in this
example) and the peak power value. The specifications of the three bands are in the Specifications
subsystem. These specifications are converted to Biquad coefficients using a MATLAB Function block.
The coefficients of a particular band are recomputed whenever any of that band's specifications are
modified.

User Interface

A UI designed to interact with the simulation is provided with the model and can be launched by
clicking the 'Launch Parameter Tuning UI' link. The UI allows you to tune the equalizer specifications
and the results are reflected in the simulation instantly.
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Exploring the Simulation

When you simulate the model, you can visualize the equalizer's response on a scope. The response is
computed using a Discrete Transfer Function Estimator block. The response changes as you tune the
equalizer specifications. You can also listen to either the original or equalized audio by toggling the
manual switch.
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Generate C Code for the Equalizer Subsystem

To learn how to generate C code for the equalizer subsystem based on the algorithm specifications,
see the “Code Generation for Parametric Audio Equalizer” on page 4-326 example.
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Envelope Detection
This example shows how to implement two common methods of envelope detection. One method uses
squaring and lowpass filtering. The other uses the Hilbert transform. This example illustrates
MATLAB® and Simulink® implementations.

Introduction

The signal's envelope is equivalent to its outline, and an envelope detector connects all the peaks in
this signal. Envelope detection has numerous applications in the fields of signal processing and
communications, one of which is amplitude modulation (AM) detection. The following block diagram
shows the implementation of the envelope detection using the two methods.

Method 1: Squaring and Lowpass Filtering

This envelope detection method involves squaring the input signal and sending this signal through a
lowpass filter. Squaring the signal effectively demodulates the input by using itself as its own carrier
wave. This means that half the energy of the signal is pushed up to higher frequencies and half is
shifted down toward DC. You then downsample this signal to reduce the sampling frequency. You can
do downsampling if the signal does not have any high frequencies which could cause aliasing.
Otherwise an FIR decimation should be used which applies a lowpass filter before downsampling the
signal. After this, pass the signal through a minimum-phase, lowpass filter to eliminate the high
frequency energy. Finally you are left with only the signal envelope.

To maintain the correct scale, you must perform two additional operations. First, you must amplify
the signal by a factor of two. Since you are keeping only the lower half of the signal energy, this gain
matches the final energy to its original energy. Second, you must take the square root of the signal to
reverse the scaling distortion that resulted from squaring the signal.

This envelope detection method is easy to implement and can be done with a low-order filter, which
minimizes the lag of the output.
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Method 2: The Hilbert Transform

This envelope detection method involves creating the analytic signal of the input using the Hilbert
transform. An analytic signal is a complex signal, where the real part is the original signal and the
imaginary part is the Hilbert transform of the original signal.

Mathematically the envelope e(t) of a signal x(t) is defined as the magnitude of the analytic signal as
shown by the following equation.

e(t) = x(t)2 + x(t)2

where

x(t)

is the Hilbert transform of x(t).

You can find the Hilbert transform of the signal using a 32-point Parks-McClellan FIR filter. To form
the analytic signal, you then multiply the Hilbert transform of the signal by sqrt(-1) (the imaginary
unit) and add it to the time-delayed original signal. It is necessary to delay the input signal because
the Hilbert transform, which is implemented by an FIR filter, will introduce a delay of half the filter
length.

You find the envelope of the signal by taking the absolute value of the analytic signal. The envelope is
a low frequency signal compared to the original signal. To reduce its sampling frequency, to eliminate
ringing and to smooth the envelope, you downsample this signal and pass the result through a
lowpass filter.

MATLAB Example: Initialization

Initialize required variables such as those for the frame size and file name. Creating and initializing
your System objects before they are used in a processing loop is critical for getting optimal
performance.

Fs = 22050;
numSamples = 10000;
DownsampleFactor = 15;
frameSize = 10*DownsampleFactor;

Create a sine wave System object and set its properties to generate two sine waves. One sine wave
will act as the message signal and the other sine wave will be the carrier signal to produce Amplitude
Modulation.

sine = dsp.SineWave([0.4 1],[10 200], ...
    'SamplesPerFrame',frameSize, ...
    'SampleRate',Fs);

Create a lowpass FIR filter for filtering the squared signal to detect its envelope.

lp1 = dsp.FIRFilter('Numerator',firpm(20,[0 0.03 0.1 1],[1 1 0 0]));

Create three digital filter System objects. The first implements the Hilbert transformer, the second
compensates for the delay introduced by the Hilbert transformer, and the third is a lowpass filter for
detecting the signal envelope.

N = 60; % Filter order
hilbertTransformer = dsp.FIRFilter( ...
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        'Numerator',firpm(N,[0.01 .95],[1 1],'hilbert'));
delay = dsp.Delay('Length',N/2);
lp2 = dsp.FIRFilter('Numerator',firpm(20,[0 0.03 0.1 1],[1 1 0 0]));

Create and configure two time scope System objects to plot the input signal and its envelope.

scope1 = timescope( ...
  'NumInputPorts',2, ...
  'Name','Envelope detection using Amplitude Modulation', ...
  'SampleRate',[Fs,Fs/DownsampleFactor], ...
  'TimeDisplayOffset',[(N/2+frameSize)/Fs,0], ...
  'TimeSpanSource','Property', ...
  'TimeSpan',0.45, ...
  'YLimits',[-2.5 2.5], ...
  'TimeSpanOverrunAction','Scroll');
pos = scope1.Position;

scope2 = timescope( ...
  'NumInputPorts',2, ...
  'Name','Envelope detection using Hilbert Transform', ...
  'Position',[pos(1)+pos(3),pos(2:4)], ...
  'SampleRate',[Fs,Fs/DownsampleFactor], ...
  'TimeDisplayOffset',[(N/2+frameSize)/Fs,0], ...
  'TimeSpanSource','Property', ...
  'TimeSpan',0.45, ...
  'YLimits',[-2.5 2.5], ...
  'TimeSpanOverrunAction','Scroll');

MATLAB Example: Stream Processing Loop

Create the processing loop to perform envelope detection on the input signal. This loop uses the
System objects you instantiated.

for i = 1:numSamples/frameSize
    sig = sine();
    sig = (1 + sig(:,1)) .* sig(:, 2);      % Amplitude modulation

    % Envelope detector by squaring the signal and lowpass filtering
    sigsq = 2 * sig .* sig;
    sigenv1 = sqrt(lp1(downsample(sigsq,DownsampleFactor)));

    % Envelope detector using the Hilbert transform in the time domain
    sige = abs(complex(0, hilbertTransformer(sig)) + delay(sig));
    sigenv2 = lp2(downsample(sige,DownsampleFactor));

    % Plot the signals and envelopes
    scope1(sig,sigenv1);
    scope2(sig,sigenv2);
end
release(scope1);
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release(scope2);
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MATLAB Example: Envelope Detector Results

In the plots, for the envelope detection method using Hilbert transform the envelope amplitude does
not match the actual signal, because the Hilbert transform which was implemented using the FIR
filter is not ideal. That is, the magnitude response is not one for all frequencies. The shape of the
envelope still matches the actual signal's envelope.

Simulink Example: Method 1 (Squaring and Lowpass Filtering)

As above, Method 1 works by squaring the input signal and sending it through a lowpass filter.

In this Simulink example, a simple minimum-phase lowpass filter is used to remove the high
frequency energy. In order to maintain the correct scaling, two more operations are included. The
first is to place a gain of 2 on the signal. Since we are only keeping the lower half of the signal
energy, this gain boosts the final energy to match its original energy. Finally, the square root of the
signal is taken to reverse the scaling distortion from the input signal squaring operation.

This method is useful because it is very easy to implement and can be done with a low-order filter,
minimizing the lag of the output.

Simulink Example: Method 2 (The Hilbert Transform)

As above, Method 2 works by creating the analytic signal of the input using a Hilbert transformer.

In this Simulink example, the Hilbert transform of the signal is found using a 32-point Parks-
McClellan FIR filter. The Hilbert transform of the signal is then multiplied by i (the imaginary unit)
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and added to the original signal. The original signal is time-delayed before being added to the Hilbert
transform to match the delay caused by the Hilbert transform, which is one-half the length of the
Hilbert filter.

The envelope of the signal can be found by taking the absolute value of the analytic signal. In order to
eliminate ringing and smooth the envelope, the result is subjected to a lowpass filter.

Note that the Analytic Signal block found in the DSP System Toolbox™ could also be used to
implement this envelope detection design.

Simulink Example: Envelope Detector Model

The all-platform floating-point version of the Simulink model is shown below. When you run the
model, you will see the original signal and the results of both envelope detectors.

Simulink Example: Envelope Detector Results

This example shows the results of the two different envelope detectors for two different types of input
signals. The input choices are a sample speech signal or a 100 Hz sine wave that turns on and off.

The model has a switchable input and two outputs which are routed to scopes for easy viewing. If a
signal is not visible, double-click on the Scope block to open it.

The input scope plot shows the original signal. The signal lasts a total of 5 seconds, with 1 second of
data being shown at a time.
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The first output scope plot shows the output of the first envelope detector. This is the result of
squaring the original signal and sending it through a low-pass filter. You can clearly see that the
envelope was successfully extracted from the speech signal.

The second output scope plot shows the output of the second envelope detector, which employs a
Hilbert transform. Though the output of this envelope detector looks very similar to the first method,
you can see differences between them.
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DTMF Generator and Receiver
This example shows how to model a dual-tone multifrequency (DTMF) generator and receiver. The
model includes a bandpass filter bank receiver, a spectrum analyzer block showing a spectrum and
spectrogram plot of the generated tones, a shift register to store the decoded digits, and a real-time
soundcard audio on all platforms.

DTMF Generator

DTMF signaling uses two tones to represent each key on the touch pad. There are 12 distinct tones.
When any key is pressed the tone of the column and the tone of the row are generated. As an
example, pressing the '5' button generates the tones 770 Hz and 1336 Hz. In this example, use the
number 10 to represent the '*' key and 11 to represent the '#' key.

The frequencies were chosen to avoid harmonics: no frequency is a multiple of another, the difference
between any two frequencies does not equal any of the frequencies, and the sum of any two
frequencies does not equal any of the frequencies.

The frequencies of the tones are as follows:

        1209 Hz    1336 Hz    1477 Hz

697 Hz    1          2          3
770 Hz    4          5          6
852 Hz    7          8          9
941 Hz    *          0          #

DTMF Receiver

At the receiver, the tone frequencies are detected and the numbers are decoded. The DFT algorithm
can be used to detect frequencies, but since there are only 7 frequency components (4 low
frequencies and 3 high frequencies), a more efficient method is the Goertzel algorithm. This method
detects the frequency components by passing the received signal through 7 bandpass filters. The
filter bandwidths are adjustable as a percentage of the center frequency by adjusting the bandwidth
parameter on the DTMF Receiver block mask.

Running the Example

Open and run the model.

When you run the simulation, the spectrogram of the received tone will be constructed. If you use the
version of the model designed for audio hardware, the received tone is played through the system
soundcard. The detected dialed numbers will be shown on the numeric display scope. The following
parameters can be adjusted:

• Frequency bias for each tone (from the DTMF Generator mask dialog)
• Channel noise power and signal gain (from the Channel mask dialog)
• Receiver bandpass filter frequency bandwidth (from the DTMF Receiver mask dialog).
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WWV Digital Receiver - Synchronization and Detection
This example shows an implementation of a digital receiver that synchronizes to the time code
information broadcast by radio station WWV and decodes it to display time information. The example
uses the Simulink®, DSP System Toolbox™, and Stateflow® products with the MATLAB® Function
block to achieve a simple noncoherent digital receiver.

What Is WWV?

WWV is the call sign of a US government radio station run by the National Institute of Standards and
Technology in Fort Collins, Colorado. WWV transmits frequency reference standards and time code
information. The transmitted time code is referenced to a Cesium clock with a timing accuracy of 10
microseconds and a frequency accuracy of 1 part in 100 billion. The time code is transmitted using a
100-Hz audio signal with pulse-width modulation using the IRIG-B time code format.

You can find more information on WWV at Radio Station WWV.

Introduction to Synchronization

Synchronization is a common problem in Communications applications. This example shows you one
way of implementing a solution to this problem in Simulink. Consider the following simple model:

The Buffer Samples block maintains an internal circular buffer for efficient buffering of input
samples. It uses a mode where a valid output frame is computed only when it receives a Boolean
'true' at the En_Out input port. The Frame Sync Logic subsystem outputs a Boolean 'true' when an
appropriate frame, as expected by the Receiver, has been buffered. The same Boolean signal also acts
as a trigger to the Receiver subsystem, which processes the valid frame. Due to this arrangement, the
output sections of the Buffer Samples block and the Receiver subsystem only run when required. This
arrangement is used in two places in this example, once for symbol synchronization and
demodulation and then again for frame synchronization and decoding.
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Exploring the Example

The example model consists of the following parts, which are described in the sections below:

• Transmitter - Generates and transmits a BCD time code
• Random Channel Delay - Adds random delay to the transmitted signal
• Model - References dspwwv_receiver model through a Model (Simulink). This model consists of:

1 Receiver - Demodulates the received time code, synchronizes and locks in with the received
signal, and detects the BCD symbols

2 Decoder - Decodes the BCD symbols

• Display - displays the corresponding time and date information

Note that dspwwv does not support code generation, but dspwwv_receiver does.

Transmitter

This subsystem generates a Binary Coded Decimal (BCD) time code on an 100-Hz tone. The sampling
rate (Ts) used by the Simulink model is 8000 samples/sec. The time code broadcast by WWV provides
UTC (Coordinated Universal Time) information serially at a speed of 1 bit per second. It requires 60
bits, or one minute, to send the entire time code. Various bits in each time code convey the following
information:

• 24 hour time (UTC)
• UT1 time correction
• Year
• Day of year
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• Daylight Savings indicators
• Leap seconds correction

Refer to the 'WWV Time Code Bits' and 'WWV Time Code Format' sections at the NIST website for
more information on the time code. Depending on whether you select 'Current' or 'User-specified' for
the Display time parameter on the transmitter subsystem mask, the subsystem generates the
corresponding 60 BCD time code symbols. Each symbol is represented using Pulse Width Modulation
(PWM) of an 100-Hz tone and is output from the Transmitter subsystem. One of the following possible
symbols are transmitted each second:

1 MISS - No pulse is sent at the beginning of each frame, to indicate the start of a new frame
2 ZERO - A 170-ms pulse indicates a 0 bit
3 ONE - A 470-ms pulse indicates a 1 bit
4 MARKER - A 770-ms pulse is sent every 10 seconds for synchronization

The transmitted symbols are mapped to the following integer values in the Simulink model:

• 0 - MISS
• 1 - ZERO
• 2 - ONE
• 3 - MARKER

This transmitted tone is identical to the tone transmitted on the WWV subcarrier.

Random Channel Delay

This subsystem adds random delay to the transmitted signal. The receiver section synchronizes to the
transmitted symbols and decodes the appropriate time code, even in the presence of an unknown
delay.

Model - dspwwv_receiver Referenced Model

Double-click the Model block to open the dspwwv_receiver model. This model has all the
components for appropriately demodulating, synchronizing, and detecting the transmitted signal. It
consists of the following three subsystems:

R1 - Receiver

Double-click the Receiver Subsystem to view its component subsystems:

1) Downconvert and Downsample accepts as input the pulse width modulated signal. The
subsystem demodulates the received signal by performing envelope detection, then performs lowpass
filtering and downsamples by 80. Therefore, there are 100 samples for every transmitted symbol in
the demodulated signal (dm). The output of this subsystem is a sequence of variable length square
pulses.

2) AGC (Automatic Gain Control) estimates the amplitude of the dm signal, which is later used in
thresholding the dm signal.

3) Symbol Timing Recovery and Buffer for Demod is used to achieve symbol synchronization and
buffer the symbols for demodulation. It contains the following subsystems:

3.1) Leading Edge Detector takes in the demodulated signal dm and quantizes it into a Boolean
signal. The Detect output signal is 'true' if the value of the dm signal is greater than the AGC value,
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otherwise it is 'false'. The subsystem also outputs the Boolean signal Edge that contains the rising
edges of the dm signal.

3.2) Symbol Sync achieves symbol synchronization and creates a clock signal synchronized to the
WWV signal. Note that the frame synchronization is done later on, in the Decoder section.
Synchronization makes use of the Stateflow temporal logic feature. This Stateflow chart is composed
of three parts:

1 SymbolSync - This chart is further divided into Sync State and Lock State charts
2 Clock Synchronization
3 Integration

Below are shown the Symbol Timing Recovery and Buffer for Demod subsystem and the Symbol
Sync state chart.

3.2.1) SymbolSync performs symbol synchronization. The chart takes as input the rising edges
(Edge) of the dm signal, which are approximately 100 samples apart.

The internal parameters of this chart are:

• N1 - Actual number of samples between two edges
• N1est - Estimate of the number of samples between two edges (initial value 100)
• Nwin - Window in which to find another edge after N1est samples (default value 11 samples)
• Nhalfwin - Half of the window length (default value 6)
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Sync State - To start synchronization, this chart looks for a rising edge, followed by a period of silence
(no edges) for approximately 100 samples, and then looks for another rising edge in a window
centered at that point. If the chart succeeds in doing this, the system claims to be synchronized and
assumes that the rest of the symbols are valid symbols. Otherwise, the chart waits for such a pattern
to occur again and keeps waiting until it succeeds:

1 The 'Sync' state chart waits for an edge and then seeks silence (no other edge) for at least dly = '
N1est - Nhalfwin + 1 ' samples.

2 If this chart does not see silence in that duration (dly samples) and finds another edge, it treats
the new edge as the reference edge and again seeks silence.

3 This chart repeats steps 1 and 2 until it succeeds in seeking silence for the next dly samples after
the reference edge.

4 Once silence for dly samples is detected, this chart calculates how many samples (cnt) after dly
samples it found another edge. If the next edge is found within the Nwin window, it transitions to
the 'Lock' state to start receiving the subsequent symbols. If the next edge is not found within
Nwin window samples, it discards the reference edge and starts searching for the reference edge
again as described in steps 1-3.

Lock State - Once synchronized, this chart looks for the next symbol in a window centered at
approximately every 100 samples and remains synchronized as long as it finds symbols. If the chart
does not find any symbols for two consecutive times (approximately 200 samples), then it is no longer
synchronized and tries to establish synchronization again as described above:

1 Once transitioned into the 'Lock' state, this chart assumes that the edges should now come in
periodically (approximately every N1est samples).

2 The chart updates N1 to N1+Nhalfwin-cnt and ignores the next dly = N1-Nhalfwin+1 samples,
and then searches for the next edge in a window of Nwin samples after that.

3 It keeps track of the number of samples in the window (cnt) after which it found the next edge. If
it found an edge within the window, it again update N1 as mentioned above.

4 Based on the new cnt value, it calculates the new dly and starts looking for the new edge as
mentioned above.

5 The chart allows for not having found an edge within Nwin window once to account for the MISS
symbol, but if that happens two consecutive times it gets out of the Lock state and starts symbol
synchronization again by transitioning into the Sync state.

3.2.2) Clock Synchronization generates a clock signal when a new rising edge of the dm signal is
received. This way the clock is synchronized with the occurrence of a new edge, rather than with the
Simulink clock running periodically at a fixed rate.

3.2.3) Integration generates a template step function with a 17-sample width to represent a ZERO
symbol when an edge is found, this is, whenever a clock is generated. This signal is used by the AGC
subsystem.

3.3) Symbol Buffer for Downstream Demod buffers samples corresponding to a symbol when it
receives a clock signal (computed above in 3.2.2).

4) Symbol Demod and Frame Buffer is triggered every time it receives a nonzero clock signal. It
uses the Vector Quantization block to perform symbol demodulation by comparing the input 'Symbols'
buffer against the four possible symbol candidates (MISS, ZERO, ONE and MARKER). It outputs the
symbol with the best match. The Delay Line block is used to buffer 60 consecutive symbols to create
the 'WWV frame buffer.' The Frame Sync Logic subsystem preceding the Delay Line block looks for
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the occurrence of a consecutive MARKER and a MISS symbol, since this pattern indicates the start of
a new WWV frame. The Delay Line block outputs a valid buffer only when this pattern in found. The
subsequent IRIG-B decoder is also triggered at that instant.

R2 - IRIG-B Frame Decoder

The IRIG-B Frame Decoder triggered subsystem consists of a MATLAB Function block that is used to
decode the IRIG-B format symbol frames into individual elements of the time code. This subsystem is
triggered only when a valid WWV frame is received.

Display

The transmitted symbols are displayed on the Decoded Symbols scope and the decoded time code
information is displayed on the 'Time code' display and 'WWV time code' window. The boxes on the
'WWV time code' window represent LEDs that light up when the corresponding signal is true. The
LED corresponding to Daylight Savings is split into two parts, where the first part is the 'Daylight
savings indicator 1' and the second part is the 'Daylight savings indicator 2.' The Clock Drift plot
indicates the number of samples between rising edges of successive symbols ( symbolClk ) as they
are received. This plot varies between 95 and 105 samples.

Using the dspwwv Example Model

Simulate the model. You will see the clock drift, the corresponding BCD time-code symbols and the
current time displayed (shown below in that order.)
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When the Display time parameter is set to 'Current', the model continues to display the current
time, which is updated once every minute. You can change the Display time parameter of the
Transmitted subsystem to 'User-defined' and specify any time you want to display.
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Real-Time ECG QRS Detection
This example shows how to detect the QRS complex of electrocardiogram (ECG) signal in real-time.
Model based design is used to assist in the development, testing and deployment of the algorithm.

Introduction

The electrocardiogram (ECG) is a recording of body surface potentials generated by the electrical
activity of the heart. Clinicians can evaluate an individual's cardiac condition and overall health from
the ECG recording and perform further diagnosis.

A normal ECG waveform is illustrated in the following figure [1]. Because of the physiological
variability of the QRS complex and various types of noise present in the real ECG signal, it is
challenging to accurately detect the QRS complex.

The Noise sources that corrupt the raw ECG signals include:

• Baseline wander

• Power line interference (50 Hz or 60 Hz)

• Electromyographic (EMG) or muscle noise

• Artifacts due to electrode motion

• Electrode Contact Noise
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ECG Signal Source

The ECG signals used in the development and testing of the biomedical signal processing algorithms
are mainly from three sources: 1) Biomedical databases (e.g., MIT-BIH Arrhythmia Database) or other
pre-recorded ECG data; 2) ECG simulator; 3) Real-time ECG data acquisition.

In this example, the following pre-recorded and simulated ECG signals are used. The signals all have
sampling frequencies of 360 Hz.

• one set of recorded real ECG data sampled from a healthy volunteer with a mean heart rate of 82
beats per minute (bpm). This ECG data was pre-filtered and amplified by the analog front end
before feeding it to the 12 bit ADC.

• four sets of synthesized ECG signals with different mean heart rates ranging from 45 bpm to 220
bpm. ECGSYN is used to generate synthetic ECG signals in MATLAB.

Here are the settings for generating the synthesized ECG data:

• Sampling frequency: 360 Hz;

• Additive uniformly distributed measurement noise: 0.005 mV;
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• Standard deviation of heart rate : 1 bpm.

ECG Signal Pre-processing and Filtering

A real-time QRS detection algorithm, which references [1, lab one], [3] and [4], is developed in
Simulink with the assumption that the sampling frequency of the input ECG signal is always 200 Hz
(or 200 samples/s). However, the recorded real ECG data may have different sampling frequencies
ranging from 200 Hz to 1000 Hz, e.g., 360 Hz in this example. To bridge the different sampling
frequencies, a sample rate converter block is used to convert the sample rate to 200 Hz. A buffer
block is inserted to ensure the length of the input ECG signal is a multiple of the calculated
decimation factor of the sample-rate converter block.

The ECG signal is filtered to generate a windowed estimate of the energy in the QRS frequency band.
The filtering operation has these steps:

1. FIR Bandpass filter with a pass band from 5 to 26 Hz

2. Taking the derivative of the bandpass filtered signal

3. Taking the absolute value of the signal

4. Averaging the absolute value over an 80 ms window
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Real-Time QRS Detection of ECG Signal

The QRS detection block detects peaks of the filtered ECG signal in real-time. The detection
threshold is automatically adjusted based on the mean estimate of the average QRS peak and the
average noise peak. The detected peak is classified as a QRS complex or as noise, depending on
whether it is above the threshold.

The following QRS detection rules reference the PIC-based QRS detector implemented in [4].

Rule 1. Ignore all peaks that precede or follow larger peaks by less than 196 ms (306bpm).

Rule 2. If a peak occurs, check to see whether the raw signal contains both positive and negative
slopes. If true, report a peak being found. Otherwise, the peak represents a baseline shift.

Rule 3. If the peak is larger than the detection threshold, classify it as a QRS complex. Otherwise
classify it as noise.

Rule 4. If no QRS has been detected within 1.5 R-to-R intervals, but there is a peak that was larger
than half the detection threshold, and that peak followed the preceding detection by at least 360ms,
classify that peak as a QRS complex.

Simulate and Deploy

1. Open the example model.

2. Change your current folder in MATLAB® to a writable folder.

3. On the model tool strip, click Run to start the simulation. Observe the HeartRate display and the
raw and filtered ECG signal in the scope, which also illustrates the updating of peaks, threshold and
estimated mean heart rate.

4. Open the dialog of ECG Signal Selector block. Select the ECG signal mean heart rate in the drop
down menu. Click Apply and observe the real-time detection results in the scopes and HeartRate
display.

5. Click Stop to end simulation.

6. After selecting target hardware, you can generate code from the ECGSignalProcessing
subsystem and deploy it to the target.
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Internet Low Bitrate Codec (iLBC) for VoIP
This example implements the Internet Low Bitrate Codec (iLBC) and illustrates its use. iLBC is
designed for encoding and decoding speech for transmission via VoIP (Voice Over Internet Protocol).

VoIP

Voice over Internet Protocol is the family of technologies that allows IP networks to be used for voice
applications such as telephony and teleconferencing. Compression is normally required to reduce the
bandwidth requirements of these applications. For efficiency, VoIP is often implemented using the
lightweight but unreliable User Datagram Protocol (UDP). Packet loss correction is needed to
maintain received voice quality over lossy networks.

Basic iLBC Design and Performance

iLBC is designed for compression of speech to be transmitted over the Internet. Thus, its algorithms
are only meant to cover the narrow frequency range of 90-4000 Hz and it implements perceptual
coding tuned to normal speech. All input signals to the iLBC encoder must be Pulse Code Modulated
(PCM) speech signals sampled at exactly 8000 Hz with 16-bit samples ranging from -32768 to
+32767.

iLBC is defined for two different transmission rates, with a packet of data being encoded either after
every 30ms or after every 20ms of speech. The advantage of encoding every 30ms is that the encoded
data rate is lower: 13.33 kbit/sec as opposed to 15.20 kbit/sec for 20ms frames. However, encoding
every 30ms leads to 50% more delay in the received speech, which can cause undesirable latency.

Since all inputs to iLBC must be 8000 Hz, 16-bit PCM speech, the input rate is (8000 Hz) * (16 bits) =
128 kbit/sec. Thus, iLBC compresses the speech to 10.4% and 11.9% of the original data-rate for
13.33 kbit/sec and 15.20 kbit/sec modes, respectively.

In addition to encoding to low data transmission rates, iLBC provides a framework for easily
implementing Packet Loss Correction (PLC) systems. The codec is meant for real-time speech over
the Internet, but the Internet is subject to random delays in routing information in real-time, which
renders many packets useless to the iLBC decoder. The job of a PLC is to interpolate the speech for
missing packets based on the packets before and immediately after the missing one. Though iLBC
does not define a specific PLC algorithm, this example implements a simple PLC for illustration.

The iLBC Example Model

The model shown below reads in a speech signal and, after passing through iLBC, plays the output
with the default audio device.

Open and run the model.
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Using the iLBC Example Model

The top level of this example model consists of just a handful of simple blocks. The basic operation is
to load a speech signal and pass it to the iLBC Encoder block to convert it to a stream of iLBC
packets. Next, the packets are sent through a simulated lossy channel, which causes random packets
to be set to all zeros. Finally, the packets are sent to the iLBC Decoder block to be converted back
into a speech signal, which is then played. In addition, there is a manual switch that can be toggled as
the model runs to compare the original speech signal with the decoded signal.

Double clicking on the configuration block in the upper right corner of the model brings up a dialog,
where it is possible to change the data transmission rate to one of the two iLBC modes (13.33 kbit/sec
or 15.20 kbit/sec). The decoder's transmission rate must be set to the same as the encoder, or else an
error will occur. In addition, the user may specify whether to use double or single precision for all
internal calculations in the encoder and decoder.

Double clicking on the Lossy Channel subsystem brings up a dialog that allows the percentage of lost
packets to be set. The iLBC Decoder's Packet Loss Concealment algorithm is tuned to correct for
0-10% packet loss. Packet loss rates higher than 10% will be easily audible.

The iLBC encoder and decoder blocks are implemented as subsystems in this model. In order to
accommodate a level of reuse, they also make use of a example library, which can be found at
dspilbclib. This library contains four helper blocks used by the encoder and decoder. Feel free to open
the library and look under the blocks to see how iLBC was implemented in Simulink®.
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Filter Analysis, Design, and
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• “Design a Filter in Fdesign — Process Overview” on page 5-2
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• “Using Filter Realization Wizard” on page 5-84
• “Digital Filter Implementations” on page 5-94
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• “Minimax FIR Filter Design” on page 5-104
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Design a Filter in Fdesign — Process Overview

Process Flow Diagram and Filter Design Methodology
• “Exploring the Process Flow Diagram” on page 5-2
• “Select a Response” on page 5-4
• “Select a Specification” on page 5-4
• “Select an Algorithm” on page 5-5
• “Customize the Algorithm” on page 5-6
• “Design the Filter” on page 5-7
• “Design Analysis” on page 5-7
• “Realize or Apply the Filter to Input Data” on page 5-8

Note

Exploring the Process Flow Diagram

The process flow diagram shown in the following figure lists the steps and shows the order of the
filter design process.
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The first four steps of the filter design process relate to the filter Specifications Object, while the last
two steps involve the filter Implementation Object. Both of these objects are discussed in more detail
in the following sections. Step 5 - the design of the filter, is the transition step from the filter
Specifications Object to the Implementation object. The analysis and verification step is completely
optional. It provides methods for the filter designer to ensure that the filter complies with all design
criteria. Depending on the results of this verification, you can loop back to steps 3 and 4, to either
choose a different algorithm, or to customize the current one. You may also wish to go back to steps 3
or 4 after you filter the input data with the designed filter (step 7), and find that you wish to tweak
the filter or change it further.

The diagram shows the help command for each step. Enter the help line at the MATLAB command
prompt to receive instructions and further documentation links for the particular step. Not all of the
steps have to be executed explicitly. For example, you could go from step 1 directly to step 5, and the
interim three steps are done for you by the software.
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The following are the details for each of the steps shown above.

Select a Response

If you type:

help fdesign/responses

at the MATLAB command prompt, you see a list of all available filter responses.

You must select a response to initiate the filter. In this example, a bandpass filter Specifications
Object is created by typing the following:

d = fdesign.bandpass

Select a Specification

A specification is an array of design parameters for a given filter. The specification is a property of the
Specifications Object.

Note A specification is not the same as the Specifications Object. A Specifications Object contains a
specification as one of its properties.

When you select a filter response, there are a number of different specifications available. Each one
contains a different combination of design parameters. After you create a filter Specifications Object,
you can query the available specifications for that response. Specifications marked with an asterisk
require the DSP System Toolbox.

d = fdesign.bandpass; % step 1 - choose the response
set (d, 'specification')

ans =

  16×1 cell array

    'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
    'N,F3dB1,F3dB2'
    'N,F3dB1,F3dB2,Ap'
    'N,F3dB1,F3dB2,Ast'
    'N,F3dB1,F3dB2,Ast1,Ap,Ast2'
    'N,F3dB1,F3dB2,BWp'
    'N,F3dB1,F3dB2,BWst'
    'N,Fc1,Fc2'
    'N,Fc1,Fc2,Ast1,Ap,Ast2'
    'N,Fp1,Fp2,Ap'
    'N,Fp1,Fp2,Ast1,Ap,Ast2'
    'N,Fst1,Fp1,Fp2,Fst2'
    'N,Fst1,Fp1,Fp2,Fst2,C'
    'N,Fst1,Fp1,Fp2,Fst2,Ap'
    'N,Fst1,Fst2,Ast'
    'Nb,Na,Fst1,Fp1,Fp2,Fst2'

d = fdesign.arbmag; 
set(d,'specification')

ans =
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  7×1 cell array

    'N,F,A'
    'F,A,R'
    'Nb,Na,F,A'
    'N,B,F,A'
    'N,B,F,A,C'
    'B,F,A,R'
    'Nb,Na,B,F,A'

The set command can be used to select one of the available specifications as follows:

d = fdesign.lowpass;
% step 1: get a list of available specifications
set (d, 'specification') 

ans =

  18×1 cell array

    'Fp,Fst,Ap,Ast'
    'N,F3dB'
    'Nb,Na,F3dB'
    'N,F3dB,Ap'
    'N,F3dB,Ap,Ast'
    'N,F3dB,Ast'
    'N,F3dB,Fst'
    'N,Fc'
    'N,Fc,Ap,Ast'
    'N,Fp,Ap'
    'N,Fp,Ap,Ast'
    'N,Fp,F3dB'
    'N,Fp,Fst'
    'N,Fp,Fst,Ap'
    'N,Fp,Fst,Ast'
    'N,Fst,Ap,Ast'
    'N,Fst,Ast'
    'Nb,Na,Fp,Fst'

% step 2: set the required specification
 set (d, 'specification', 'N,Fc') 

If you do not perform this step explicitly, fdesign returns the default specification for the response
you chose in “Select a Response” on page 5-4, and provides default values for all design parameters
included in the specification.

Select an Algorithm

The availability of algorithms depends the chosen filter response, the design parameters, and the
availability of the DSP System Toolbox. In other words, for the same lowpass filter, changing the
specification entry also changes the available algorithms. In the following example, for a lowpass
filter and a specification of 'N, Fc', only one algorithm is available—window.

% step 2: set the required specification
set (d, 'specification', 'N,Fc') 
% step 3: get available algorithms
designmethods (d,'Systemobject',true) 

 Design a Filter in Fdesign — Process Overview

5-5



Design Methods that support System objects for class fdesign.lowpass (N,Fc):

window

However, for a specification of 'Fp,Fst,Ap,Ast', a number of algorithms are available.

set (d, 'specification', 'Fp,Fst,Ap,Ast')
designmethods(d,'Systemobject',true)

Design Methods that support System objects for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

The user chooses a particular algorithm and implements the filter with the design function.

filt = design(d,'butter','Systemobject',true)

filt = 

  dsp.BiquadFilter with properties:

                   Structure: 'Direct form II'
             SOSMatrixSource: 'Property'
                   SOSMatrix: [13×6 double]
                 ScaleValues: [14×1 double]
           InitialConditions: 0
    OptimizeUnityScaleValues: true

  Show all properties

The preceding code creates the filter, where filt is the filter Implementation Object. This concept is
discussed further in the next step.

If you do not perform this step explicitly, design automatically selects the optimum algorithm for the
chosen response and specification.

Customize the Algorithm

The customization options available for any given algorithm depend not only on the algorithm itself,
selected in “Select an Algorithm” on page 5-5, but also on the specification selected in “Select a
Specification” on page 5-4. To explore all the available options, type the following at the MATLAB
command prompt:

help (d, 'algorithm-name')

where d is the Filter Specification Object, and algorithm-name is the name of the algorithm in
single quotes, such as 'butter' or 'cheby1'.

The application of these customization options takes place while “Design the Filter” on page 5-7,
because these options are the properties of the filter Implementation Object, not the Specification
Object.
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If you do not perform this step explicitly, the optimum algorithm structure is selected.

Design the Filter

To create a filter, use the design command:

% Design filter without specifying the algorithm
filt = design(d,'Systemobject',true);

where filt is the filter object and d is the Specifications Object. This code creates a filter without
specifying the algorithm. When the algorithm is not specified, the software selects the best available
one.

To apply the algorithm chosen in “Select an Algorithm” on page 5-5, use the same design command,
but specify the algorithm as follows:

filt = design(d,'butter','Systemobject',true)

where filt is the new filter object, and d is the specifications object.

To obtain help and see all the available options, type:

help fdesign/design

This help command describes not only the options for the design command itself, but also options
that pertain to the method or the algorithm. If you are customizing the algorithm, you apply these
options in this step. In the following example, you design a bandpass filter, and then modify the filter
structure:
filt = design(d, 'butter', 'filterstructure', 'df2sos','Systemobject',true)

filt = 

  dsp.BiquadFilter with properties:

                   Structure: 'Direct form II'
             SOSMatrixSource: 'Property'
                   SOSMatrix: [13×6 double]
                 ScaleValues: [14×1 double]
           InitialConditions: 0
    OptimizeUnityScaleValues: true

  Show all properties

The filter design step, just like the first task of choosing a response, must be performed explicitly. A
filter object is created only when design is called.

Design Analysis

After the filter is designed, you may wish to analyze it to determine if the filter satisfies the design
criteria. Filter analysis is broken into these main sections:

• Frequency domain analysis — Includes the frequency response, group delay, pole-zero plots, and
phase response through the functions freqz, grpdelay, zplane, and phasez.

• Time domain analysis — Includes impulse and step response through the functions impz and
stepz.
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• Implementation analysis — Includes cost estimate for implementing the filter, power spectral
density of the filter output due to roundoff noise, and frequency response estimate of the filter
through the functions cost, noisepsd, and freqrespest.

For a list of analysis methods for a discrete-time filter, enter the following in the MATLAB command
prompt:

dsp.<sysobjName>.helpFilterAnalysis

Replace <sysobjName> with the name of the System object. Alternatively, you can see the list of
analysis methods under the “Filter Analysis” category.

To analyze your filter, you must explicitly perform this step.

Realize or Apply the Filter to Input Data

After the filter is designed and optimized, it can be used to filter actual input data.

y = filt(x)

This step is never automatically performed for you. To filter your data, you must explicitly execute
this step.

Note y = filt(x) runs only in R2016b or later. If you are using an earlier release, replace y =
filt(x) with y = step(filt,x).

Note If you have Simulink, you have the option of exporting this filter to a Simulink block using the
realizemdl command. To get help on this command, type:

help realizemdl
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Use Filter Designer with DSP System Toolbox Software
In this section...
“Design Advanced Filters in Filter Designer” on page 5-9
“Access the Quantization Features of Filter Designer” on page 5-11
“Quantize Filters in Filter Designer” on page 5-13
“Analyze Filters with a Noise-Based Method” on page 5-18
“Scale Second-Order Section Filters” on page 5-22
“Reorder the Sections of Second-Order Section Filters” on page 5-25
“View SOS Filter Sections” on page 5-28
“Import and Export Quantized Filters” on page 5-32
“Generate MATLAB Code” on page 5-35
“Import XILINX Coefficient (.COE) Files” on page 5-35
“Transform Filters Using Filter Designer” on page 5-36
“Design Multirate Filters in Filter Designer” on page 5-42
“Realize Filters as Simulink Subsystem Blocks” on page 5-50

Design Advanced Filters in Filter Designer
• “Overview of Filter Designer Features” on page 5-9
• “Use Filter Designer with DSP System Toolbox Software” on page 5-10
• “Design a Notch Filter” on page 5-10

Overview of Filter Designer Features

DSP System Toolbox software adds new dialog boxes and operating modes, and new menu selections,
to the filter designer provided by Signal Processing Toolbox software. From the additional dialog
boxes, one titled Set Quantization Parameters and one titled Frequency Transformations, you
can:

• Design advanced filters that Signal Processing Toolbox software does not provide the design tools
to develop.

• View Simulink models of the filter structures available in the toolbox.
• Quantize double-precision filters you design in this app using the design mode.
• Quantize double-precision filters you import into this app using the import mode.
• Analyze quantized filters.
• Scale second-order section filters.
• Select the quantization settings for the properties of the quantized filter displayed by the tool:

• Coefficients — select the quantization options applied to the filter coefficients
• Input/output — control how the filter processes input and output data
• Filter Internals — specify how the arithmetic for the filter behaves

• Design multirate filters.
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• Transform both FIR and IIR filters from one response to another.

After you import a filter into filter designer, the options on the quantization dialog box let you
quantize the filter and investigate the effects of various quantization settings.

Options in the frequency transformations dialog box let you change the frequency response of your
filter, keeping various important features while changing the response shape.

Use Filter Designer with DSP System Toolbox Software

Adding DSP System Toolbox software to your tool suite adds a number of filter design techniques to
filter designer. Use the new filter responses to develop filters that meet more complex requirements
than those you can design in Signal Processing Toolbox software. While the designs in filter designer
are available as command line functions, the graphical user interface of filter designer makes the
design process more clear and easier to accomplish.

As you select a response type, the options in the right panes in filter designer change to let you set
the values that define your filter. You also see that the analysis area includes a diagram (called a
design mask) that describes the options for the filter response you choose.

By reviewing the mask you can see how the options are defined and how to use them. While this is
usually straightforward for lowpass or highpass filter responses, setting the options for the arbitrary
response types or the peaking/notching filters is more complicated. Having the masks leads you to
your result more easily.

Changing the filter design method changes the available response type options. Similarly, the
response type you select may change the filter design methods you can choose.

Design a Notch Filter

Notch filters aim to remove one or a few frequencies from a broader spectrum. You must specify the
frequencies to remove by setting the filter design options in filter designer appropriately:

• Response Type
• Design Method
• Frequency Specifications
• Magnitude Specifications

Here is how you design a notch filter that removes concert A (440 Hz) from an input musical signal
spectrum.

1 Select Notching from the Differentiator list in Response Type.
2 Select IIR in Filter Design Method and choose Single Notch from the list.
3 For the Frequency Specifications, set Units to Hz and Fs, the full scale frequency, to 1000.
4 Set the location of the center of the notch, in either normalized frequency or Hz. For the notch

center at 440 Hz, enter 440.
5 To shape the notch, enter the bandwidth, bw, to be 40.
6 Leave the Magnitude Specification in dB (the default) and leave Apass as 1.
7 Click Design Filter.

filter designer computes the filter coefficients and plots the filter magnitude response in the
analysis area for you to review.
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When you design a single notch filter, you do not have the option of setting the filter order — the
Filter Order options are disabled.

Your filter should look about like this:

For more information about a design method, refer to the online Help system. For instance, to get
further information about the Q setting for the notch filter in filter designer, enter

doc iirnotch

at the command line. This opens the Help browser and displays the reference page for function
iirnotch.

Designing other filters follows a similar procedure, adjusting for different design specification options
as each design requires.

Any one of the designs may be quantized in filter designer and analyzed with the available analyses
on the Analysis menu.

Access the Quantization Features of Filter Designer
You use the quantization panel in filter designer to quantize filters. Quantization represents the fourth
operating mode for filter designer, along with the filter design, filter transformation, and import
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modes. To switch to quantization mode, open filter designer from the MATLAB command prompt by
entering

filterDesigner

When filter designer opens, click the Set Quantization Parameters button on the side bar. Filter
designer switches to quantization mode and you see the following panel at the bottom of filter
designer, with the default double-precision option shown for Filter arithmetic.

The Filter arithmetic option lets you quantize filters and investigate the effects of changing
quantization settings. To enable the quantization settings in filter designer, select Fixed-point from
the Filter Arithmetic.

The quantization options appear in the lower panel of filter designer. You see tabs that access various
sets of options for quantizing your filter.

You use the following tabs in the dialog box to perform tasks related to quantizing filters in filter
designer:

• Coefficients provides access the settings for defining the coefficient quantization. This is the
default active panel when you switch filter designer to quantization mode without a quantized
filter in the tool. When you import a fixed-point filter into filter designer, this is the active pane
when you switch to quantization mode.

• Input/Output switches filter designer to the options for quantizing the inputs and outputs for
your filter.
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• Filter Internals lets you set a variety of options for the arithmetic your filter performs, such as
how the filter handles the results of multiplication operations or how the filter uses the
accumulator.

• Apply — applies changes you make to the quantization parameters for your filter.

Quantize Filters in Filter Designer
• “Set Quantization Parameters” on page 5-13
• “Coefficients Options” on page 5-13
• “Input/Output Options” on page 5-14
• “Filter Internals Options” on page 5-15
• “Filter Internals Options for CIC Filters” on page 5-17

Set Quantization Parameters

Quantized filters have properties that define how they quantize data you filter. Use the Set
Quantization Parameters dialog box in filter designer to set the properties. Using options in the
Set Quantization Parameters dialog box, filter designer lets you perform a number of tasks:

• Create a quantized filter from a double-precision filter after either importing the filter from your
workspace, or using filter designer to design the prototype filter.

• Create a quantized filter that has the default structure (Direct form II transposed) or any structure
you choose, and other property values you select.

• Change the quantization property values for a quantized filter after you design the filter or import
it from your workspace.

When you click Set Quantization Parameters, and then change Filter arithmetic to Fixed-
point, the quantized filter panel opens in filter designer, with the coefficient quantization options set
to default values.

Coefficients Options

To let you set the properties for the filter coefficients that make up your quantized filter, filter
designer lists options for numerator word length (and denominator word length if you have an IIR
filter). The following table lists each coefficients option and a short description of what the option
setting does in the filter.

Option Name When Used Description
Numerator Word Length FIR filters only Sets the word length used to represent

numerator coefficients in FIR filters.
Numerator Frac. Length FIR/IIR Sets the fraction length used to interpret

numerator coefficients in FIR filters.
Numerator Range (+/-) FIR/IIR Lets you set the range the numerators

represent. You use this instead of the
Numerator Frac. Length option to set
the precision. When you enter a value x,
the resulting range is -x to x. Range must
be a positive integer.
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Option Name When Used Description
Coefficient Word Length IIR filters only Sets the word length used to represent

both numerator and denominator
coefficients in IIR filters. You cannot set
different word lengths for the numerator
and denominator coefficients.

Denominator Frac. Length IIR filters Sets the fraction length used to interpret
denominator coefficients in IIR filters.

Denominator Range (+/-) IIR filters Lets you set the range the denominator
coefficients represent. You use this instead
of the Denominator Frac. Length option
to set the precision. When you enter a
value x, the resulting range is -x to x.
Range must be a positive integer.

Best-precision fraction lengths All filters Directs filter designer to select the
fraction lengths for numerator (and
denominator where available) values to
maximize the filter performance. Selecting
this option disables all of the fraction
length options for the filter.

Scale Values frac. length SOS IIR filters Sets the fraction length used to interpret
the scale values in SOS filters.

Scale Values range (+/-) SOS IIR filters Lets you set the range the SOS scale
values represent. You use this with SOS
filters to adjust the scaling used between
filter sections. Setting this value disables
the Scale Values frac. length option.
When you enter a value x, the resulting
range is -x to x. Range must be a positive
integer.

Use unsigned representation All filters Tells filter designer to interpret the
coefficients as unsigned values.

Scale the numerator coefficients
to fully utilize the entire
dynamic range

All filters Directs filter designer to scale the
numerator coefficients to effectively use
the dynamic range defined by the
numerator word length and fraction
length format.

Input/Output Options

The options that specify how the quantized filter uses input and output values are listed in the table
below.

Option Name When Used Description
Input Word Length All filters Sets the word length used to represent the

input to a filter.
Input fraction length All filters Sets the fraction length used to interpret input

values to filter.
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Option Name When Used Description
Input range (+/-) All filters Lets you set the range the inputs represent. You

use this instead of the Input fraction length
option to set the precision. When you enter a
value x, the resulting range is -x to x. Range
must be a positive integer.

Output word length All filters Sets the word length used to represent the
output from a filter.

Avoid overflow All filters Directs the filter to set the fraction length for
the input to prevent the output values from
exceeding the available range as defined by the
word length. Clearing this option lets you set
Output fraction length.

Output fraction length All filters Sets the fraction length used to represent
output values from a filter.

Output range (+/-) All filters Lets you set the range the outputs represent.
You use this instead of the Output fraction
length option to set the precision. When you
enter a value x, the resulting range is -x to x.
Range must be a positive integer.

Stage input word length SOS filters only Sets the word length used to represent the
input to an SOS filter section.

Avoid overflow SOS filters only Directs the filter to use a fraction length for
stage inputs that prevents overflows in the
values. When you clear this option, you can set
Stage input fraction length.

Stage input fraction
length

SOS filters only Sets the fraction length used to represent input
to a section of an SOS filter.

Stage output word length SOS filters only Sets the word length used to represent the
output from an SOS filter section.

Avoid overflow SOS filters only Directs the filter to use a fraction length for
stage outputs that prevents overflows in the
values. When you clear this option, you can set
Stage output fraction length.

Stage output fraction
length

SOS filters only Sets the fraction length used to represent the
output from a section of an SOS filter.

Filter Internals Options

The options that specify how the quantized filter performs arithmetic operations are listed in the
table below.
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Option Equivalent Filter Property
(Using Wildcard *)

Description

Round towards RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths). Choose from one of:

• ceil - Round toward positive infinity.
• convergent - Round to the closest

representable integer. Ties round to the
nearest even stored integer. This is the least
biased of the methods available in this
software.

• fix/zero - Round toward zero.
• floor - Round toward negative infinity.
• nearest - Round toward nearest. Ties

round toward positive infinity.
• round - Round toward nearest. Ties round

toward negative infinity for negative
numbers, and toward positive infinity for
positive numbers.

Overflow Mode OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic.

Filter Product (Multiply) Options
Product Mode ProductMode Determines how the filter handles the output of

product operations. Choose from full precision
(FullPrecision), or whether to keep the
most significant bit (KeepMSB) or least
significant bit (KeepLSB) in the result when
you need to shorten the word length. Specify
all lets you set the fraction length applied to
the results of product operations.

Product word length *ProdWordLength Sets the word length applied to interpret the
results of multiply operations.

Num. fraction length NumProdFracLength Sets the fraction length used to interpret the
results of product operations that involve
numerator coefficients.

Den. fraction length DenProdFracLength Sets the fraction length used to interpret the
results of product operations that involve
denominator coefficients.

Filter Sum Options
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Option Equivalent Filter Property
(Using Wildcard *)

Description

Accum. mode AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output results
need shorter word length than the accumulator
supports. To let you set the word length and the
precision (the fraction length) used by the
output from the accumulator, set this to
Specify all.

Accum. word length *AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Num. fraction length NumAccumFracLength Sets the fraction length used to interpret the
numerator coefficients.

Den. fraction length DenAccumFracLength Sets the fraction length the filter uses to
interpret denominator coefficients.

Cast signals before sum CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams for each filter
structure) before performing sum operations.

Filter State Options
State word length *StateWordLength Sets the word length used to represent the

filter states. Applied to both numerator- and
denominator-related states

Avoid overflow None Prevent overflows in arithmetic calculations by
setting the fraction length appropriately.

State fraction length *StateFracLength Lets you set the fraction length applied to
interpret the filter states. Applied to both
numerator- and denominator-related states

Note When you apply changes to the values in the Filter Internals pane, the plots for the Magnitude
response estimate and Round-off noise power spectrum analyses update to reflect those
changes. Other types of analyses are not affected by changes to the values in the Filter Internals
pane.

Filter Internals Options for CIC Filters

CIC filters use slightly different options for specifying the fixed-point arithmetic in the filter. The next
table shows and describes the options.

Quantize Double-Precision Filters

When you are quantizing a double-precision filter by switching to fixed-point or single-precision
floating point arithmetic, follow these steps.
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1 Click Set Quantization Parameters to display the Set Quantization Parameters pane in filter
designer.

2 Select Single-precision floating point or Fixed-point from Filter arithmetic.

When you select one of the optional arithmetic settings, filter designer quantizes the current
filter according to the settings of the options in the Set Quantization Parameter panes, and
changes the information displayed in the analysis area to show quantized filter data.

3 In the quantization panes, set the options for your filter. Set options for Coefficients, Input/
Output, and Filter Internals.

4 Click Apply.

Filter designer quantizes your filter using your new settings.
5 Use the analysis features in filter designer to determine whether your new quantized filter meets

your requirements.

Change the Quantization Properties of Quantized Filters

When you are changing the settings for the quantization of a quantized filter, or after you import a
quantized filter from your MATLAB workspace, follow these steps to set the property values for the
filter:

1 Verify that the current filter is quantized.
2 Click Set Quantization Parameters to display the Set Quantization Parameters panel.
3 Review and select property settings for the filter quantization: Coefficients, Input/Output, and

Filter Internals. Settings for options on these panes determine how your filter quantizes data
during filtering operations.

4 Click Apply to update your current quantized filter to use the new quantization property settings
from Step 3.

5 Use the analysis features in filter designer to determine whether your new quantized filter meets
your requirements.

Analyze Filters with a Noise-Based Method
• “Analyze Filters with the Magnitude Response Estimate Method” on page 5-18
• “Compare the Estimated and Theoretical Magnitude Responses” on page 5-21
• “Select Quantized Filter Structures” on page 5-21
• “Convert the Structure of a Quantized Filter” on page 5-21
• “Convert Filters to Second-Order Sections Form” on page 5-22

Analyze Filters with the Magnitude Response Estimate Method

After you design and quantize your filter, the Magnitude Response Estimate option on the
Analysis menu lets you apply the noise loading method to your filter. When you select Analysis >
Magnitude Response Estimate from the menu bar, filter designer immediately starts the Monte
Carlo trials that form the basis for the method and runs the analysis, ending by displaying the results
in the analysis area in filter designer.

With the noise-based method, you estimate the complex frequency response for your filter as
determined by applying a noise- like signal to the filter input. Magnitude Response Estimate uses
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the Monte Carlo trials to generate a noise signal that contains complete frequency content across the
range 0 to Fs. The first time you run the analysis, magnitude response estimate uses default settings
for the various conditions that define the process, such as the number of test points and the number
of trials.

Analysis Parameter Default Setting Description
Number of Points 512 Number of equally spaced points around the

upper half of the unit circle.
Frequency Range 0 to Fs/2 Frequency range of the plot x-axis.
Frequency Units Hz Units for specifying the frequency range.
Sampling Frequency 48000 Inverse of the sampling period.
Frequency Scale dB Units used for the y-axis display of the

output.
Normalized Frequency Off Use normalized frequency for the display.

After your first analysis run ends, open the Analysis Parameters dialog box and adjust your settings
appropriately, such as changing the number of trials or number of points.

To open the Analysis Parameters dialog box, use either of the next procedures when you have a
quantized filter in filter designer:

• Select Analysis > Analysis Parameters from the menu bar
• Right-click in the filter analysis area and select Analysis Parameters from the context menu

Whichever option you choose opens the dialog box. Notice that the settings for the options reflect the
defaults.

Noise Method Applied to a Filter

To demonstrate the magnitude response estimate method, start by creating a quantized filter. For this
example, use filter designer to design a sixth-order Butterworth IIR filter.

To Use Noise-Based Analysis in Filter Designer

1 Enter filterDesigner at the MATLAB prompt to launch filter designer.
2 Under Response Type, select Highpass.
3 Select IIR in Design Method. Then select Butterworth.
4 To set the filter order to 6, select Specify order under Filter Order. Enter 6 in the text box.
5 Click Design Filter.

In filter designer, the analysis area changes to display the magnitude response for your filter.
6 To generate the quantized version of your filter, using default quantizer settings, click  on the

side bar.

Filter designer switches to quantization mode and displays the quantization panel.
7 From Filter arithmetic, select fixed-point.

Now the analysis areas shows the magnitude response for both filters — your original filter and
the fixed-point arithmetic version.

 Use Filter Designer with DSP System Toolbox Software

5-19



8 Finally, to use noise-based estimation on your quantized filter, select Analysis > Magnitude
Response Estimate from the menu bar.

Filter designer runs the trial, calculates the estimated magnitude response for the filter, and
displays the result in the analysis area as shown in this figure.

In the above figure you see the magnitude response as estimated by the analysis method.

View the Noise Power Spectrum

When you use the noise method to estimate the magnitude response of a filter, filter designer
simulates and applies a spectrum of noise values to test your filter response. While the simulated
noise is essentially white, you might want to see the actual spectrum that filter designer used to test
your filter.

From the Analysis menu bar option, select Round-off Noise Power Spectrum. In the analysis area
in filter designer, you see the spectrum of the noise used to estimate the filter response. The details of
the noise spectrum, such as the range and number of data points, appear in the Analysis
Parameters dialog box.

For more information, refer to McClellan, et al., Computer-Based Exercises for Signal Processing
Using MATLAB 5, Prentice-Hall, 1998. See Project 5: Quantization Noise in Digital Filters, page 231.

Change Your Noise Analysis Parameters

In “Noise Method Applied to a Filter” on page 5-19, you used synthetic white noise to estimate the
magnitude response for a fixed-point highpass Butterworth filter. Since you ran the estimate only
once in filter designer, your noise analysis used the default analysis parameters settings shown in
“Analyze Filters with the Magnitude Response Estimate Method” on page 5-18.

To change the settings, follow these steps after the first time you use the noise estimate on your
quantized filter.

1 With the results from running the noise estimating method displayed in the filter designer
analysis area, select Analysis > Analysis Parameters from the menu bar.

To give you access to the analysis parameters, the Analysis Parameters dialog box opens (with
default settings).
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2 To use more points in the spectrum to estimate the magnitude response, change Number of
Points to 1024 and click OK to run the analysis.

Filter designer closes the Analysis Parameters dialog box and reruns the noise estimate,
returning the results in the analysis area.

To rerun the test without closing the dialog box, press Enter after you type your new value into a
setting, then click Apply. Now filter designer runs the test without closing the dialog box. When
you want to try many different settings for the noise-based analysis, this is a useful shortcut.

Compare the Estimated and Theoretical Magnitude Responses

An important measure of the effectiveness of the noise method for estimating the magnitude response
of a quantized filter is to compare the estimated response to the theoretical response.

One way to do this comparison is to overlay the theoretical response on the estimated response.
While you have the Magnitude Response Estimate displaying in filter designer, select Analysis >
Overlay Analysis from the menu bar. Then select Magnitude Response to show both response
curves plotted together in the analysis area.

Select Quantized Filter Structures

Filter designer lets you change the structure of any quantized filter. Use the Convert structure
option to change the structure of your filter to one that meets your needs.

To learn about changing the structure of a filter in filter designer, refer to “Converting the Filter
Structure” on page 23-15.

Convert the Structure of a Quantized Filter

You use the Convert structure option to change the structure of filter. When the Source is
Designed(Quantized) or Imported(Quantized), Convert structure lets you recast the filter to
one of the following structures:

• Direct Form II Transposed Filter Structure
• Direct Form I Transposed Filter Structure
• Direct Form II Filter Structure
• Direct Form I Filter Structure
• Direct Form Finite Impulse Response (FIR) Filter Structure
• Direct Form FIR Transposed Filter Structure
• Lattice Autoregressive Moving Average (ARMA) Filter Structure
• Direct Form Antisymmetric FIR Filter Structure (Any Order)

Starting from any quantized filter, you can convert to one of the following representation:

• Direct form I
• Direct form II
• Direct form I transposed
• Direct form II transposed
• Lattice ARMA
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Additionally, filter designer lets you do the following conversions:

• Minimum phase FIR filter to Lattice MA minimum phase
• Maximum phase FIR filter to Lattice MA maximum phase
• Allpass filters to Lattice allpass

Convert Filters to Second-Order Sections Form

To learn about using filter designer to convert your quantized filter to use second-order sections,
refer to “Converting to Second-Order Sections” on page 23-16. You might notice that filters you
design in filter designer, rather than filters you imported, are implemented in SOS form.

View Filter Structures in Filter Designer

To open the demonstration, click Help > Show Filter Structure. After the Help browser opens, you
see the reference page for the current filter. You find the filter structure signal flow diagram on this
reference page, or you can navigate to reference pages for other filter.

Scale Second-Order Section Filters
• “Use the Reordering and Scaling of Second-Order Sections Dialog Box” on page 5-22
• “Scale an SOS Filter” on page 5-23

Use the Reordering and Scaling of Second-Order Sections Dialog Box

Filter designer provides the ability to scale SOS filters after you create them. Using options on the
Reordering and Scaling of Second-Order Sections dialog box, filter designer scales either or both the
filter numerators and filter scale values according to your choices for the scaling options.

Parameter Description and Valid Value
Scale Apply any scaling options to the filter. Select this when you are

reordering your SOS filter and you want to scale it at the same
time. Or when you are scaling your filter, with or without
reordering. Scaling is disabled by default.

Less Overflow — Highest SNR
slider

Lets you set whether scaling favors reducing arithmetic overflow
in the filter or maximizing the signal-to-noise ratio (SNR) at the
filter output. Moving the slider to the right increases the emphasis
on SNR at the expense of possible overflows. The markings
indicate the P-norm applied to achieve the desired result in SNR or
overflow protection.

Maximum Numerator Maximum allowed value for numerator coefficients after scaling.
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Parameter Description and Valid Value
Numerator Constraint Specifies whether and how to constrain numerator coefficient

values. Options are none, normalize, power of 2, and unit.
Choosing none lets the scaling use any scale value for the
numerators by removing any constraints on the numerators,
except that the coefficients will be clipped if they exceed the
Maximum Numerator. With Normalize the maximum absolute
value of the numerator is forced to equal the Maximum
Numerator value (for all other constraints, the Maximum
Numerator is only an upper limit, above which coefficients will be
clipped). The power of 2 option forces scaling to use numerator
values that are powers of 2, such as 2 or 0.5. With unit, the
leading coefficient of each numerator is forced to a value of 1.

Overflow Mode Sets the way the filter handles arithmetic overflow situations
during scaling. Choose from either saturate (limit the output to
the largest positive or negative representable value) or wrap (set
overflowing values to the nearest representable value using
modular arithmetic.

Scale Value Constraint Specify whether to constrain the filter scale values, and how to
constrain them. Valid options are unit, power of 2, and none.
Choosing unit for the constraint disables the Max Scale Value
setting and forces scale values to equal 1. Power of 2 constrains
the scale values to be powers of 2, such as 2 or 0.5, while none
removes any constraint on the scale values, except that they
cannot exceed the Max Scale Value.

Max Scale Value Sets the maximum allowed scale values. SOS filter scaling applies
the Max Scale Value limit only when you set Scale Value
Constraint to a value other than unit (the default setting).
Setting a maximum scale value removes any other limits on the
scale values.

Revert to Original Filter Returns your filter to the original scaling. Being able to revert to
your original filter makes it easier to assess the results of scaling
your filter.

Various combinations of settings let you scale filter numerators without changing the scale values, or
adjust the filter scale values without changing the numerators. There is no scaling control for
denominators.

Scale an SOS Filter

Start the process by designing a lowpass elliptical filter in filter designer.

1 Launch filter designer.
2 In Response Type, select Lowpass.
3 In Design Method, select IIR and Elliptic from the IIR design methods list.
4 Select Minimum Order for the filter.
5 Switch the frequency units by choosing Normalized(0 to 1) from the Units list.
6 To set the passband specifications, enter 0.45 for wpass and 0.55 for wstop. Finally, in

Magnitude Specifications, set Astop to 60.
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7 Click Design Filter to design the filter.

After filter designer finishes designing the filter, you see the following plot and settings in the
tool.

You kept the Options setting for Match exactly as both, meaning the filter design matches the
specification for the passband and the stopband.

8 To switch to scaling the filter, select Edit > Reorder and Scale Second-Order Sections from
the menu bar.

9 To see the filter coefficients, return to filter designer and select Filter Coefficients from the
Analysis menu. Filter designer displays the coefficients and scale values in filter designer.

With the coefficients displayed you can see the effects of scaling your filter directly in the scale values
and filter coefficients.

Now try scaling the filter in a few different ways. First scale the filter to maximize the SNR.

1 Return to the Reordering and Scaling Second-Order Sections dialog box and select None for
Reordering in the left pane. This prevents filter designer from reordering the filter sections
when you rescale the filter.

2 Move the Less Overflow—Highest SNR slider from Less Overflow to Highest SNR.
3 Click Apply to scale the filter and leave the dialog box open.
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After a few moments, filter designer updates the coefficients displayed so you see the new
scaling.

All of the scale factors are now 1, and the SOS matrix of coefficients shows that none of the
numerator coefficients are 1 and the first denominator coefficient of each section is 1.

4 Click Revert to Original Filter to restore the filter to the original settings for scaling and
coefficients.

Reorder the Sections of Second-Order Section Filters
Reorder Filters Using Filter Designer

Filter Designer designs most discrete-time filters in second-order sections. Generally, SOS filters
resist the effects of quantization changes when you create fixed-point filters. After you have a second-
order section filter in filter designer, either one you designed in the tool, or one you imported, filter
designer provides the capability to change the order of the sections that compose the filter. Any SOS
filter in filter designer allows reordering of the sections.

To reorder the sections of a filter, you access the Reorder and Scaling of Second-Order Sections
dialog box in filter designer.

With your SOS filter in filter designer, select Edit > Reorder and Scale from the menu bar. filter
designer returns the reordering dialog box shown here with the default settings.

Controls on the Reordering and Scaling of Second-Order Sections dialog box

In this dialog box, the left-hand side contains options for reordering SOS filters. On the right you see
the scaling options. These are independent — reordering your filter does not require scaling (note the
Scale option) and scaling does not require that you reorder your filter (note the None option under
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Reordering). For more about scaling SOS filters, refer to “Scale Second-Order Section Filters” on
page 5-22 and to scale in the reference section.

Reordering SOS filters involves using the options in the Reordering and Scaling of Second-Order
Sections dialog box. The following table lists each reorder option and provides a description of what
the option does.

Control Option Description
Auto Reorders the filter sections to minimize the output noise power of

the filter. Note that different ordering applies to each specification
type, such as lowpass or highpass. Automatic ordering adapts to the
specification type of your filter.

None Does no reordering on your filter. Selecting None lets you scale
your filter without applying reordering at the same time. When you
access this dialog box with a current filter, this is the default setting
— no reordering is applied.

Least selective section to
most selective section

Rearranges the filter sections so the least restrictive (lowest Q)
section is the first section and the most restrictive (highest Q)
section is the last section.

Most selective section to
least selective section

Rearranges the filter sections so the most restrictive (highest Q)
section is the first section and the least restrictive (lowest Q)
section is the last section.

Custom reordering Lets you specify the section ordering to use by enabling the
Numerator Order and Denominator Order options

Numerator Order Specify new ordering for the sections of your SOS filter. Enter a
vector of the indices of the sections in the order in which to
rearrange them. For example, a filter with five sections has indices
1, 2, 3, 4, and 5. To switch the second and fourth sections, the
vector would be [1,4,3,2,5].

Use Numerator Order Rearranges the denominators in the order assigned to the
numerators.

Specify Lets you specify the order of the denominators, rather than using
the numerator order. Enter a vector of the indices of the sections to
specify the order of the denominators to use. For example, a filter
with five sections has indices 1, 2, 3, 4, and 5. To switch the second
and fourth sections, the vector would be [1,4,3,2,5].

Use Numerator Order Reorders the scale values according to the order of the numerators.
Specify Lets you specify the order of the scale values, rather than using the

numerator order. Enter a vector of the indices of the sections to
specify the order of the denominators to use. For example, a filter
with five sections has indices 1, 2, 3, 4, and 5. To switch the second
and fourth sections, the vector would be [1,4,3,2,5].

Revert to Original Filter Returns your filter to the original section ordering. Being able to
revert to your original filter makes comparing the results of
changing the order of the sections easier to assess.
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Reorder an SOS Filter

With filter designer open a second-order filter as the current filter, you use the following process to
access the reordering capability and reorder you filter. Start by launching filter designer from the
command prompt.

1 Enter filterDesigner at the command prompt to launch filter designer.
2 Design a lowpass Butterworth filter with order 10 and the default frequency specifications by

entering the following settings:

• Under Response Type select Lowpass.
• Under Design Method, select IIR and Butterworth from the list.
• Specify the order equal to 10 in Specify order under Filter Order.
• Keep the default Fs and Fc values in Frequency Specifications.

3 Click Design Filter.

Filter designer designs the Butterworth filter and returns your filter as a Direct-Form II filter
implemented with second-order sections. You see the specifications in the Current Filter
Information area.

With the second-order filter in filter designer, reordering the filter uses the Reordering and
Scaling of Second-Order Sections feature in filter designer (also available in Filter
Visualization Tool, FVTool).

4 To reorder your filter, select Edit > Reorder and Scale Second-Order Sections from the filter
designer menus.

Now you are ready to reorder the sections of your filter. Note that filter designer performs the
reordering on the current filter in the session.

Use Least Selective to Most Selective Section Reordering

To let filter designer reorder your filter so the least selective section is first and the most selective
section is last, perform the following steps in the Reordering and Scaling of Second-Order
Sections dialog box.

1 In Reordering, select Least selective section to most selective section.
2 To prevent filter scaling at the same time, clear Scale in Scaling.
3 In filter designer, select View > SOS View Settings from the menu bar so you see the sections

of your filter displayed in filter designer.
4 In the SOS View Settings dialog box, select Individual sections. Making this choice configures

filter designer to show the magnitude response curves for each section of your filter in the
analysis area.

5 Back in the Reordering and Scaling of Second-Order Sections dialog box, click Apply to
reorder your filter according to the Qs of the filter sections, and keep the dialog box open. In
response, filter designer presents the responses for each filter section (there should be five
sections) in the analysis area.

In the next two figures you can compare the ordering of the sections of your filter. In the first
figure, your original filter sections appear. In the second figure, the sections have been
rearranged from least selective to most selective.
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You see what reordering does, although the result is a bit subtle. Now try custom reordering the
sections of your filter or using the most selective to least selective reordering option.

View SOS Filter Sections
• “Using the SOS View Dialog Box” on page 5-28
• “View the Sections of SOS Filters” on page 5-30

Using the SOS View Dialog Box

Since you can design and reorder the sections of SOS filters, filter designer provides the ability to
view the filter sections in the analysis area — SOS View. Once you have a second-order section filter
as your current filter in filter designer, you turn on the SOS View option to see the filter sections
individually, or cumulatively, or even only some of the sections. Enabling SOS View puts filter
designer in a mode where all second-order section filters display sections until you disable the SOS
View option. SOS View mode applies to any analysis you display in the analysis area. For example, if
you configure filter designer to show the phase responses for filters, enabling SOS View means filter
designer displays the phase response for each section of SOS filters.

Controls on the SOS View Dialog Box
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SOS View uses a few options to control how filter designer displays the sections, or which sections to
display. When you select View > SOS View from the filter designer menu bar, you see this dialog box
containing options to configure SOS View operation.

By default, SOS View shows the overall response of SOS filters. Options in the SOS View dialog box
let you change the display. This table lists all the options and describes the effects of each.

Option Description
Overall Filter This is the familiar display in filter designer. For a second-

order section filter you see only the overall response rather
than the responses for the individual sections. This is the
default configuration.

Individual sections When you select this option, filter designer displays the
response for each section as a curve. If your filter has five
sections you see five response curves, one for each section,
and they are independent. Compare to Cumulative sections.

Cumulative sections When you select this option, filter designer displays the
response for each section as the accumulated response of all
prior sections in the filter. If your filter has five sections you
see five response curves:

• The first curve plots the response for the first filter section.
• The second curve plots the response for the combined first

and second sections.
• The third curve plots the response for the first, second, and

third sections combined.

And so on until all filter sections appear in the display. The
final curve represents the overall filter response. Compare to
Cumulative sections and Overall Filter.

 Use Filter Designer with DSP System Toolbox Software

5-29



Option Description
User defined Here you define which sections to display, and in which order.

Selecting this option enables the text box where you enter a
cell array of the indices of the filter sections. Each index
represents one section. Entering one index plots one response.
Entering something like {1:2} plots the combined response of
sections 1 and 2. If you have a filter with four sections, the
entry {1:4} plots the combined response for all four sections,
whereas {1,2,3,4} plots the response for each section. Note
that after you enter the cell array, you need to click OK or
Apply to update the filter designer analysis area to the new
SOS View configuration.

Use secondary-scaling points This directs filter designer to use the secondary scaling points
in the sections to determine where to split the sections. This
option applies only when the filter is a df2sos or df1tsos
filter. For these structures, the secondary scaling points refer
to the scaling locations between the recursive and the
nonrecursive parts of the section (the "middle" of the section).
By default, secondary-scaling points is not enabled. You use
this with the Cumulative sections option only.

View the Sections of SOS Filters

After you design or import an SOS filter in to filter designer, the SOS view option lets you see the per
section performance of your filter. Enabling SOS View from the View menu in filter designer
configures the tool to display the sections of SOS filters whenever the current filter is an SOS filter.

These next steps demonstrate using SOS View to see your filter sections displayed in filter designer.

1 Launch filter designer.
2 Create a lowpass SOS filter using the Butterworth design method. Specify the filter order to be 6.

Using a low order filter makes seeing the sections more clear.
3 Design your new filter by clicking Design Filter.

filter designer design your filter and show you the magnitude response in the analysis area. In
Current Filter Information you see the specifications for your filter. You should have a sixth-order
Direct-Form II, Second-Order Sections filter with three sections.

4 To enable SOS View, select View > SOS View from the menu bar.

By default the analysis area in filter designer shows the overall filter response, not the individual
filter section responses. This dialog box lets you change the display configuration to see the
sections.

5 To see the magnitude responses for each filter section, select Individual sections.
6 Click Apply to update filter designer to display the responses for each filter section. The analysis

area changes to show you something like the following figure.
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If you switch filter designer to display filter phase responses (by selecting Analysis > Phase
Response), you see the phase response for each filter section in the analysis area.

7 To define your own display of the sections, you use the User defined option and enter a vector of
section indices to display. Now you see a display of the first section response, and the cumulative
first, second, and third sections response:

• Select User defined to enable the text entry box in the dialog box.
• Enter the cell array {1,1:3} to specify that filter designer should display the response of the
first section and the cumulative response of the first three sections of the filter.

8 To apply your new SOS View selection, click Apply or OK (which closes the SOS View dialog
box).

In the filter designer analysis area you see two curves — one for the response of the first filter
section and one for the combined response of sections 1, 2, and 3.
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Import and Export Quantized Filters
• “Overview and Structures” on page 5-32
• “Import Quantized Filters” on page 5-33
• “To Export Quantized Filters” on page 5-34

Overview and Structures

When you import a quantized filter into filter designer, or export a quantized filter from filter designer
to your workspace, the import and export functions use objects and you specify the filter as a
variable. This contrasts with importing and exporting nonquantized filters, where you select the filter
structure and enter the filter numerator and denominator for the filter transfer function.

You have the option of exporting quantized filters to your MATLAB workspace, exporting them to text
files, or exporting them to MAT-files.

For general information about importing and exporting filters in filter designer, refer to “Importing a
Filter Design” on page 23-25, and “Exporting a Filter Design” on page 23-17.

Filter designer imports quantized filters having the following structures:

• Direct form I
• Direct form II
• Direct form I transposed
• Direct form II transposed
• Direct form symmetric FIR
• Direct form antisymmetric FIR
• Lattice allpass
• Lattice AR
• Lattice MA minimum phase
• Lattice MA maximum phase
• Lattice ARMA
• Lattice coupled-allpass
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• Lattice coupled-allpass power complementary

Import Quantized Filters

After you design or open a quantized filter in your MATLAB workspace, filter designer lets you import
the filter for analysis. Follow these steps to import your filter in to filter designer:

1 Open filter designer.
2 Select File > Import Filter from Workspace from the menu bar, or choose the Import Filter

from Workspace icon in the side panel:

.

In the lower region of filter designer, the Design Filter pane becomes Import Filter, and
options appear for importing quantized filters, as shown.

3 From the Filter Structure list, select Filter object.

The options for importing filters change to include:

• Discrete filter — Enter the variable name for the discrete-time, fixed-point filter in your
workspace.

• Frequency units — Select the frequency units from the Units list under Sampling
Frequency, and specify the sampling frequency value in Fs if needed. Your sampling
frequency must correspond to the units you select. For example, when you select
Normalized (0 to 1), Fs defaults to one. But if you choose one of the frequency options,
enter the sampling frequency in your selected units. If you have the sampling frequency
defined in your workspace as a variable, enter the variable name for the sampling frequency.

4 Click Import to import the filter.

Filter designer checks your workspace for the specified filter. It imports the filter if it finds it,
displaying the magnitude response for the filter in the analysis area. If it cannot find the filter it
returns an Filter Designer Error dialog box.

Note If, during any filter designer session, you switch to quantization mode and create a fixed-point
filter, filter designer remains in quantization mode. If you import a double-precision filter, filter
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designer automatically quantizes your imported filter applying the most recent quantization
parameters.
When you check the current filter information for your imported filter, it will indicate that the filter is
Source: imported (quantized) even though you did not import a quantized filter.

To Export Quantized Filters

To save your filter design, filter designer lets you export the quantized filter to your MATLAB
workspace (or you can save the current session in filter designer). When you choose to save the
quantized filter by exporting it, you select one of these options:

• Export to your MATLAB workspace on page 5-34
• Export to a text file on page 5-34
• Export to a MAT-file on page 5-35

Export Coefficients, Objects, or System Objects to the Workspace

You can save the filter as filter coefficients variables or filter System object variables.

To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog box appears.
2 Select Workspace from the Export To list.
3 From the Export As list, select one of the following options:

• Select Coefficients to save the filter coefficients.
• Select System Objects to save the filter in a filter System object.

The System Objects option does not appear in the drop-down list when the current filter
structure is not supported by System objects.

4 Assign a variable name:

• For coefficients, assign variable names using the Numerator and Denominator options
under Variable Names.

• For System objects, assign the variable name in the Discrete Filter option.

If you have variables with the same names in your workspace and you want to overwrite them,
select the Overwrite Variables box.

5 Click Export.

Do not try to export the filter to a variable name that exists in your workspace without selecting
Overwrite Variables, in the previous step. If you do so, filter designer stops the export
operation. The tool returns a warning that the variable you specified as the quantized filter name
already exists in the workspace.

• To continue to export the filter to the existing variable, click OK to dismiss the warning.
• Then select the Overwrite Variables check box and click Export.

Export Filter Coefficients as a Text File

To save your quantized filter as a text file, follow these steps:
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1 Select Export from the File menu.
2 Select Text-file under Export to.
3 Click OK to export the filter and close the dialog box. Click Apply to export the filter without

closing the Export dialog box. Clicking Apply lets you export your quantized filter to more than
one name without leaving the Export dialog box.

The Export Filter Coefficients to Text-file dialog box appears. This is the standard Microsoft
Windows save file dialog box.

4 Choose or enter a folder and filename for the text file, and click OK.

Filter designer exports your quantized filter as a text file with the name you provided, and the
MATLAB editor opens, displaying the file for editing.

Export Filter Coefficients as a MAT-File

To save your quantized filter as a MAT-file, follow these steps:

1 Select Export from the File menu.
2 Select MAT-file under Export to.
3 Assign a variable name for the filter.
4 Click OK to export the filter and close the dialog box. Click Apply to export the filter without

closing the Export dialog box. Clicking Apply lets you export your quantized filter to more than
one name without leaving the Export dialog box.

The Export Filter Coefficients to MAT-file dialog box appears. This dialog box is the standard
Microsoft Windows save file dialog box.

5 Choose or enter a folder and filename for the text file, and click OK.

Filter designer exports your quantized filter as a MAT-file with the specified name.

Generate MATLAB Code
You can generate MATLAB code using the File > Generate MATLAB Code menu. This menu has
these options:

• Filter Design Function (with System Objects)

This option generates a System object. The option is disabled when the current filter is not
supported by system objects.

• Data Filtering Function (with System Objects)

This option generates MATLAB code that filters input data with the current filter design. The
MATLAB code is ready to be converted to C/C++ code using the codegen command. This option
is disabled when the current filter is not supported by system objects.

Import XILINX Coefficient (.COE) Files
Import XILINX .COE Files into Filter Designer

You can import XILINX coefficients (.coe) files into filter designer to create quantized filters directly
using the imported filter coefficients.
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To use the import file feature:

1 Select File > Import Filter From XILINX Coefficient (.COE) File in filter designer.
2 In the Import Filter From XILINX Coefficient (.COE) File dialog box, find and select the .coe

file to import.
3 Click Open to dismiss the dialog box and start the import process.

Filter designer imports the coefficient file and creates a quantized, single-section, direct-form
FIR filter.

Transform Filters Using Filter Designer
• “Filter Transformation Capabilities of Filter Designer” on page 5-36
• “Original Filter Type” on page 5-37
• “Frequency Point to Transform” on page 5-39
• “Transformed Filter Type” on page 5-40
• “Specify Desired Frequency Location” on page 5-40

Filter Transformation Capabilities of Filter Designer

The toolbox provides functions for transforming filters between various forms. When you use filter
designer with the toolbox installed, a side bar button and a menu bar option enable you to use the
Transform Filter panel to transform filters as well as using the command line functions.

From the selection on the filter designer menu bar — Transformations — you can transform lowpass
FIR and IIR filters to a variety of passband shapes.

You can convert your FIR filters from:

• Lowpass to lowpass.
• Lowpass to highpass.

For IIR filters, you can convert from:

• Lowpass to lowpass.
• Lowpass to highpass.
• Lowpass to bandpass.
• Lowpass to bandstop.

When you click the Transform Filter button, , on the side bar, the Transform Filter panel opens
in filter designer, as shown here.
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Your options for Original filter type refer to the type of your current filter to transform. If you select
lowpass, you can transform your lowpass filter to another lowpass filter or to a highpass filter, or to
numerous other filter formats, real and complex.

Note When your original filter is an FIR filter, both the FIR and IIR transformed filter type options
appear on the Transformed filter type list. Both options remain active because you can apply the
IIR transforms to an FIR filter. If your source is as IIR filter, only the IIR transformed filter options
show on the list.

Original Filter Type

Select the magnitude response of the filter you are transforming from the list. Your selection changes
the types of filters you can transform to. For example:

• When you select Lowpass with an IIR filter, your transformed filter type can be

• Lowpass
• Highpass
• Bandpass
• Bandstop
• Multiband
• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)

• When you select Lowpass with an FIR filter, your transformed filter type can be

• Lowpass
• Lowpass (FIR)
• Highpass
• Highpass (FIR) narrowband
• Highpass (FIR) wideband
• Bandpass
• Bandstop
• Multiband
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• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)

In the following table you see each available original filter type and all the types of filter to which you
can transform your original.

Original Filter Available Transformed Filter Types
Lowpass FIR • Lowpass

• Lowpass (FIR)
• Highpass
• Highpass (FIR) narrowband
• Highpass (FIR) wideband
• Bandpass
• Bandstop
• Multiband
• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)

Lowpass IIR • Lowpass
• Highpass
• Bandpass
• Bandstop
• Multiband
• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)

Highpass FIR • Lowpass
• Lowpass (FIR) narrowband
• Lowpass (FIR) wideband
• Highpass (FIR)
• Highpass
• Bandpass
• Bandstop
• Multiband
• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)
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Original Filter Available Transformed Filter Types
Highpass IIR • Lowpass

• Highpass
• Bandpass
• Bandstop
• Multiband
• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)

Bandpass FIR • Bandpass
• Bandpass (FIR)

Bandpass IIR Bandpass
Bandstop FIR • Bandstop

• Bandstop (FIR)
Bandstop IIR Bandstop

Note also that the transform options change depending on whether your original filter is FIR or IIR.
Starting from an FIR filter, you can transform to IIR or FIR forms. With an IIR original filter, you are
limited to IIR target filters.

After selecting your response type, use Frequency point to transform to specify the magnitude
response point in your original filter to transfer to your target filter. Your target filter inherits the
performance features of your original filter, such as passband ripple, while changing to the new
response form.

For more information about transforming filters, refer to “Frequency Transformations for Real
Filters” on page 5-58 and “Frequency Transformations for Complex Filters” on page 5-67.

Frequency Point to Transform

The frequency point you enter in this field identifies a magnitude response value (in dB) on the
magnitude response curve.

When you enter frequency values in the Specify desired frequency location option, the frequency
transformation tries to set the magnitude response of the transformed filter to the value identified by
the frequency point you enter in this field.

While you can enter any location, generally you should specify a filter passband or stopband edge, or
a value in the passband or stopband.

The Frequency point to transform sets the magnitude response at the values you enter in Specify
desired frequency location. Specify a value that lies at either the edge of the stopband or the edge
of the passband.

If, for example, you are creating a bandpass filter from a highpass filter, the transformation algorithm
sets the magnitude response of the transformed filter at the Specify desired frequency location to
be the same as the response at the Frequency point to transform value. Thus you get a bandpass
filter whose response at the low and high frequency locations is the same. Notice that the passband
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between them is undefined. In the next two figures you see the original highpass filter and the
transformed bandpass filter.

For more information about transforming filters, refer to “Digital Frequency Transformations” on
page 5-53.

Transformed Filter Type

Select the magnitude response for the target filter from the list. The complete list of transformed
filter types is:

• Lowpass
• Lowpass (FIR)
• Highpass
• Highpass (FIR) narrowband
• Highpass (FIR) wideband
• Bandpass
• Bandstop
• Multiband
• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)

Not all types of transformed filters are available for all filter types on the Original filter types list.
You can transform bandpass filters only to bandpass filters. Or bandstop filters to bandstop filters. Or
IIR filters to IIR filters.

For more information about transforming filters, refer to “Frequency Transformations for Real
Filters” on page 5-58 and “Frequency Transformations for Complex Filters” on page 5-67.

Specify Desired Frequency Location

The frequency point you enter in Frequency point to transform matched a magnitude response
value. At each frequency you enter here, the transformation tries to make the magnitude response
the same as the response identified by your Frequency point to transform value.

While you can enter any location, generally you should specify a filter passband or stopband edge, or
a value in the passband or stopband.

For more information about transforming filters, refer to “Digital Frequency Transformations” on
page 5-53.

Transform Filters

To transform the magnitude response of your filter, use the Transform Filter option on the side bar.

1 Design or import your filter into filter designer.
2

Click Transform Filter, , on the side bar.

Filter designer opens the Transform Filter panel in filter designer.
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3 From the Original filter type list, select the response form of the filter you are transforming.

When you select the type, whether is lowpass, highpass, bandpass, or bandstop, filter
designer recognizes whether your filter form is FIR or IIR. Using both your filter type selection
and the filter form, filter designer adjusts the entries on the Transformed filter type list to
show only those that apply to your original filter.

4 Enter the frequency point to transform value in Frequency point to transform. Notice that the
value you enter must be in kHz; for example, enter 0.1 for 100 Hz or 1.5 for 1500 Hz.

5 From the Transformed filter type list, select the type of filter you want to transform to.

Your filter type selection changes the options here.

• When you pick a lowpass or highpass filter type, you enter one value in Specify desired
frequency location.

• When you pick a bandpass or bandstop filter type, you enter two values — one in Specify
desired low frequency location and one in Specify desired high frequency location.
Your values define the edges of the passband or stopband.

• When you pick a multiband filter type, you enter values as elements in a vector in Specify a
vector of desired frequency locations — one element for each desired location. Your values
define the edges of the passbands and stopbands.

After you click Transform Filter, filter designer transforms your filter, displays the
magnitude response of your new filter, and updates the Current Filter Information to show
you that your filter has been transformed. In the filter information, the Source is
Transformed.

For example, the figure shown here includes the magnitude response curves for two filters.
The original filter is a lowpass filter with rolloff between 0.2 and 0.25. The transformed filter
is a lowpass filter with rolloff region between 0.8 and 0.85.

• To demonstrate the effects of selecting Narrowband Highpass or Wideband Highpass, the
next figure presents the magnitude response curves for a source lowpass filter after it is
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transformed to both narrow- and wideband highpass filters. For comparison, the response of
the original filter appears as well.

For the narrowband case, the transformation algorithm essentially reverses the magnitude
response, like reflecting the curve around the y-axis, then translating the curve to the right
until the origin lies at 1 on the x-axis. After reflecting and translating, the passband at high
frequencies is the reverse of the passband of the original filter at low frequencies with the
same rolloff and ripple characteristics.

Design Multirate Filters in Filter Designer
• “Introduction” on page 5-42
• “Switch Filter Designer to Multirate Filter Design Mode” on page 5-42
• “Controls on the Multirate Design Panel” on page 5-43
• “Quantize Multirate Filters” on page 5-48
• “Export Individual Phase Coefficients of a Polyphase Filter to the Workspace” on page 5-50

Introduction

Not only can you design multirate filters from the MATLAB command prompt, filter designer provides
the same design capability in a graphical user interface tool. By starting filter designer and switching
to the multirate filter design mode you have access to all of the multirate design capabilities in the
toolbox — decimators, interpolators, and fractional rate changing filters, among others.

Switch Filter Designer to Multirate Filter Design Mode

The multirate filter design mode in filter designer lets you specify and design a wide range of
multirate filters, including decimators and interpolators.
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With filter designer open, click Create a Multirate Filter, , on the side bar. You see filter
designer switch to the design mode showing the multirate filter design options. Shown in the
following figure is the default multirate design configuration that designs an interpolating filter with
an interpolation factor of 2. The design uses the current FIR filter in filter designer.

When the current filter in filter designer is not an FIR filter, the multirate filter design panel removes
the Use current FIR filter option and selects the Use a default Nyquist FIR filter option instead
as the default setting.

Controls on the Multirate Design Panel

You see the options that allow you to design a variety of multirate filters. The Type option is your
starting point. From this list you select the multirate filter to design. Based on your selection, other
options change to provide the controls you need to specify your filter.

Notice the separate sections of the design panel. On the left is the filter type area where you choose
the type of multirate filter to design and set the filter performance specifications.

In the center section filter designer provides choices that let you pick the filter design method to use.

The rightmost section offers options that control filter configuration when you select Cascaded-
Integrator Comb (CIC) as the design method in the center section. Both the Decimator type and
Interpolator type filters let you use the Cascaded-Integrator Comb (CIC) option to design
multirate filters.

Here are all the options available when you switch to multirate filter design mode. Each option listed
includes a brief description of what the option does when you use it.
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Select and Configure Your Filter

Option Description
Type Specifies the type of multirate filter to design. Choose from

Decimator, Interpolator, or Fractional-rate convertor.

• When you choose Decimator, set Decimation Factor to specify
the decimation to apply.

• When you choose Interpolator, set Interpolation Factor to
specify the interpolation amount applied.

• When you choose Fractional-rate convertor, set both
Interpolation Factor and Decimation Factor. Filter designer
uses both to determine the fractional rate change by dividing
Interpolation Factor by Decimation Factor to determine the
fractional rate change in the signal. You should select values for
interpolation and decimation that are relatively prime. When your
interpolation factor and decimation factor are not relatively prime,
filter designer reduces the interpolation/decimation fractional rate
to the lowest common denominator and issues a message in the
status bar in filter designer. For example, if the interpolation factor
is 6 and the decimation factor is 3, filter designer reduces 6/3 to
2/1 when you design the rate changer. But if the interpolation
factor is 8 and the decimation factor is 3, filter designer designs
the filter without change.

Interpolation Factor Use the up-down control arrows to specify the amount of interpolation
to apply to the signal. Factors range upwards from 2.

Decimation Factor Use the up-down control arrows to specify the amount of decimation
to apply to the signal. Factors range upwards from 2.

Sampling Frequency No settings here. Just Units and Fs below.
Units Specify whether Fs is specified in Hz, kHz, MHz, GHz, or Normalized

(0 to 1) units.
Fs Set the full scale sampling frequency in the frequency units you

specified in Units. When you select Normalized for Units, you do
not enter a value for Fs.
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Design Your Filter

Option Description
Use current FIR filter Directs filter designer to use the current FIR filter to design the

multirate filter. If the current filter is an IIR form, you cannot select
this option. You cannot design multirate filters with IIR structures.

Use a default Nyquist FIR
filter

Tells filter designer to use the default Nyquist design method when
the current filter in filter designer is not an FIR filter.

Cascaded Integrator-Comb
(CIC)

Design CIC filters using the options provided in the right-hand area
of the multirate design panel.

Hold Interpolator (Zero-
order)

When you design an interpolator, you can specify how the filter sets
interpolated values between signal values. When you select this
option, the interpolator applies the most recent signal value for each
interpolated value until it processes the next signal value. This is
similar to sample-and-hold techniques. Compare to the Linear
Interpolator option.

Linear Interpolator (First-
order)

When you design an interpolator, you can specify how the filter sets
interpolated values between signal values. When you select this
option, the interpolator applies linear interpolation between signal
value to set the interpolated value until it processes the next signal
value. Compare to the Linear Interpolator option.

To see the difference between hold interpolation and linear interpolation, the following figure
presents a sine wave signal s1 in three forms:

• The top subplot in the figure presents signal s1 without interpolation.
• The middle subplot shows signal s1 interpolated by a linear interpolator with an interpolation

factor of 5.
• The bottom subplot shows signal s1 interpolated by a hold interpolator with an interpolation factor

of 5.

You see in the bottom figure the sample and hold nature of hold interpolation, and the first-order
linear interpolation applied by the linear interpolator.
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Options for Designing CIC
Filters

Description

Differential Delay Sets the differential delay for the CIC filter. Usually a value of one or two is
appropriate.

Number of Sections Specifies the number of sections in a CIC decimator. The default number of
sections is 2 and the range is any positive integer.

Design a Fractional Rate Convertor

To introduce the process you use to design a multirate filter in filter designer, this example uses the
options to design a fractional rate convertor which uses 7/3 as the fractional rate. Begin the design by
creating a default lowpass FIR filter in filter designer. You do not have to begin with this FIR filter, but
the default filter works fine.

1 Launch filter designer.
2 Select the settings for a minimum-order lowpass FIR filter, using the Equiripple design

method.
3

When filter designer displays the magnitude response for the filter, click  in the side bar. filter
designer switches to multirate filter design mode, showing the multirate design panel.

4 To design a fractional rate filter, select Fractional-rate convertor from the Type list. The
Interpolation Factor and Decimation Factor options become available.

5 In Interpolation Factor, use the up arrow to set the interpolation factor to 7.
6 Using the up arrow in Decimation Factor, set 3 as the decimation factor.
7 Select Use a default Nyquist FIR filter. You could design the rate convertor with the

current FIR filter as well.
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8 Enter 24000 to set Fs.
9 Click Create Multirate Filter.

After designing the filter, filter designer returns with the specifications for your new filter
displayed in Current Filter Information, and shows the magnitude response of the filter.

You can test the filter by exporting it to your workspace and using it to filter a signal. For information
about exporting filters, refer to “Import and Export Quantized Filters” on page 5-32.
Design a CIC Decimator for 8 Bit Input/Output Data

Another kind of filter you can design in filter designer is Cascaded-Integrator Comb (CIC) filters.
Filter designer provides the options needed to configure your CIC to meet your needs.

1 Launch filter designer and design the default FIR lowpass filter. Designing a filter at this time is
an optional step.

2
Switch filter designer to multirate design mode by clicking  on the side bar.

3 For Type, select Decimator, and set Decimation Factor to 3.
4 To design the decimator using a CIC implementation, select Cascaded-Integrator Comb (CIC).

This enables the CIC-related options on the right of the panel.
5 Set Differential Delay to 2. Generally, 1 or 2 are good values to use.
6 Enter 2 for the Number of Sections.
7 Click Create Multirate Filter.

Filter Designer designs the filter, shows the magnitude response in the analysis area, and
updates the current filter information to show that you designed a tenth-order cascaded-
integrator comb decimator with two sections. Notice the source is Multirate Design, indicating
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you used the multirate design mode in filter designer to make the filter. Filter Designer should
look like this now.

Designing other multirate filters follows the same pattern.

To design other multirate filters, do one of the following depending on the filter to design:

• To design an interpolator, select one of these options.

• Use a default Nyquist FIR filter
• Cascaded-Integrator Comb (CIC)
• Hold Interpolator (Zero-order)
• Linear Interpolator (First-order)

• To design a decimator, select from these options.

• Use a default Nyquist FIR filter
• Cascaded-Integrator Comb (CIC)

• To design a fractional-rate convertor, select Use a default Nyquist FIR filter.

Quantize Multirate Filters

After you design a multirate filter in filter designer, the quantization features enable you to convert
your floating-point multirate filter to fixed-point arithmetic.
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Note CIC filters are always fixed-point.

With your multirate filter as the current filter in filter designer, you can quantize your filter and use
the quantization options to specify the fixed-point arithmetic the filter uses.

Quantize and Configure Multirate Filters

Follow these steps to convert your multirate filter to fixed-point arithmetic and set the fixed-point
options.

1 Design or import your multirate filter and make sure it is the current filter in filter designer.
2 Click the Set Quantization Parameters button on the side bar.
3 From the Filter Arithmetic list on the Filter Arithmetic pane, select Fixed-point. If your filter

is a CIC filter, the Fixed-point option is enabled by default and you do not set this option.
4 In the quantization panes, set the options for your filter. Set options for Coefficients, Input/

Output, and Filter Internals.
5 Click Apply.

When you current filter is a CIC filter, the options on the Input/Output and Filter Internals panes
change to provide specific features for CIC filters.

Input/Output

The options that specify how your CIC filter uses input and output values are listed in the table below.

Option Name Description
Input Word Length Sets the word length used to represent the input to a filter.
Input fraction length Sets the fraction length used to interpret input values to filter.
Input range (+/-) Lets you set the range the inputs represent. You use this instead of

the Input fraction length option to set the precision. When you
enter a value x, the resulting range is -x to x. Range must be a
positive integer.

Output word length Sets the word length used to represent the output from a filter.
Avoid overflow Directs the filter to set the fraction length for the input to prevent

the output values from exceeding the available range as defined by
the word length. Clearing this option lets you set Output fraction
length.

Output fraction length Sets the fraction length used to represent output values from a filter.
Output range (+/-) Lets you set the range the outputs represent. You use this instead of

the Output fraction length option to set the precision. When you
enter a value x, the resulting range is -x to x. Range must be a
positive integer.

The available options change when you change the Filter precision setting. Moving from Full to
Specify all adds increasing control by enabling more input and output word options.

Filter Internals

With a CIC filter as your current filter, the Filter precision option on the Filter Internals pane
includes modes for controlling the filter word and fraction lengths.
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There are four usage modes for this (the same mode you select for the FilterInternals property
in CIC filters at the MATLAB prompt).

• Full — All word and fraction lengths set to Bmax + 1, called Baccum. This is the default.
• Minimum section word lengths — Set the section word lengths to minimum values that meet
roundoff noise and output requirements.

• Specify word lengths — Enables the Section word length option for you to enter word
lengths for each section. Enter either a scalar to use the same value for every section, or a vector
of values, one for each section.

• Specify all — Enables the Section fraction length option in addition to Section word
length. Now you can provide both the word and fraction lengths for each section, again using
either a scalar or a vector of values.

Export Individual Phase Coefficients of a Polyphase Filter to the Workspace

After designing a polyphase filter in the filter designer app, you can obtain the individual phase
coefficients of the filter by:

1 Exporting the filter to an object in the MATLAB workspace.
2 Using the polyphase method to create a matrix of the filter's coefficients.

Export the Polyphase Filter to an Object

To export a polyphase filter to an object in the MATLAB workspace, complete the following steps.

1 In filter designer, open the File menu and select Export.... This opens the dialog box for
exporting the filter coefficients.

2 In the Export dialog box, for Export To, select Workspace.
3 For Export As, select Object.
4 (Optional) For Variable Names, enter the name of the Multirate Filter object that will be

created in the MATLAB workspace.
5 Click the Export button. The multirate filter object, Hm in this example, appears in the MATLAB

workspace.

Create a Matrix of Coefficients Using the polyphase Method

To create a matrix of the filter's coefficients, enter p=polyphase(Hm) at the command line. The
polyphase method creates a matrix, p, of filter coefficients from the filter object, Hm. Each row of p
consists of the coefficients of an individual phase subfilter. The first row contains to the coefficients of
the first phase subfilter, the second row contains those of the second phase subfilter, and so on.

Realize Filters as Simulink Subsystem Blocks
• “Introduction” on page 5-50
• “About the Realize Model Panel in Filter Designer” on page 5-51

Introduction

After you design or import a filter in filter designer, the realize model feature lets you create a
Simulink subsystem block that implements your filter. The generated filter subsystem block uses
either digital filter blocks from the DSP System Toolbox library, or the Delay, Gain, and Sum blocks in
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Simulink. If you do not have a Fixed-Point Designer™ license, filter designer still realizes your model
using blocks in fixed-point mode from Simulink, but you cannot run any model that includes your
filter subsystem block in Simulink.

About the Realize Model Panel in Filter Designer

To access to the Realize Model panel and the options for realizing your quantized filter as a Simulink

subsystem block, switch filter designer to realize model mode by clicking  on the sidebar.

The following panel shows the options for configuring how filter designer implements your filter as a
Simulink block.

For information on these parameters, see the descriptions on the Filter Realization Wizard block
reference page.

Realize a Filter Using Filter Designer

After your quantized filter in filter designer is performing the way you want, with your desired phase
and magnitude response, and with the right coefficients and form, follow these steps to realize your
filter as a subsystem that you can use in a Simulink model.

1 Click Realize Model on the sidebar to change filter designer to realize model mode.
2 From the Destination list under Model, select either:

• Current model — to add the realized filter subsystem to your current model
• New model — to open a new Simulink model window and add your filter subsystem to the

new window
3 Provide a name for your new filter subsystem in the Name field.
4 Decide whether to overwrite an existing block with this new one, and select or clear the

Overwrite generated ‘Filter’ block check box.
5 Select the Build model using basic elements check box to implement your filter as a

subsystem block that consists of Sum, Gain, and Delay blocks.
6 Select or clear the optimizations to apply.

• Optimize for zero gains — removes zero gain blocks from the model realization
• Optimize for unity gains — replaces unity gain blocks with direct connections to adjacent

blocks
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• Optimize for negative gains — replaces negative gain blocks by a change of sign at the
nearest sum block

• Optimize delay chains — replaces cascaded delay blocks with a single delay block that
produces the equivalent gain

• Optimize for unity scale values — removes all scale value multiplications by 1 from the
filter structure

7 Click Realize Model to realize your quantized filter as a subsystem block according to the
settings you selected.

If you double-click the filter block subsystem created by filter designer, you see the filter
implementation in Simulink model form. Depending on the options you chose when you realized your
filter, and the filter you started with, you might see one or more sections, or different architectures
based on the form of your quantized filter. From this point on, the subsystem filter block acts like any
other block that you use in Simulink models.

See Also

More About
• “Filter Builder Design Process” on page 24-2
• “Using Filter Designer” on page 23-2
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Digital Frequency Transformations
In this section...
“Details and Methodology” on page 5-53
“Frequency Transformations for Real Filters” on page 5-58
“Frequency Transformations for Complex Filters” on page 5-67

Details and Methodology
• “Overview of Transformations” on page 5-53
• “Select Features Subject to Transformation” on page 5-55
• “Mapping from Prototype Filter to Target Filter” on page 5-57
• “Summary of Frequency Transformations” on page 5-58

Overview of Transformations

Converting existing FIR or IIR filter designs to a modified IIR form is often done using allpass
frequency transformations. Although the resulting designs can be considerably more expensive in
terms of dimensionality than the prototype (original) filter, their ease of use in fixed or variable
applications is a big advantage.

The general idea of the frequency transformation is to take an existing prototype filter and produce
another filter from it that retains some of the characteristics of the prototype, in the frequency
domain. Transformation functions achieve this by replacing each delaying element of the prototype
filter with an allpass filter carefully designed to have a prescribed phase characteristic for achieving
the modifications requested by the designer.

The basic form of mapping commonly used is

HT(z) = Ho[HA(z)]

The HA(z) is an Nth-order allpass mapping filter given by

HA(z) = S
∑

i = 0

N
αiz−i

∑
i = 0

N
αiz−N + i

=
NA(z)
DA(z)

α0 = 1

where

Ho(z) — Transfer function of the prototype filter

HA(z) — Transfer function of the allpass mapping filter

HT(z) — Transfer function of the target filter

Let's look at a simple example of the transformation given by

HT(z) = Ho(− z)
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The target filter has its poles and zeroes flipped across the origin of the real and imaginary axes. For
the real filter prototype, it gives a mirror effect against 0.5, which means that lowpass Ho(z) gives rise
to a real highpass HT(z). This is shown in the following figure for the prototype filter designed as a
third-order halfband elliptic filter.

Example of a Simple Mirror Transformation

The choice of an allpass filter to provide the frequency mapping is necessary to provide the frequency
translation of the prototype filter frequency response to the target filter by changing the frequency
position of the features from the prototype filter without affecting the overall shape of the filter
response.

The phase response of the mapping filter normalized to π can be interpreted as a translation function:

H(wnew) = ωold

The graphical interpretation of the frequency transformation is shown in the figure below. The
complex multiband transformation takes a real lowpass filter and converts it into a number of
passbands around the unit circle.
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Graphical Interpretation of the Mapping Process

Most of the frequency transformations are based on the second-order allpass mapping filter:

HA(z) = ±
1 + α1z−1 + α2z−2

α2 + α1z−1 + z−2

The two degrees of freedom provided by α1 and α2 choices are not fully used by the usual restrictive
set of “flat-top” classical mappings like lowpass to bandpass. Instead, any two transfer function
features can be migrated to (almost) any two other frequency locations if α1 and α2 are chosen so as
to keep the poles of HA(z) strictly outside the unit circle (since HA(z) is substituted for z in the
prototype transfer function). Moreover, as first pointed out by Constantinides, the selection of the
outside sign influences whether the original feature at zero can be moved (the minus sign, a condition
known as “DC mobility”) or whether the Nyquist frequency can be migrated (the “Nyquist mobility”
case arising when the leading sign is positive).

Select Features Subject to Transformation

Choosing the appropriate frequency transformation for achieving the required effect and the correct
features of the prototype filter is very important and needs careful consideration. It is not advisable
to use a first-order transformation for controlling more than one feature. The mapping filter will not
give enough flexibility. It is also not good to use higher order transformation just to change the cutoff
frequency of the lowpass filter. The increase of the filter order would be too big, without considering
the additional replica of the prototype filter that may be created in undesired places.
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Feature Selection for Real Lowpass to Bandpass Transformation

To illustrate the idea, the second-order real multipoint transformation was applied three times to the
same elliptic halfband filter in order to make it into a bandpass filter. In each of the three cases, two
different features of the prototype filter were selected in order to obtain a bandpass filter with
passband ranging from 0.25 to 0.75. The position of the DC feature was not important, but it would
be advantageous if it were in the middle between the edges of the passband in the target filter. In the
first case the selected features were the left and the right band edges of the lowpass filter passband,
in the second case they were the left band edge and the DC, in the third case they were DC and the
right band edge.

Result of Choosing Different Features

The results of all three approaches are completely different. For each of them only the selected
features were positioned precisely where they were required. In the first case the DC is moved
toward the left passband edge just like all the other features close to the left edge being squeezed
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there. In the second case the right passband edge was pushed way out of the expected target as the
precise position of DC was required. In the third case the left passband edge was pulled toward the
DC in order to position it at the correct frequency. The conclusion is that if only the DC can be
anywhere in the passband, the edges of the passband should have been selected for the
transformation. For most of the cases requiring the positioning of passbands and stopbands,
designers should always choose the position of the edges of the prototype filter in order to make sure
that they get the edges of the target filter in the correct places. Frequency responses for the three
cases considered are shown in the figure. The prototype filter was a third-order elliptic lowpass filter
with cutoff frequency at 0.5.

The MATLAB code used to generate the figure is given here.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

In the example the requirements are set to create a real bandpass filter with passband edges at 0.1
and 0.3 out of the real lowpass filter having the cutoff frequency at 0.5. This is attempted in three
different ways. In the first approach both edges of the passband are selected, in the second approach
the left edge of the passband and the DC are chosen, while in the third approach the DC and the right
edge of the passband are taken:

[num1,den1] = iirlp2xn(b, a, [-0.5, 0.5], [0.1, 0.3]);
[num2,den2] = iirlp2xn(b, a, [-0.5, 0.0], [0.1, 0.2]);
[num3,den3] = iirlp2xn(b, a, [ 0.0, 0.5], [0.2, 0.3]);

Mapping from Prototype Filter to Target Filter

In general the frequency mapping converts the prototype filter, Ho(z), to the target filter, HT(z), using
the NAth-order allpass filter, HA(z). The general form of the allpass mapping filter is given in
“Overview of Transformations” on page 5-53. The frequency mapping is a mathematical operation
that replaces each delayer of the prototype filter with an allpass filter. There are two ways of
performing such mapping. The choice of the approach is dependent on how prototype and target
filters are represented.

When the Nth-order prototype filter is given with pole-zero form

Ho(z) =
∑

i = 1

N
(z − zi)

∑
i = 1

N
(z − pi)

the mapping will replace each pole, pi, and each zero, zi, with a number of poles and zeros equal to
the order of the allpass mapping filter:

Ho(z) =
∑

i = 1

N
S ∑

k = 0

N − 1
αkzk− zi ⋅ ∑

k = 0

N − 1
αkzN−k

∑
i = 1

N
S ∑

k = 0

N − 1
αkzk− pi ⋅ ∑

k = 0

N − 1
αkzN−k
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The root finding needs to be used on the bracketed expressions in order to find the poles and zeros of
the target filter.

When the prototype filter is described in the numerator-denominator form:

HT(z) =
β0zN + β1zN − 1 + … + βN
α0zN + α1zN − 1 + … + αN z = HA(z)

Then the mapping process will require a number of convolutions in order to calculate the numerator
and denominator of the target filter:

HT(z) =
β1NA(z)N + β2NA(z)N − 1DA(z) + … + βNDA(z)N

β1NA(z)N + β2NA(z)N − 1DA(z) + … + βNDA(z)N

For each coefficient αi and βi of the prototype filter the NAth-order polynomials must be convolved N
times. Such approach may cause rounding errors for large prototype filters and/or high order
mapping filters. In such a case the user should consider the alternative of doing the mapping using
via poles and zeros.

Summary of Frequency Transformations
Advantages

• Most frequency transformations are described by closed-form solutions or can be calculated from
the set of linear equations.

• They give predictable and familiar results.
• Ripple heights from the prototype filter are preserved in the target filter.
• They are architecturally appealing for variable and adaptive filters.

Disadvantages

• There are cases when using optimization methods to design the required filter gives better
results.

• High-order transformations increase the dimensionality of the target filter, which may give
expensive final results.

• Starting from fresh designs helps avoid locked-in compromises.

Frequency Transformations for Real Filters
• “Overview” on page 5-59
• “Real Frequency Shift” on page 5-59
• “Real Lowpass to Real Lowpass” on page 5-60
• “Real Lowpass to Real Highpass” on page 5-61
• “Real Lowpass to Real Bandpass” on page 5-62
• “Real Lowpass to Real Bandstop” on page 5-63
• “Real Lowpass to Real Multiband” on page 5-64
• “Real Lowpass to Real Multipoint” on page 5-66
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Overview

This section discusses real frequency transformations that take the real lowpass prototype filter and
convert it into a different real target filter. The target filter has its frequency response modified in
respect to the frequency response of the prototype filter according to the characteristic of the applied
frequency transformation.

Real Frequency Shift

Real frequency shift transformation uses a second-order allpass mapping filter. It performs an exact
mapping of one selected feature of the frequency response into its new location, additionally moving
both the Nyquist and DC features. This effectively moves the whole response of the lowpass filter by
the distance specified by the selection of the feature from the prototype filter and the target filter. As
a real transformation, it works in a similar way for positive and negative frequencies.

HA(z) = z−1 ⋅ 1− αz−1

α− z−1

with α given by

α =

cosπ
2 (ωold− 2ωnew)

cosπ
2 ωold

f or cosπ
2(ωold− 2ωnew) < 1

sinπ
2 (ωold− 2ωnew)

sinπ
2ωold

otherwise

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

The following example shows how this transformation can be used to move the response of the
prototype lowpass filter in either direction. Please note that because the target filter must also be
real, the response of the target filter will inherently be disturbed at frequencies close to Nyquist and
close to DC. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);
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Example of Real Frequency Shift Mapping

Real Lowpass to Real Lowpass

Real lowpass filter to real lowpass filter transformation uses a first-order allpass mapping filter. It
performs an exact mapping of one feature of the frequency response into the new location keeping
DC and Nyquist features fixed. As a real transformation, it works in a similar way for positive and
negative frequencies. It is important to mention that using first-order mapping ensures that the order
of the filter after the transformation is the same as it was originally.

HA(z) = − 1− αz−1

α− z−1

with α given by

α =
sinπ

2 (ωold− ωnew)

sinπ
2 (ωold− ωnew)

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to modify the cutoff frequency of the prototype filter. The MATLAB
code for this example is shown in the following figure.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The cutoff frequency moves from 0.5 to 0.75:
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[num,den] = iirlp2lp(b, a, 0.5, 0.75);

Example of Real Lowpass to Real Lowpass Mapping

Real Lowpass to Real Highpass

Real lowpass filter to real highpass filter transformation uses a first-order allpass mapping filter. It
performs an exact mapping of one feature of the frequency response into the new location
additionally swapping DC and Nyquist features. As a real transformation, it works in a similar way for
positive and negative frequencies. Just like in the previous transformation because of using a first-
order mapping, the order of the filter before and after the transformation is the same.

HA(z) = − 1 + αz−1

α + z−1

with α given by

α = −
cosπ

2 (ωold + ωnew)

cosπ
2 (ωold− ωnew)

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to convert the lowpass filter into a highpass filter with arbitrarily
chosen cutoff frequency. In the MATLAB code below, the lowpass filter is converted into a highpass
with cutoff frequency shifted from 0.5 to 0.75. Results are shown in the figure.

The prototype filter is a halfband elliptic, real, third-order filter:
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[b, a] = ellip(3, 0.1, 30, 0.409);

The example moves the cutoff frequency from 0.5 to 0.75:

[num,den] = iirlp2hp(b, a, 0.5, 0.75);

Example of Real Lowpass to Real Highpass Mapping

Real Lowpass to Real Bandpass

Real lowpass filter to real bandpass filter transformation uses a second-order allpass mapping filter. It
performs an exact mapping of two features of the frequency response into their new location
additionally moving a DC feature and keeping the Nyquist feature fixed. As a real transformation, it
works in a similar way for positive and negative frequencies.

HA(z) = − 1− β(1 + α)z−1− αz−2

α− β(1 + α)z−1 + z−2

with α and β given by

α =
sinπ

4 (2ωold− ωnew, 2 + ωnew, 1)

sinπ
4 (2ωold + ωnew, 2− ωnew, 1)

β = cosπ
2(ωnew, 1 + ωnew, 2)

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (-ωold) in the target filter
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ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how to move the response of the prototype lowpass filter in either
direction. Please note that because the target filter must also be real, the response of the target filter
will inherently be disturbed at frequencies close to Nyquist and close to DC. Here is the MATLAB
code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates the passband between 0.5 and 0.75:

[num,den] = iirlp2bp(b, a, 0.5, [0.5, 0.75]);

Example of Real Lowpass to Real Bandpass Mapping

Real Lowpass to Real Bandstop

Real lowpass filter to real bandstop filter transformation uses a second-order allpass mapping filter. It
performs an exact mapping of two features of the frequency response into their new location
additionally moving a Nyquist feature and keeping the DC feature fixed. This effectively creates a
stopband between the selected frequency locations in the target filter. As a real transformation, it
works in a similar way for positive and negative frequencies.

HA(z) = 1− β(1 + α)z−1 + αz−2

α− β(1 + α)z−1 + z−2

with α and β given by
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α =
cosπ

4 (2ωold + ωnew, 2− ωnew, 1)

cosπ
4 (2ωold− ωnew, 2 + ωnew, 1)

β = cosπ
2(ωnew, 1 + ωnew, 2)

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (-ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The following example shows how this transformation can be used to convert the prototype lowpass
filter with cutoff frequency at 0.5 into a real bandstop filter with the same passband and stopband
ripple structure and stopband positioned between 0.5 and 0.75. Here is the MATLAB code for
generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bs(b, a, 0.5, [0.5, 0.75]);

Example of Real Lowpass to Real Bandstop Mapping

Real Lowpass to Real Multiband

This high-order transformation performs an exact mapping of one selected feature of the prototype
filter frequency response into a number of new locations in the target filter. Its most common use is to
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convert a real lowpass with predefined passband and stopband ripples into a real multiband filter
with N arbitrary band edges, where N is the order of the allpass mapping filter.

HA(z) = S
∑

i = 0

N
αiz−i

∑
i = 0

N
αiz−N + i

α0 = 1

The coefficients α are given by

α0 = 1 k = 1, …, N

αk = − S
sinπ

2 (Nωnew + (− 1)kωold)

sinπ
2 ((N − 2k)ωnew + (− 1)kωold)

where

ωold,k — Frequency location of the first feature in the prototype filter

ωnew,k — Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility or either DC or Nyquist feature:

S =
1 Nyquist
−1 DC

The example below shows how this transformation can be used to convert the prototype lowpass filter
with cutoff frequency at 0.5 into a filter having a number of bands positioned at arbitrary edge
frequencies 1/5, 2/5, 3/5 and 4/5. Parameter S was such that there is a passband at DC. Here is the
MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates three stopbands, from DC to 0.2, from 0.4 to 0.6 and from 0.8 to
Nyquist:

[num,den] = iirlp2mb(b, a, 0.5, [0.2, 0.4, 0.6, 0.8], `pass');
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Example of Real Lowpass to Real Multiband Mapping

Real Lowpass to Real Multipoint

This high-order frequency transformation performs an exact mapping of a number of selected
features of the prototype filter frequency response to their new locations in the target filter. The
mapping filter is given by the general IIR polynomial form of the transfer function as given below.

HA(z) = S
∑

i = 0

N
αiz−i

∑
i = 0

N
αiz−N + i

α0 = 1

For the Nth-order multipoint frequency transformation the coefficients α are

∑
i = 1

N
αN − izold, k ⋅ znew, k

i − S ⋅ znew, k
N − i = − zold, k− S ⋅ znew, k

zold, k = e jπωold, k

znew, k = e jπωnew, k

k = 1, …, N

where

ωold,k — Frequency location of the first feature in the prototype filter

ωnew,k — Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility of either DC or Nyquist feature:
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S =
1 Nyquist
−1 DC

The example below shows how this transformation can be used to move features of the prototype
lowpass filter originally at -0.5 and 0.5 to their new locations at 0.5 and 0.75, effectively changing a
position of the filter passband. Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2xn(b, a, [-0.5, 0.5], [0.5, 0.75], `pass');

Example of Real Lowpass to Real Multipoint Mapping

Frequency Transformations for Complex Filters
• “Overview” on page 5-67
• “Complex Frequency Shift” on page 5-68
• “Real Lowpass to Complex Bandpass” on page 5-69
• “Real Lowpass to Complex Bandstop” on page 5-70
• “Real Lowpass to Complex Multiband” on page 5-71
• “Real Lowpass to Complex Multipoint” on page 5-73
• “Complex Bandpass to Complex Bandpass” on page 5-74

Overview

This section discusses complex frequency transformation that take the complex prototype filter and
convert it into a different complex target filter. The target filter has its frequency response modified
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in respect to the frequency response of the prototype filter according to the characteristic of the
applied frequency transformation from:

Complex Frequency Shift

Complex frequency shift transformation is the simplest first-order transformation that performs an
exact mapping of one selected feature of the frequency response into its new location. At the same
time it rotates the whole response of the prototype lowpass filter by the distance specified by the
selection of the feature from the prototype filter and the target filter.

HA(z) = αz−1

with α given by

α = e j2π(νnew− νold)

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

A special case of the complex frequency shift is a, so called, Hilbert Transformer. It can be designed
by setting the parameter to |α|=1, that is

α =
1 f orward
−1 inverse

The example below shows how to apply this transformation to rotate the response of the prototype
lowpass filter in either direction. Please note that because the transformation can be achieved by a
simple phase shift operator, all features of the prototype filter will be moved by the same amount.
Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.3:

[num,den] = iirshiftc(b, a, 0.5, 0.3);
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Example of Complex Frequency Shift Mapping

Real Lowpass to Complex Bandpass

This first-order transformation performs an exact mapping of one selected feature of the prototype
filter frequency response into two new locations in the target filter creating a passband between
them. Both Nyquist and DC features can be moved with the rest of the frequency response.

HA(z) = β− αz−1

z−1− αβ

with α and β are given by

α =
sinπ

4 (2ωold− ωnew, 2 + ωnew, 1)
sinπ(2ωold + ωnew, 2− ωnew, 1)

β = e− jπ(ωnew− ωold)

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (-ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The following example shows the use of such a transformation for converting a real halfband lowpass
filter into a complex bandpass filter with band edges at 0.5 and 0.75. Here is the MATLAB code for
generating the example in the figure.

The prototype filter is a half band elliptic, real, third-order lowpass filter:
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[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2bpc(b, a, 0.5, [0.5 0.75]);

Example of Real Lowpass to Complex Bandpass Mapping

Real Lowpass to Complex Bandstop

This first-order transformation performs an exact mapping of one selected feature of the prototype
filter frequency response into two new locations in the target filter creating a stopband between
them. Both Nyquist and DC features can be moved with the rest of the frequency response.

HA(z) = β− αz−1

αβ− z−1

with α and β are given by

α =
cosπ(2ωold + νnew, 2− νnew, 1)
cosπ(2ωold− νnew, 2 + νnew, 1)

β = e− jπ(ωnew− ωold)

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (-ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter
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The example below shows the use of such a transformation for converting a real halfband lowpass
filter into a complex bandstop filter with band edges at 0.5 and 0.75. Here is the MATLAB code for
generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bsc(b, a, 0.5, [0.5 0.75]);

Example of Real Lowpass to Complex Bandstop Mapping

Real Lowpass to Complex Multiband

This high-order transformation performs an exact mapping of one selected feature of the prototype
filter frequency response into a number of new locations in the target filter. Its most common use is to
convert a real lowpass with predefined passband and stopband ripples into a multiband filter with
arbitrary band edges. The order of the mapping filter must be even, which corresponds to an even
number of band edges in the target filter. The Nth-order complex allpass mapping filter is given by
the following general transfer function form:

HA(z) = S
∑

i = 0

N
αiz−i

∑
i = 0

N
αi ± z−N + i

α0 = 1

The coefficients α are calculated from the system of linear equations:
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∑
i = 1

N
ℜ(αi) ⋅ cosβ1, k− cosβ2, k + ℑ(αi) ⋅ sinβ1, k + sinβ2, k = cosβ3, k

∑
i = 1

N
ℜ(αi) ⋅ sinβ1, k− sinβ2, k − ℑ(αi) ⋅ cosβ1, k + cosβ2, k = sinβ3, k

β1, k = − π νold ⋅ (− 1)k + νnew, k(N − k)

β2, k = − π ΔC + νnew, kk

β3, k = − π νold ⋅ (− 1)k + νnew, kN

k = 1…N

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,i — Position of features originally at ±ωold in the target filter

Parameter S is the additional rotation factor by the frequency distance ΔC, giving the additional
flexibility of achieving the required mapping:

S = e− jπΔC

The example shows the use of such a transformation for converting a prototype real lowpass filter
with the cutoff frequency at 0.5 into a multiband complex filter with band edges at 0.2, 0.4, 0.6 and
0.8, creating two passbands around the unit circle. Here is the MATLAB code for generating the
figure.

Example of Real Lowpass to Complex Multiband Mapping

The prototype filter is a halfband elliptic, real, third-order lowpass filter:
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[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two complex passbands:

[num,den] = iirlp2mbc(b, a, 0.5, [0.2, 0.4, 0.6, 0.8]);

Real Lowpass to Complex Multipoint

This high-order transformation performs an exact mapping of a number of selected features of the
prototype filter frequency response to their new locations in the target filter. The Nth-order complex
allpass mapping filter is given by the following general transfer function form.

HA(z) = S
∑

i = 0

N
αiz−i

∑
i = 0

N
αi ± z−N + i

α0 = 1

The coefficients α can be calculated from the system of linear equations:

∑
i = 1

N
ℜ(αi) ⋅ cosβ1, k− cosβ2, k + ℑ(αi) ⋅ sinβ1, k + sinβ2, k = cosβ3, k

∑
i = 1

N
ℜ(αi) ⋅ sinβ1, k− sinβ2, k − ℑ(αi) ⋅ cosβ1, k + cosβ2, k = sinβ3, k

β1, k = − π
2 ωold, k + ωnew, k(N − k)

β2, k = − π
2 2ΔC + ωnew, kk

β3, k = − π
2 ωold, k + ωnew, kN

k = 1…N

where

ωold,k — Frequency location of the first feature in the prototype filter

ωnew,k — Position of the feature originally at ωold,k in the target filter

Parameter S is the additional rotation factor by the frequency distance ΔC, giving the additional
flexibility of achieving the required mapping:

S = e− jπΔC

The following example shows how this transformation can be used to move one selected feature of
the prototype lowpass filter originally at -0.5 to two new frequencies -0.5 and 0.1, and the second
feature of the prototype filter from 0.5 to new locations at -0.25 and 0.3. This creates two
nonsymmetric passbands around the unit circle, creating a complex filter. Here is the MATLAB code
for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

 Digital Frequency Transformations

5-73



The example transformation creates two nonsymmetric passbands:

[num,den] = iirlp2xc(b,a,0.5*[-1,1,-1,1], [-0.5,-0.25,0.1,0.3]);

Example of Real Lowpass to Complex Multipoint Mapping

Complex Bandpass to Complex Bandpass

This first-order transformation performs an exact mapping of two selected features of the prototype
filter frequency response into two new locations in the target filter. Its most common use is to adjust
the edges of the complex bandpass filter.

HA(z) = α(γ− βz−1)
z−1− βγ

with α and β are given by

α =
sinπ

4 ((ωold, 2− ωold, 1)− (ωnew, 2− ωnew, 1))

sinπ
4 ((ωold, 2− ωold, 1) + (ωnew, 2− ωnew, 1))

α = e− jπ(ωold, 2− ωold, 1)

γ = e− jπ(ωnew, 2− ωnew, 1)

where

ωold,1 — Frequency location of the first feature in the prototype filter

ωold,2 — Frequency location of the second feature in the prototype filter

ωnew,1 — Position of the feature originally at ωold,1 in the target filter

ωnew,2 — Position of the feature originally at ωold,2 in the target filter
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The following example shows how this transformation can be used to modify the position of the
passband of the prototype filter, either real or complex. In the example below the prototype filter
passband spanned from 0.5 to 0.75. It was converted to having a passband between -0.5 and 0.1.
Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.25 to 0.75:

[num,den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.1]);

Example of Complex Bandpass to Complex Bandpass Mapping
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Using Digital Filter Design Block

In this section...
“Overview of the Digital Filter Design Block” on page 5-76
“Select a Filter Design Block” on page 5-77
“Create a Lowpass Filter in Simulink” on page 5-78
“Create a Highpass Filter in Simulink” on page 5-78
“Filter High-Frequency Noise in Simulink” on page 5-79

Overview of the Digital Filter Design Block
You can use the Digital Filter Design block to design and implement a digital filter. The filter you
design can filter single-channel or multichannel signals. The Digital Filter Design block is ideal for
simulating the numerical behavior of your filter on a floating-point system, such as a personal
computer or DSP chip. You can use the Simulink Coder product to generate C code from your filter
block.

Filter Design and Analysis

You perform all filter design and analysis within the filter designer app, which opens when you
double-click the Digital Filter Design block. Filter designer provides extensive filter design
parameters and analysis tools such as pole-zero and impulse response plots.

Filter Implementation

Once you have designed your filter using filter designer, the block automatically realizes the filter
using the filter structure you specify. You can then use the block to filter signals in your model. You
can also fine-tune the filter by changing the filter specification parameters during a simulation. The
outputs of the Digital Filter Design block numerically match the outputs of the equivalent filter
System object, when you pass the same input.

Saving, Exporting, and Importing Filters

The Digital Filter Design block allows you to save the filters you design, export filters (to the MATLAB
workspace, MAT-files, etc.), and import filters designed elsewhere.

To learn how to save your filter designs, see “Saving and Opening Filter Design Sessions” on page 23-
23. To learn how to import and export your filter designs, see “Import and Export Quantized Filters”
on page 5-32.

Note You can use the Digital Filter Design block to design and implement a filter. To implement a
pre-designed filter, use the Discrete FIR Filter or Biquad Filter blocks. Both methods implement a
filter design in the same manner and have the same behavior during simulation and code generation.

See the Digital Filter Design block reference page for more information. For information on choosing
between the Digital Filter Design block and the Filter Realization Wizard, see “Select a Filter Design
Block” on page 5-77.
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Select a Filter Design Block
This section explains the similarities and differences between the Digital Filter Design and Filter
Realization Wizard blocks.

Similarities

The Digital Filter Design block and Filter Realization Wizard are similar in the following ways:

• Filter design and analysis options — Both blocks use the filter designer app for filter design and
analysis.

• Output values — If the output of both blocks is double-precision floating point, single-precision
floating point, or fixed point, the output values of both blocks numerically match the output values
of the equivalent System objects, when you pass the same input.

Differences

The Digital Filter Design block and Filter Realization Wizard handle the following things differently:

• Supported filter structures — Both blocks support many of the same basic filter structures, but the
Filter Realization Wizard supports more structures than the Digital Filter Design block. This is
because the block can implement filters using Sum, Gain, and Delay blocks. See the Filter
Realization Wizard and Digital Filter Design block reference pages for a list of all the structures
they support.

• Data type support — The Filter Realization Wizard block supports single- and double-precision
floating-point computation for all filter structures and fixed-point computation for some filter
structures. The Digital Filter Design block only supports single- and double-precision floating-
point computation.

• Block versus Wizard — The Digital Filter Design block is the filter itself, but the Filter Realization
Wizard block just enables you to create new filters and put them in an existing model. Thus, the
Filter Realization Wizard is not a block that processes data in your model, it is a wizard that
generates filter blocks (or subsystems) which you can then use to process data in your model.

When to Use Each Block

The following are specific situations where only the Digital Filter Design block or the Filter
Realization Wizard is appropriate.

• Digital Filter Design

• Use to simulate single- and double-precision floating-point filters.
• Use to generate highly optimized ANSI® C code that implements floating-point filters for

embedded systems.
• Filter Realization Wizard

• Use to simulate numerical behavior of fixed-point filters in a DSP chip, a field-programmable
gate array (FPGA), or an application-specific integrated circuit (ASIC).

• Use to simulate single- and double-precision floating-point filters with structures that the
Digital Filter Design block does not support.

• Use to visualize the filter structure, as the block can build the filter from Sum, Gain, and Delay
blocks.
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• Use to rapidly generate multiple filter blocks.

See “Using Filter Realization Wizard” on page 5-84 and the Filter Realization Wizard block
reference page for information.

Create a Lowpass Filter in Simulink
You can use the Digital Filter Design block to design and implement a digital FIR or IIR filter. In this
topic, you use it to create an FIR lowpass filter:

1 Open Simulink and create a new model file.
2 From the DSP System Toolbox Filtering library, and then from the Filter Implementations library,

click-and-drag a Digital Filter Design block into your model.
3 Double-click the Digital Filter Design block.

The filter designer app opens.
4 Set the parameters as follows, and then click OK:

• Response Type = Lowpass
• Design Method = FIR, Equiripple
• Filter Order = Minimum order
• Units = Normalized (0 to 1)
• wpass = 0.2
• wstop = 0.5

5 Click Design Filter at the bottom of the app to design the filter.

Your Digital Filter Design block now represents a filter with the parameters you specified.
6 From the Edit menu, select Convert Structure.

The Convert Structure dialog box opens.
7 Select Direct-Form FIR Transposed and click OK.
8 Rename your block Digital Filter Design - Lowpass.

The Digital Filter Design block now represents a lowpass filter with a Direct-Form FIR Transposed
structure. The filter passes all frequencies up to 20% of the Nyquist frequency (half the sampling
frequency), and stops frequencies greater than or equal to 50% of the Nyquist frequency as defined
by the wpass and wstop parameters. In the next topic, “Create a Highpass Filter in Simulink” on
page 5-78, you use a Digital Filter Design block to create a highpass filter. For more information
about implementing a pre-designed filter, see “Digital Filter Implementations” on page 5-94.

Create a Highpass Filter in Simulink
In this topic, you create a highpass filter using the Digital Filter Design block:

1 If the model you created in “Create a Lowpass Filter in Simulink” on page 5-78 is not open on
your desktop, you can open an equivalent model by typing

ex_filter_ex4  

at the MATLAB command prompt.
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2 From the DSP System Toolbox Filtering library, and then from the Filter Implementations library,
click-and-drag a second Digital Filter Design block into your model.

3 Double-click the Digital Filter Design block.

The filter designer app opens.
4 Set the parameters as follows:

• Response Type = Highpass
• Design Method = FIR, Equiripple
• Filter Order = Minimum order
• Units = Normalized (0 to 1)
• wstop = 0.2
• wpass = 0.5

5 Click the Design Filter button at the bottom of the app to design the filter.

Your Digital Filter Design block now represents a filter with the parameters you specified.
6 In the Edit menu, select Convert Structure.

The Convert Structure dialog box opens.
7 Select Direct-Form FIR Transposed and click OK.
8 Rename your block Digital Filter Design - Highpass .

The block now implements a highpass filter with a direct form FIR transpose structure. The filter
passes all frequencies greater than or equal to 50% of the Nyquist frequency (half the sampling
frequency), and stops frequencies less than or equal to 20% of the Nyquist frequency as defined by
the wpass and wstop parameters. This highpass filter is the opposite of the lowpass filter described
in “Create a Lowpass Filter in Simulink” on page 5-78. The highpass filter passes the frequencies
stopped by the lowpass filter, and stops the frequencies passed by the lowpass filter. In the next topic,
“Filter High-Frequency Noise in Simulink” on page 5-79, you use these Digital Filter Design blocks
to create a model capable of removing high frequency noise from a signal. For more information
about implementing a pre-designed filter, see “Digital Filter Implementations” on page 5-94.

Filter High-Frequency Noise in Simulink
In the previous topics, you used Digital Filter Design blocks to create FIR lowpass and highpass
filters. In this topic, you use these blocks to build a model that removes high frequency noise from a
signal. In this model, you use the highpass filter, which is excited using a uniform random signal, to
create high-frequency noise. After you add this noise to a sine wave, you use the lowpass filter to
filter out the high-frequency noise:

1 If the model you created in “Create a Highpass Filter in Simulink” on page 5-78 is not open on
your desktop, you can open an equivalent model by typing

ex_filter_ex5 

at the MATLAB command prompt.
2 Click-and-drag the following blocks into your model.
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Block Library Quantity
Add Simulink Math Operations library 1
Random Source Sources 1
Sine Wave Sources 1
Time Scope Sinks 1

3 Set the parameters for these blocks as indicated in the following table. Leave the parameters not
listed in the table at their default settings.

Parameter Settings for the Other Blocks

Block Parameter Setting
Add • Icon shape = rectangular

• List of signs = ++
Random Source • Source type =  = Uniform

• Minimum = 0
• Maximum = 4
• Sample mode = Discrete
• Sample time = 1/1000
• Samples per frame = 50

Sine Wave • Frequency (Hz) = 75
• Sample time = 1/1000
• Samples per frame = 50

Time Scope • File > Number of Input Ports > 3
• View > Configuration Properties

• Open the Time tab and set Time span = One frame period
4 Connect the blocks as shown in the following figure. You might need to resize some of the blocks

to accomplish this task.
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5 In the Modeling tab, click Model Settings. The Configuration Parameters dialog box opens.
6 In the Solver pane, set the parameters as follows, and then click OK:

• Start time = 0
• Stop time = 5
• Type = Fixed-step
• Solver = Discrete (no continuous states)

7 In the Simulation tab, select Run.

The model simulation begins and the scope displays the three input signals.
8 After simulation is complete, select View > Legend from the Time Scope menu. The legend

appears in the Time Scope window. You can click-and-drag it anywhere on the scope display. To
change the channel names, double-click inside the legend and replace the default channel names
with the following:

• Add = Noisy Sine Wave
• Digital Filter Design – Lowpass = Filtered Noisy Sine Wave
• Sine Wave = Original Sine Wave

In the next step, you will set the color, style, and marker of each channel.
9 In the Time Scope window, select View > Style, and set the following:

Signal Line Marker Color
Noisy Sine Wave - None Black
Filtered Noisy Sine
Wave

- diamond Red

Original Sine Wave None * Blue
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10 The Time Scope display should now appear as follows:

You can see that the lowpass filter filters out the high-frequency noise in the noisy sine wave.

You have now used Digital Filter Design blocks to build a model that removes high frequency noise
from a signal. For more information about these blocks, see the Digital Filter Design block reference
page. For information on another block capable of designing and implementing filters, see “Using
Filter Realization Wizard” on page 5-84. To learn how to save your filter designs, see “Saving and
Opening Filter Design Sessions” on page 23-23. To learn how to import and export your filter
designs, see “Import and Export Quantized Filters” on page 5-32.

See Also
Blocks
Digital Filter Design | Filter Realization Wizard
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Related Examples
• “Design and Implement a Filter”
• “Using Filter Realization Wizard” on page 5-84
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Using Filter Realization Wizard
In this section...
“Overview of the Filter Realization Wizard” on page 5-84
“Design and Implement a Fixed-Point Filter in Simulink” on page 5-84
“Set the Filter Structure and Number of Filter Sections” on page 5-91
“Optimize the Filter Structure” on page 5-91

Overview of the Filter Realization Wizard
The Filter Realization Wizard is another DSP System Toolbox block that can be used to design and
implement digital filters. You can use this tool to filter single-channel floating-point or fixed-point
signals. Like the Digital Filter Design block, double-clicking a Filter Realization Wizard block opens
filter designer. Unlike the Digital Filter Design block, the Filter Realization Wizard starts filter
designer with the Realize Model panel selected. This panel is optimized for use with DSP System
Toolbox software.

For more information, see the Filter Realization Wizard block reference page. For information on
choosing between the Digital Filter Design block and the Filter Realization Wizard, see “Select a
Filter Design Block” on page 5-77.

Design and Implement a Fixed-Point Filter in Simulink
In this section, a tutorial guides you through creating a fixed-point filter with the Filter Realization
Wizard. You will use the Filter Realization Wizard to remove noise from a signal. This tutorial has the
following parts:

• “Part 1 — Create a Signal with Added Noise” on page 5-84
• “Part 2 — Create a Fixed-Point Filter with the Filter Realization Wizard” on page 5-85
• “Part 3 — Build a Model to Filter a Signal” on page 5-89
• “Part 4 — Examine Filtering Results” on page 5-90

Part 1 — Create a Signal with Added Noise

In this section of the tutorial, you will create a signal with added noise. Later in the tutorial, you will
filter this signal with a fixed-point filter that you design with the Filter Realization Wizard.

1 Type

load mtlb
soundsc(mtlb,Fs)

at the MATLAB command line. You should hear a voice say “MATLAB.” This is the signal to which
you will add noise.

2 Create a noise signal by typing

noise = cos(2*pi*3*Fs/8*(0:length(mtlb)-1)/Fs)';

at the command line. You can hear the noise signal by typing

soundsc(noise,Fs)

5 Filter Analysis, Design, and Implementation

5-84



3 Add the noise to the original signal by typing

u = mtlb + noise;

at the command line.
4 Scale the signal with noise by typing

u = u/max(abs(u));

at the command line. You scale the signal to try to avoid overflows later on. You can hear the
scaled signal with noise by typing

soundsc(u,Fs)
5 View the scaled signal with noise by typing

spectrogram(u,256,[],[],Fs);colorbar

at the command line.

The spectrogram appears as follows.

In the spectrogram, you can see the noise signal as a line at about 2800 Hz, which is equal to
3*Fs/8.

Part 2 — Create a Fixed-Point Filter with the Filter Realization Wizard

Next you will create a fixed-point filter using the Filter Realization Wizard. You will create a filter that
reduces the effects of the noise on the signal.
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1 Open a new Simulink model, and drag-and-drop a Filter Realization Wizard block from the
Filtering / Filter Implementations library into the model.

Note You do not have to place a Filter Realization Wizard block in a model in order to use it. You
can open the app from within a library. However, for purposes of this tutorial, we will keep the
Filter Realization Wizard block in the model.

2 Double-click the Filter Realization Wizard block in your model. The Realize Model panel of the
filter designer appears.

3
Click the Design Filter button ( ) on the bottom left of filter designer. This brings forward the
Design filter panel of the tool.

4 Set the following fields in the Design filter panel:

• Set Design Method to IIR -- Constrained Least Pth-norm
• Set Fs to Fs
• Set Fpass to 0.2*Fs
• Set Fstop to 0.25*Fs
• Set Max pole radius to 0.8
• Click the Design Filter button

The Design filter panel should now appear as follows.
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5
Click the Set quantization parameters button on the bottom left of filter designer ( ). This
brings forward the Set quantization parameters panel of the tool.

6 Set the following fields in the Set quantization parameters panel:

• Select Fixed-point for the Filter arithmetic parameter.
• Make sure the Best precision fraction lengths check box is selected on the Coefficients

pane.

The Set quantization parameters panel should appear as follows.
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7
Click the Realize Model button on the left side of filter designer ( ). This brings forward the
Realize Model panel of the tool.

8 Select the Build model using basic elements check box, then click the Realize Model button
on the bottom of filter designer. A subsystem block for the new filter appears in your model.
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Note You do not have to keep the Filter Realization Wizard block in the same model as the
generated Filter block. However, for this tutorial, we will keep the blocks in the same model.

9 Double-click the Filter subsystem block in your model to view the filter implementation.

Part 3 — Build a Model to Filter a Signal

In this section of the tutorial, you will filter noise from a signal in your Simulink model.

1 Connect a Signal From Workspace block from the Sources library to the input port of your filter
block.

2 Connect a To Workspace block from the Sinks library to the output port of your filter block. Your
blocks should now be connected as follows.

3 Open the Signal From Workspace block dialog box and set the Signal parameter to u. Click OK
to save your changes and close the dialog box.

4 In the Modeling tab, select Model Settings. In the Solver pane of the dialog, set the following
fields:

• Stop time = length(u)-1
• Type = Fixed-step

Click OK to save your changes and close the dialog box.
5 Run the model.
6 In the Debug tab, select Information Overlays > Port Data Type. You can now see that the

input to the Filter block is a signal of type double and the output of the Filter block has a data
type of sfix16_En11.
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Part 4 — Examine Filtering Results

Now you can listen to and look at the results of the fixed-point filter you designed and implemented.

1 Type

soundsc(yout,Fs)

at the command line to hear the output of the filter. You should hear a voice say “MATLAB.” The
noise portion of the signal should be close to inaudible.

2 Type

figure
spectrogram(yout,256,[],[],Fs);colorbar

at the command line.
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From the colorbars at the side of the input and output spectrograms, you can see that the noise has
been reduced by about 40 dB.

Set the Filter Structure and Number of Filter Sections
The Current Filter Information region of filter designer shows the structure and the number of
second-order sections in your filter.

Change the filter structure and number of filter sections of your filter as follows:

• Select Convert Structure from the Edit menu to open the Convert Structure dialog box. For
details, see “Converting to a New Structure” in the Signal Processing Toolbox documentation.

• Select Convert to Second-Order Sections from the Edit menu to open the Convert to SOS
dialog box. For details, see “Converting to Second-Order Sections” in the Signal Processing
Toolbox documentation.

Optimize the Filter Structure
The Filter Realization Wizard can implement a digital filter using either digital filter blocks from the
DSP System Toolbox library or by creating a subsystem (Simulink) block that implements the filter
using Sum, Gain, and Delay blocks. The following procedure shows you how to optimize the filter
implementation:

1
Open the Realize Model pane of filter designer by clicking the Realize Model button  in the
lower-left corner of filter designer.

2 Select the desired optimizations in the Optimization region of the Realize Model pane. See the
following descriptions and illustrations of each optimization option.
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• Optimize for zero gains — Remove zero-gain paths.
• Optimize for unity gains — Substitute gains equal to one with a wire (short circuit).
• Optimize for negative gains — Substitute gains equal to -1 with a wire (short circuit), and

change the corresponding sums to subtractions.
• Optimize delay chains — Substitute any delay chain made up of n unit delays with a single delay

by n.
• Optimize for unity scale values — Remove all scale value multiplications by 1 from the filter

structure.

The following diagram illustrates the results of each of these optimizations.
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See Also
Blocks
Digital Filter Design | Filter Realization Wizard

Related Examples
• “Design and Implement a Filter”
• “Using Digital Filter Design Block” on page 5-76
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Digital Filter Implementations
In this section...
“Using Digital Filter Blocks” on page 5-94
“Implement a Lowpass Filter in Simulink” on page 5-94
“Implement a Highpass Filter in Simulink” on page 5-95
“Filter High-Frequency Noise in Simulink” on page 5-96
“Specify Static Filters” on page 5-99
“Specify Time-Varying Filters” on page 5-100
“Specify the SOS Matrix (Biquadratic Filter Coefficients)” on page 5-100

Using Digital Filter Blocks
DSP System Toolbox provides several blocks implementing digital filters, such as Discrete FIR Filter
and Biquad Filter.

Use these blocks if you have already performed the design and analysis and know your desired filter
coefficients. You can use these blocks to filter single-channel and multichannel signals, and to
simulate floating-point and fixed-point filters. Then, you can use the Simulink Coder product to
generate highly optimized C code from your filters.

To implement a filter, you must provide the following basic information about the filter:

• The desired filter structure
• The filter coefficients

Note Use the Digital Filter Design block to design and implement a filter. Use the Discrete FIR Filter
and Biquad Filter blocks to implement a pre-designed filter. Both methods implement a filter in the
same manner and have the same behavior during simulation and code generation.

Implement a Lowpass Filter in Simulink
Use the Discrete FIR Filter block to implement a lowpass filter:

1 Define the lowpass filter coefficients in the MATLAB workspace by typing

lopassNum = [-0.0021 -0.0108 -0.0274 -0.0409 -0.0266 0.0374 0.1435 0.2465
0.2896 0.2465 0.1435 0.0374 -0.0266 -0.0409 -0.0274 -0.0108 -0.0021];

2 Open Simulink and create a new model file.
3 From the DSP System Toolbox Filtering>Filter Implementations library, click-and-drag a Discrete

FIR Filter block into your model.
4 Double-click the Discrete FIR Filter block. Set the block parameters as follows, and then click

OK:

• Coefficient source = Dialog parameters
• Filter structure = Direct form transposed
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• Coefficients = lopassNum
• Input processing = Columns as channels (frame based)
• Initial states = 0

Note that you can provide the filter coefficients in several ways:

• Type in a variable name from the MATLAB workspace, such as lopassNum.
• Type in filter design commands from Signal Processing Toolbox software or DSP System

Toolbox software, such as fir1(5, 0.2, 'low').
• Type in a vector of the filter coefficient values.

5 Rename your block Digital Filter - Lowpass.

The Discrete FIR Filter block in your model now represents a lowpass filter. In the next topic,
“Implement a Highpass Filter in Simulink” on page 5-95, you use a Discrete FIR Filter block to
implement a highpass filter. For more information about the Discrete FIR Filter block, see the
Discrete FIR Filter block reference page. For more information about designing and implementing a
new filter, see “Using Digital Filter Design Block” on page 5-76.

Implement a Highpass Filter in Simulink
In this topic, you implement a highpass filter using the Discrete FIR Filter block:

1 If the model you created in “Implement a Lowpass Filter in Simulink” on page 5-94 is not open on
your desktop, you can open an equivalent model by typing

  ex_filter_ex1

at the MATLAB command prompt.
2 Define the highpass filter coefficients in the MATLAB workspace by typing

hipassNum = [-0.0051 0.0181 -0.0069 -0.0283 -0.0061 ...
0.0549 0.0579 -0.0826 -0.2992 0.5946 -0.2992 -0.0826 ...
0.0579 0.0549 -0.0061 -0.0283 -0.0069 0.0181 -0.0051];

3 From the DSP System Toolbox Filtering library, and then from the Filter Implementations library,
click-and-drag a Discrete FIR Filter block into your model.

4 Double-click the Discrete FIR Filter block. Set the block parameters as follows, and then click
OK:

• Coefficient source = Dialog parameters
• Filter structure = Direct form transposed
• Coefficients = hipassNum
• Input processing = Columns as channels (frame based)
• Initial states = 0

You can provide the filter coefficients in several ways:

• Type in a variable name from the MATLAB workspace, such as hipassNum.
• Type in filter design commands from Signal Processing Toolbox software or DSP System

Toolbox software, such as fir1(5, 0.2, 'low').
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• Type in a vector of the filter coefficient values.
5 Rename your block Digital Filter - Highpass.

You have now successfully implemented a highpass filter. In the next topic, “Filter High-Frequency
Noise in Simulink” on page 5-96, you use these Discrete FIR Filter blocks to create a model capable
of removing high frequency noise from a signal. For more information about designing and
implementing a new filter, see “Using Digital Filter Design Block” on page 5-76.

Filter High-Frequency Noise in Simulink
In the previous topics, you used Discrete FIR Filter blocks to implement lowpass and highpass filters.
In this topic, you use these blocks to build a model that removes high frequency noise from a signal.
In this model, you use the highpass filter, which is excited using a uniform random signal, to create
high-frequency noise. After you add this noise to a sine wave, you use the lowpass filter to filter out
the high-frequency noise:

1 If the model you created in “Implement a Highpass Filter in Simulink” on page 5-95 is not open
on your desktop, you can open an equivalent model by typing

ex_filter_ex2 

at the MATLAB command prompt.
2 If you have not already done so, define the lowpass and highpass filter coefficients in the

MATLAB workspace by typing

lopassNum = [-0.0021 -0.0108 -0.0274 -0.0409 -0.0266 ...
0.0374 0.1435 0.2465 0.2896 0.2465 0.1435 0.0374 ...
-0.0266 -0.0409 -0.0274 -0.0108 -0.0021];
hipassNum = [-0.0051 0.0181 -0.0069 -0.0283 -0.0061 ...
0.0549 0.0579 -0.0826 -0.2992 0.5946 -0.2992 -0.0826 ...
0.0579 0.0549 -0.0061 -0.0283 -0.0069 0.0181 -0.0051];

3 Click-and-drag the following blocks into your model file.

Block Library Quantity
Add Simulink / Math Operations library 1
Random Source Sources 1
Sine Wave Sources 1
Time Scope Sinks 1

4 Set the parameters for the rest of the blocks as indicated in the following table. For any
parameters not listed in the table, leave them at their default settings.

Block Parameter Setting
Add • Icon shape  = rectangular

• List of signs = ++
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Block Parameter Setting
Random Source • Source type = Uniform

• Minimum = 0
• Maximum = 4
• Sample mode = Discrete
• Sample time = 1/1000
• Samples per frame = 50

Sine Wave • Frequency (Hz) = 75
• Sample time = 1/1000
• Samples per frame = 50

Time Scope • File > Number of Input Ports > 3
• File > Configuration ...

• Open the Visuals:Time Domain Options dialog and set
Time span = One frame period

5 Connect the blocks as shown in the following figure. You may need to resize some of your blocks
to accomplish this task.

6 In the Modeling tab, click Model Settings. The Configuration Parameters dialog opens.
7 In the Solver pane, set the parameters as follows, and then click OK:

• Start time = 0
• Stop time = 5
• Type = Fixed-step
• Solver = discrete (no continuous states)
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8 In the Simulation tab of the model toolstrip, click Run.

The model simulation begins and the Scope displays the three input signals.
9 After simulation is complete, select View > Legend from the Time Scope menu. The legend

appears in the Time Scope window. You can click-and-drag it anywhere on the scope display. To
change the channel names, double-click inside the legend and replace the current numbered
channel names with the following:

• Add = Noisy Sine Wave
• Digital Filter – Lowpass = Filtered Noisy Sine Wave
• Sine Wave = Original Sine Wave

In the next step, you will set the color, style, and marker of each channel.
10 In the Time Scope window, select View > Line Properties, and set the following:

Line Style Marker Color
Noisy Sine Wave - None Black
Filtered Noisy Sine
Wave

- diamond Red

Original Sine Wave None * Blue
11 The Time Scope display should now appear as follows:

You can see that the lowpass filter filters out the high-frequency noise in the noisy sine wave.
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You have now used Discrete FIR Filter blocks to build a model that removes high frequency noise
from a signal. For more information about designing and implementing a new filter, see “Using Digital
Filter Design Block” on page 5-76.

Specify Static Filters
You can specify a static filter using the Discrete FIR Filter or Biquad Filter block. To do so, set the
Coefficient source parameter to Dialog parameters.

For the Discrete FIR Filter, set the Coefficients parameter to a row vector of numerator coefficients.
If you set Filter structure to Lattice MA, the Coefficients parameter represents reflection
coefficients.

For the Biquad Filter, set the SOS matrix (Mx6) to an M-by-6 matrix, where M is the number of
sections in the second-order section filter. Each row of the SOS matrix contains the numerator and
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denominator coefficients of the corresponding section in the filter. Set Scale values to a scalar or
vector of M+1 scale values used between SOS stages.

Tuning the Filter Coefficient Values During Simulation

To change the static filter coefficients during simulation, double-click the block, type in the new filter
coefficients, and click OK. You cannot change the filter order, so you cannot change the number of
elements in the matrix of filter coefficients.

Specify Time-Varying Filters
Time-varying filters are filters whose coefficients change with time. You can specify a time-varying
filter that changes once per frame. You can filter multiple channels with each filter. However, you
cannot apply different filters to each channel; all channels use the same filter.

To specify a time-varying filter using a Biquad Filter block or a Discrete FIR Filter block:

1 Set the Coefficient source parameter to Input port(s), which enables extra block input
ports for the time-varying filter coefficients.

• The Discrete FIR Filter block has a Num port for the numerator coefficients.
• The Biquad Filter block has Num and Den ports rather than a single port for the SOS matrix.

Separate ports enable you to use different fraction lengths for numerator and denominator
coefficients. The scale values port, g, is optional. You can disable the g port by setting Scale
values mode to Assume all are unity and optimize.

2 Provide matrices of filter coefficients to the block input ports.

• For Discrete FIR Filter block, the number of filter taps, N, cannot vary over time. The input
coefficients must be in a 1-by-N vector.

• For Biquad Filter block, the number of filter sections, N, cannot vary over time. The
numerator coefficients input, Num, must be a 3-by-N matrix. The denominator input
coefficients, Den, must be a 2-by-N matrix. The scale values input, g, must be a 1-by-(N+1)
vector.

Specify the SOS Matrix (Biquadratic Filter Coefficients)
Use the Biquad Filter block to specify a static biquadratic IIR filter (also known as a second-order
section or SOS filter). Set the following parameters:

• Filter structure — Direct form I, or Direct form I transposed, or Direct form II, or
Direct form II transposed

• SOS matrix (Mx6) M-by-6 SOS matrix

The SOS matrix is an M-by-6 matrix, where M is the number of sections in the second-order
section filter. Each row of the SOS matrix contains the numerator and denominator coefficients
(bik and aik) of the corresponding section in the filter.

• Scale values Scalar or vector of M+1 scale values to be used between SOS stages

If you enter a scalar, the value is used as the gain value before the first section of the second-order
filter. The rest of the gain values are set to 1.
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If you enter a vector of M+1 values, each value is used for a separate section of the filter. For
example, the first element is the first gain value, the second element is the second gain value, and
so on.

You can use the ss2sos and tf2sos functions from Signal Processing Toolbox software to convert a
state-space or transfer function description of your filter into the second-order section description
used by this block.

b01 b11 b21 a01 a11 a21
b02 b12 b22 a02 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0M b1M b2M a0M a1M a2M

The block normalizes each row by a1i to ensure a value of 1 for the zero-delay denominator
coefficients.
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Removing High-Frequency Noise from an ECG Signal
This example shows how to lowpass filter an ECG signal that contains high frequency noise.

Create one period of an ECG signal. The ecg function creates an ECG signal of length 500. The
sgolayfilt function smoothes the ECG signal using a Savitzky-Golay (polynomial) smoothing filter.

x = ecg(500).';
y = sgolayfilt(x,0,5);
[M,N] = size(y);

Initialize the time scope to view the noisy signal and the filtered signal.

Fs = 1000;
TS = timescope('SampleRate',Fs,...
                    'TimeSpanSource','Property',...
                    'TimeSpan',1.5,...
                    'ShowGrid',true,...
                    'NumInputPorts',2,...
                    'LayoutDimensions',[2 1]);
TS.ActiveDisplay = 1;
TS.YLimits = [-1,1];
TS.Title = 'Noisy Signal';
TS.ActiveDisplay = 2;
TS.YLimits = [-1,1];
TS.Title = 'Filtered Signal';

Design a minimum-order lowpass filter with a passband edge frequency of 200 Hz and a stopband
edge frequency of 400 Hz. The desired amplitude of the frequency response and the weights are
specified in A and D vectors, respectively. Pass these specification vectors to the firgr function to
design the filter coefficients. Pass these designed coefficients to the dsp.FIRFilter object.

Fpass  = 200;
Fstop = 400;
Dpass = 0.05;
Dstop = 0.0001;
F     = [0 Fpass Fstop Fs/2]/(Fs/2);
A     = [1 1 0 0];
D     = [Dpass Dstop];
b = firgr('minorder',F,A,D);
LP = dsp.FIRFilter('Numerator',b);

Design a minimum-order highpass filter with a stopband edge frequency of 200 Hz and a passband
edge frequency of 400 Hz. Design the filter using the firgr function. Pass these designed
coefficients to the dsp.FIRFilter object.

Fstop = 200;
Fpass = 400;
Dstop = 0.0001;
Dpass = 0.05;
F = [0 Fstop Fpass Fs/2]/(Fs/2); % Frequency vector
A = [0 0 1 1]; % Amplitude vector
D = [Dstop Dpass];   % Deviation (ripple) vector
b  = firgr('minord',F,A,D);
HP = dsp.FIRFilter('Numerator',b);

The noisy signal contains the smoothed ECG signal along with high frequency noise. The signal is
filtered using a lowpass filter. View the noisy signal and the filtered signal using the time scope.
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tic;
while toc < 30
    x = .1 * randn(M,N);
    highFreqNoise = HP(x);
    noisySignal = y + highFreqNoise;
    filteredSignal = LP(noisySignal);
    TS(noisySignal,filteredSignal);
end

% Finalize
release(TS)

See Also
Functions
firgr

Objects
timescope | dsp.FIRFilter

More About
• “Remove High-Frequency Noise from Gyroscope Data” on page 27-24

 Removing High-Frequency Noise from an ECG Signal

5-103



Minimax FIR Filter Design
This example shows how to use some of the key features of the generalized Remez FIR filter design
function. This function provides all the functionality included in firpm plus many additional features
showcased here.

Weighted-Chebyshev Design

The following is an illustration of the weighted-Chebyshev design. This example shows the
compatibility of firgr with firpm.

N = 22;             % Filter order
F = [0 0.4 0.5 1];  % Frequency vector
A = [1 1 0 0];      % Magnitude vector
W = [1 5];          % Weight vector
b = firgr(N,F,A,W);
fvtool(b,1)

The following is a weighted-Chebyshev design where a type 4 filter (odd-order, asymmetric) has been
explicitly specified.

N = 21;             % Filter order
F = [0 0.4 0.5 1];  % Frequency vector
A = [0 0 1 1];      % Magnitude vector
W = [2 1];          % Weight vector
b = firgr(N,F,A,W,'4');
fvtool(b,1)
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"Least-Squares-Like" Design

The following illustrates a "least-squares-like" design. A user-supplied frequency-response function
(taperedresp.m) is used to perform the error weighting.

N = 53;                                  % Filter order
F = [0 0.3 0.33 0.77 0.8 1];             % Frequency vector
fresp = {@taperedresp, [0 0 1 1 0 0]};  % Frequency response function
W = [2 2 1];                             % Weight vector
b = firgr(N,F,fresp,W);
fvtool(b,1)
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Filter Designed for Specific Single-Point Bands

This is an illustration of a filter designed for specified single-point bands. The frequency points f =
0.25 and f = 0.55 are single-band points. These points have a gain that approaches zero.

The other band edges are normal.

N = 42;                               % Filter order
F = [0 0.2 0.25 0.3 0.5 0.55 0.6 1];  % Frequency vector
A = [1 1 0 1 1 0 1 1];                % Magnitude vector
S = {'n' 'n' 's' 'n' 'n' 's' 'n' 'n'};
b = firgr(N,F,A,S);
fvtool(b,1)
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Filter Designed for Specific In-Band Value

Here is an illustration of a filter designed for an exactly specified in-band value. The value is forced to
be exactly the specified value of 0.0 at f = 0.06.

This could be used for 60 Hz rejection (with Fs = 2 kHz). The band edge at 0.055 is indeterminate
since it should abut the next band.

N = 82;                         % Filter order
F = [0 0.055 0.06 0.1 0.15 1];  % Frequency vector
A = [0 0 0 0 1 1];              % Magnitude vector
S = {'n' 'i' 'f' 'n' 'n' 'n'};
b = firgr(N,F,A,S);
zerophase(b,1)
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Filter Design with Specific Multiple Independent Approximation Errors

Here is an example of designing a filter using multiple independent approximation errors. This
technique is used to directly design extra-ripple and maximal ripple filters. One of the interesting
properties that these filters have is a transition region width that is locally minimal. Further, these
designs converge very quickly in general.

N = 12;             % Filter order
F = [0 0.4 0.5 1];  % Frequency vector
A = [1 1 0 0];      % Magnitude vector
W = [1 1];          % Weight vector
E = {'e1' 'e2'};    % Approximation errors
b = firgr(N,F,A,W,E);
fvtool(b,1)
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Extra-Ripple Bandpass Filter

Here is an illustration of an extra-ripple bandpass filter having two independent approximation
errors: one shared by the two passbands and the other for the stopband (in blue). For comparison, a
standard weighted-Chebyshev design is also plotted (in green).

N = 28;                     % Filter order
F = [0 0.4 0.5 0.7 0.8 1];  % Frequency vector
A = [1 1 0 0 1 1];          % Magnitude vector
W = [1 1 2];                % Weight vector
E = {'e1','e2','e1'};       % Approximation errors
b1 = firgr(N,F,A,W,E);
b2 = firgr(N,F,A,W);
fvtool(b1,1,b2,1)
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Designing an In-Band-Zero Filter Using Three Independent Errors

We'll now re-do our in-band-zero example using three independent errors.

Note: It is sometimes necessary to use independent approximation errors to get designs with forced
in-band values to converge. This is because the approximating polynomial could otherwise be come
very underdetermined. The former design is displayed in green.

N = 82;                         % Filter order
F = [0 0.055 0.06 0.1 0.15 1];  % Frequency vector
A = [0 0 0 0 1 1];              % Magnitude vector
S = {'n' 'i' 'f' 'n' 'n' 'n'};
W = [10 1 1];                   % Weight vector
E = {'e1' 'e2' 'e3'};           % Approximation errors
b1 = firgr(N,F,A,S,W,E);
b2 = firgr(N,F,A,S);
fvtool(b1,1,b2,1)
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Checking for Transition-Region Anomalies

With the 'check' option, one is made aware of possible transition region anomalies in the filter that
is being designed. Here is an example of a filter with an anomaly. The 'check' option warns one of
this anomaly: One also get a results vector res.edgeCheck. Any zero-valued elements in this vector
indicate the locations of probable anomalies. The "-1" entries are for edges that were not checked
(there can't be an anomaly at f = 0 or f = 1).

N = 44;                     % Filter order
F = [0 0.3 0.4 0.6 0.8 1];  % Frequency vector
A = [1 1 0 0 1 1];          % Magnitude vector
b = firgr(N,F,A,'check');

Warning: Probable transition-region anomalies.  Verify with freqz.

fvtool(b,1)
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Determination of the Minimum Filter Order

The firpm algorithm repeatedly designs filters until the first iteration wherein the specifications are
met. The specifications are met when all of the required constraints are met. By specifying
'minorder', firpmord is used to get an initial estimate. There is also 'mineven' and 'minodd' to
get the minimum-order even-order or odd-order filter designs.

F = [0 0.4 0.5 1];  % Frequency vector
A = [1 1 0 0];      % Magnitude vector
R = [0.1 0.02];     % Deviation (ripple) vector
b = firgr('minorder',F,A,R);
zerophase(b,1)
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Differentiators and Hilbert Transformers

While using the minimum-order feature, an initial estimate of the filter order can be made. If this is
the case, then firpmord will not be used. This is necessary for filters that firpmord does not
support, such as differentiators and Hilbert transformers as well as user-supplied frequency-response
functions.

N = {'mineven',18}; % Minimum even-order, start order estimate at 18
F = [0.1 0.9];      % Frequency vector
A = [1 1];          % Magnitude vector
R = 0.1;            % Deviation (ripple)
b = firgr(N,F,A,R,'hilbert');
freqz(b,1,'whole')
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Design of an Interpolation Filter

This section illustrates the use of an interpolation filter for upsampling band-limited signals by an
integer factor. Typically one would use intfilt(r,l,alpha) from the Signal Processing Toolbox™
to do this. However, intfilt does not give one as much flexibility in the design as does firgr.

N = 30;                     % Filter order
F = [0 0.1 0.4 0.6 0.9 1];  % Frequency vector
A = [4 4 0 0 0 0];          % Magnitude vector
W = [1 100 100];            % Weight vector
b = firgr(N,F,A,W);
fvtool(b,1)
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A Comparison Between firpm and intfilt

Here is a comparison made between a filter designed using firpm (blue) and a 30-th order filter
designed using intfilt (green).

Notice that by using the weighting function in firpm, one can improve the minimum stopband
attenuation by almost 20 dB.

b2 = intfilt(4, 4, 0.4);
fvtool(b,1,b2,1)
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Notice that the equiripple attenuation throughout the second stopband is larger than the minimum
stopband attenuation of the filter designed with intfilt by about 6 dB. Notice also that the
passband ripple, although larger than that of the filter designed with intfilt, is still very small.

Design of a Minimum-Phase Lowpass Filter

Here is an illustration of a minimum-phase lowpass filter.

N = 42;             % Filter order
F = [0 0.4 0.5 1];  % Frequency vector
A = [1 1 0 0];      % Magnitude vector
W = [1 10];        % Weight-constraint vector
b = firgr(N,F,A,W, {64},'minphase');

The pole/zero plot shows that there are no roots outside of the unit circle.

zplane(b,1)
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Adaptive Filters

Learn how to design and implement adaptive filters.

• “Overview of Adaptive Filters and Applications” on page 6-2
• “System Identification of FIR Filter Using LMS Algorithm” on page 6-9
• “System Identification of FIR Filter Using Normalized LMS Algorithm” on page 6-17
• “Compare Convergence Performance Between LMS Algorithm and Normalized LMS Algorithm”

on page 6-20
• “Noise Cancellation Using Sign-Data LMS Algorithm” on page 6-22
• “Compare RLS and LMS Adaptive Filter Algorithms” on page 6-26
• “Inverse System Identification Using RLS Algorithm” on page 6-29
• “Signal Enhancement Using LMS and NLMS Algorithms” on page 6-34
• “Noise Cancellation in Simulink Using Normalized LMS Adaptive Filter” on page 6-43
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Overview of Adaptive Filters and Applications
In this section...
“Adaptive Filters in DSP System Toolbox” on page 6-2
“Choosing an Adaptive Filter” on page 6-4
“Mean Squared Error Performance” on page 6-5
“Common Applications” on page 6-5

Adaptive filters are digital filters whose coefficients change with an objective to make the filter
converge to an optimal state. The optimization criterion is a cost function, which is most commonly
the mean square of the error signal between the output of the adaptive filter and the desired signal.
As the filter adapts its coefficients, the mean square error (MSE) converges to its minimal value. At
this state, the filter is adapted and the coefficients have converged to a solution. The filter output,
y(k), is then said to match very closely to the desired signal, d(k). When you change the input data
characteristics, sometimes called filter environment, the filter adapts to the new environment by
generating a new set of coefficients for the new data.

General Adaptive Filter Algorithm

Adaptive Filters in DSP System Toolbox
Least Mean Squares (LMS) Based FIR Adaptive Filters

Adaptive Filter Object Adapting Algorithm
dsp.BlockLMSFilter Block LMS FIR adaptive filter algorithm
dsp.FilteredXLMSFilter Filtered-x LMS FIR adaptive filter algorithm
dsp.LMSFilter LMS FIR adaptive filter algorithm

Normalized LMS FIR adaptive filter algorithm

Sign-data LMS FIR adaptive filter algorithm

Sign-error LMS FIR adaptive filter algorithm

Sign-sign LMS FIR adaptive filter algorithm
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Adaptive Filter Block Adapting Algorithm
Block LMS Filter Block LMS FIR adaptive filter algorithm
Fast Block LMS Filter Block LMS FIR adaptive filter algorithm in frequency domain
LMS Filter LMS FIR adaptive filter algorithm

Normalized LMS FIR adaptive filter algorithm

Sign-data LMS FIR adaptive filter algorithm

Sign-error LMS FIR adaptive filter algorithm

Sign-sign LMS FIR adaptive filter algorithm
LMS Update LMS FIR weight update algorithm

Normalized LMS FIR weight update algorithm

Sign-data LMS FIR weight update algorithm

Sign-error LMS FIR weight update algorithm

Sign-sign LMS FIR weight update algorithm

Recursive Least Squares (RLS) Based FIR Adaptive Filters

Adaptive Filter Object Adapting Algorithm
dsp.FastTransversalFi
lter

Fast transversal least-squares adaptation algorithm

Sliding window FTF adaptation algorithm
dsp.RLSFilter QR-decomposition RLS adaptation algorithm

Householder RLS adaptation algorithm

Householder SWRLS adaptation algorithm

Recursive-least squares (RLS) adaptation algorithm

Sliding window (SW) RLS adaptation algorithm

Adaptive Filter Block Adapting Algorithm
RLS Filter Exponentially weighted recursive least-squares (RLS) algorithm

Affine Projection (AP) FIR Adaptive Filters

Adaptive Filter Object Adapting Algorithm
dsp.AffineProjectionF
ilter

Affine projection algorithm that uses direct matrix inversion

Affine projection algorithm that uses recursive matrix updating

Block affine projection adaptation algorithm
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FIR Adaptive Filters in the Frequency Domain (FD)

Adaptive Filter Object Adapting Algorithm
dsp.FrequencyDomainAdapt
iveFilter

Constrained frequency domain adaptation algorithm

Unconstrained frequency domain adaptation algorithm

Partitioned and constrained frequency domain adaptation algorithm

Partitioned and unconstrained frequency domain adaptation
algorithm

Adaptive Filter Block Adapting Algorithm
Frequency-Domain Adaptive
Filter

Constrained frequency domain adaptation algorithm

Unconstrained frequency domain adaptation algorithm

Partitioned and constrained frequency domain adaptation algorithm

Partitioned and unconstrained frequency domain adaptation
algorithm

Lattice-Based (L) FIR Adaptive Filters

Adaptive Filter Object Adapting Algorithm
dsp.AdaptiveLatticeF
ilter

Gradient adaptive lattice filter adaptation algorithm

Least squares lattice adaptation algorithm

QR decomposition RLS adaptation algorithm

For more information on these algorithms, refer to the algorithm section of the respective reference
pages. Full descriptions of the theory appear in the adaptive filter references [1] and [2].

Choosing an Adaptive Filter
At steady state when the filter has adapted, the error between the filter output and the desired signal
is minimal, not zero. This error is known as the steady state error. The speed with which the filter
converges to the optimal state, known as the convergence speed, depends on multiple factors such
nature of the input signal, choice of the adaptive filter algorithm, and step size of the algorithm. The
choice of the filter algorithm usually depends factors such as convergence performance required for
the application, computational complexity of the algorithm, filter stability in the environment, and any
other constraints.

LMS algorithm is simple to implement, but has stability issues. The normalized version of the LMS
algorithm comes with improved convergence speed, more stability, but has increased computational
complexity. For an example that compares the two, see “Compare Convergence Performance Between
LMS Algorithm and Normalized LMS Algorithm” on page 6-20. RLS algorithms are highly stable, do
very well in time-varying environments, but are computationally more complex than the LMS
algorithms. For a comparison, see “Compare RLS and LMS Adaptive Filter Algorithms” on page 6-
26. Affine projection filters do well when the input is colored and have a very good convergence
performance. Adaptive lattice filters provide good convergence but come with increased
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computational cost. The choice of the algorithm depends on the environment and the specifics of the
application.

Mean Squared Error Performance
Minimizing the mean square of the error signal between the output of the adaptive filter and the
desired signal is the most common optimization criterion for adaptive filters. The actual MSE
(MSESIM) of the adaptive filter you are implementing can be determined using the msesim function.
The trajectory of this MSE is expected to follow that of the predicted MSE (MSEPred), which is
computed using the msepred function. The minimum mean square error (MMSE) is estimated by the
msepred function using a Wiener filter. The Weiner filter minimizes the mean squared error between
the desired signal and the input signal filtered by the Wiener filter. A large value of the mean squared
error indicates that the adaptive filter cannot accurately track the desired signal. The minimal value
of the mean squared error ensures that the adaptive filter is optimal. The excess mean square error
(EMSE), determined by the msepred function, is the difference between the MSE introduced by the
adaptive filters and the MMSE produced by the corresponding Wiener filter. The final MSE shown
below is the sum of EMSE and MMSE, and equals the predicted MSE after convergence.

Common Applications
System Identification –– Using an Adaptive Filter to Identify an Unknown System

One common adaptive filter application is to use adaptive filters to identify an unknown system, such
as the response of an unknown communications channel or the frequency response of an auditorium,
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to pick fairly divergent applications. Other applications include echo cancellation and channel
identification.

In the figure, the unknown system is placed in parallel with the adaptive filter. This layout represents
just one of many possible structures. The shaded area contains the adaptive filter system.

Clearly, when e(k) is very small, the adaptive filter response is close to the response of the unknown
system. In this case, the same input feeds both the adaptive filter and the unknown. If, for example,
the unknown system is a modem, the input often represents white noise, and is a part of the sound
you hear from your modem when you log in to your Internet service provider.

Inverse System Identification –– Determining an Inverse Response to an Unknown System

By placing the unknown system in series with your adaptive filter, your filter adapts to become the
inverse of the unknown system as e(k) becomes very small. As shown in the figure, the process
requires a delay inserted in the desired signal d(k) path to keep the data at the summation
synchronized. Adding the delay keeps the system causal.

Including the delay to account for the delay caused by the unknown system prevents this condition.

Plain old telephone systems (POTS) commonly use inverse system identification to compensate for the
copper transmission medium. When you send data or voice over telephone lines, the copper wires
behave like a filter, having a response that rolls off at higher frequencies (or data rates) and having
other anomalies as well.

Adding an adaptive filter that has a response that is the inverse of the wire response, and configuring
the filter to adapt in real time, lets the filter compensate for the rolloff and anomalies, increasing the
available frequency output range and data rate for the telephone system.
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Noise or Interference Cancellation –– Using an Adaptive Filter to Remove Noise from an
Unknown System

In noise cancellation, adaptive filters let you remove noise from a signal in real time. Here, the
desired signal, the one to clean up, combines noise and desired information. To remove the noise,
feed a signal n'(k) to the adaptive filter that is correlated to the noise to be removed from the desired
signal.

So long as the input noise to the filter remains correlated to the unwanted noise accompanying the
desired signal, the adaptive filter adjusts its coefficients to reduce the value of the difference between
y(k) and d(k), removing the noise and resulting in a clean signal in e(k). Notice that in this
application, the error signal actually converges to the input data signal, rather than converging to
zero.

Prediction –– Predicting Future Values of a Periodic Signal

Predicting signals requires that you make some key assumptions. Assume that the signal is either
steady or slowly varying over time, and periodic over time as well.

Accepting these assumptions, the adaptive filter must predict the future values of the desired signal
based on past values. When s(k) is periodic and the filter is long enough to remember previous
values, this structure with the delay in the input signal, can perform the prediction. You might use
this structure to remove a periodic signal from stochastic noise signals.

Finally, notice that most systems of interest contain elements of more than one of the four adaptive
filter structures. Carefully reviewing the real structure may be required to determine what the
adaptive filter is adapting to.

Also, for clarity in the figures, the analog-to-digital (A/D) and digital-to-analog (D/A) components do
not appear. Since the adaptive filters are assumed to be digital in nature, and many of the problems
produce analog data, converting the input signals to and from the analog domain is probably
necessary.
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System Identification of FIR Filter Using LMS Algorithm
System identification is the process of identifying the coefficients of an unknown system using an
adaptive filter. The general overview of the process is shown in “System Identification –– Using an
Adaptive Filter to Identify an Unknown System” on page 6-5. The main components involved are:

• The adaptive filter algorithm. In this example, set the Method property of dsp.LMSFilter to
'LMS' to choose the LMS adaptive filter algorithm.

• An unknown system or process to adapt to. In this example, the filter designed by fircband is the
unknown system.

• Appropriate input data to exercise the adaptation process. For the generic LMS model, these are
the desired signal d k  and the input signal x k .

The objective of the adaptive filter is to minimize the error signal between the output of the adaptive
filter y k  and the output of the unknown system (or the system to be identified) d k . Once the error
signal is minimized, the adapted filter resembles the unknown system. The coefficients of both the
filters match closely.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Unknown System

Create a dsp.FIRFilter object that represents the system to be identified. Use the fircband
function to design the filter coefficients. The designed filter is a lowpass filter constrained to 0.2
ripple in the stopband.

filt = dsp.FIRFilter;
filt.Numerator = fircband(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],... 
{'w' 'c'});

Pass the signal x to the FIR filter. The desired signal d is the sum of the output of the unknown
system (FIR filter) and an additive noise signal n.

x = 0.1*randn(250,1);
n = 0.01*randn(250,1);
d = filt(x) + n;

Adaptive Filter

With the unknown filter designed and the desired signal in place, create and apply the adaptive LMS
filter object to identify the unknown filter.

Preparing the adaptive filter object requires starting values for estimates of the filter coefficients and
the LMS step size (mu). You can start with some set of nonzero values as estimates for the filter
coefficients. This example uses zeros for the 13 initial filter weights. Set the InitialConditions
property of dsp.LMSFilter to the desired initial values of the filter weights. For the step size, 0.8 is
a good compromise between being large enough to converge well within 250 iterations (250 input
sample points) and small enough to create an accurate estimate of the unknown filter.

Create a dsp.LMSFilter object to represent an adaptive filter that uses the LMS adaptive
algorithm. Set the length of the adaptive filter to 13 taps and the step size to 0.8.

mu = 0.8;
lms = dsp.LMSFilter(13,'StepSize',mu)
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lms = 
  dsp.LMSFilter with properties:

                   Method: 'LMS'
                   Length: 13
           StepSizeSource: 'Property'
                 StepSize: 0.8000
            LeakageFactor: 1
        InitialConditions: 0
           AdaptInputPort: false
    WeightsResetInputPort: false
            WeightsOutput: 'Last'

  Show all properties

Pass the primary input signal x and the desired signal d to the LMS filter. Run the adaptive filter to
determine the unknown system. The output y of the adaptive filter is the signal converged to the
desired signal d thereby minimizing the error e between the two signals.

Plot the results. The output signal does not match the desired signal as expected, making the error
between the two nontrivial.

[y,e,w] = lms(x,d);
plot(1:250, [d,y,e])
title('System Identification of an FIR filter')
legend('Desired','Output','Error')
xlabel('Time index')
ylabel('Signal value')
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Compare the Weights

The weights vector w represents the coefficients of the LMS filter that is adapted to resemble the
unknown system (FIR filter). To confirm the convergence, compare the numerator of the FIR filter
and the estimated weights of the adaptive filter.

The estimated filter weights do not closely match the actual filter weights, confirming the results
seen in the previous signal plot.

stem([(filt.Numerator).' w])
title('System Identification by Adaptive LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
       'Location','NorthEast')
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Changing the Step Size

As an experiment, change the step size to 0.2. Repeating the example with mu = 0.2 results in the
following stem plot. The filters do not converge, and the estimated weights are not good
approxmations of the actual weights.

mu = 0.2;
lms = dsp.LMSFilter(13,'StepSize',mu);
[~,~,w] = lms(x,d);
stem([(filt.Numerator).' w])
title('System Identification by Adaptive LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
       'Location','NorthEast')

6 Adaptive Filters

6-12



Increase the Number of Data Samples

Increase the frame size of the desired signal. Even though this increases the computation involved,
the LMS algorithm now has more data that can be used for adaptation. With 1000 samples of signal
data and a step size of 0.2, the coefficients are aligned closer than before, indicating an improved
convergence.

release(filt);
x = 0.1*randn(1000,1);
n = 0.01*randn(1000,1);
d = filt(x) + n;
[y,e,w] = lms(x,d);
stem([(filt.Numerator).' w])
title('System Identification by Adaptive LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
       'Location','NorthEast')
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Increase the number of data samples further by inputting the data through iterations. Run the
algorithm on 4000 samples of data, passed to the LMS algorithm in batches of 1000 samples over 4
iterations.

Compare the filter weights. The weights of the LMS filter match the weights of the FIR filter very
closely, indicating a good convergence.

release(filt);
n = 0.01*randn(1000,1);
for index = 1:4
  x = 0.1*randn(1000,1);
  d = filt(x) + n;
  [y,e,w] = lms(x,d);
end
stem([(filt.Numerator).' w])
title('System Identification by Adaptive LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
       'Location','NorthEast')
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The output signal matches the desired signal very closely, making the error between the two close to
zero.

plot(1:1000, [d,y,e])
title('System Identification of an FIR filter')
legend('Desired','Output','Error')
xlabel('Time index')
ylabel('Signal value')
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See Also
Objects
dsp.LMSFilter

More About
• “System Identification of FIR Filter Using Normalized LMS Algorithm” on page 6-17
• “Compare Convergence Performance Between LMS Algorithm and Normalized LMS Algorithm”

on page 6-20
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System Identification of FIR Filter Using Normalized LMS
Algorithm

To improve the convergence performance of the LMS algorithm, the normalized variant (NLMS) uses
an adaptive step size based on the signal power. As the input signal power changes, the algorithm
calculates the input power and adjusts the step size to maintain an appropriate value. The step size
changes with time, and as a result, the normalized algorithm converges faster with fewer samples in
many cases. For input signals that change slowly over time, the normalized LMS algorithm can be a
more efficient LMS approach.

For an example using the LMS approach, see “System Identification of FIR Filter Using LMS
Algorithm” on page 6-9.

Note: If you are using R2016a or an earlier release, replace each call to the object with the
equivalent step syntax. For example, obj(x) becomes step(obj,x).

Unknown System

Create a dsp.FIRFilter object that represents the system to be identified. Use the fircband
function to design the filter coefficients. The designed filter is a lowpass filter constrained to 0.2
ripple in the stopband.

filt = dsp.FIRFilter;
filt.Numerator = fircband(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],... 
{'w' 'c'});

Pass the signal x to the FIR filter. The desired signal d is the sum of the output of the unknown
system (FIR filter) and an additive noise signal n.

x = 0.1*randn(1000,1);
n = 0.001*randn(1000,1);
d = filt(x) + n;

Adaptive Filter

To use the normalized LMS algorithm variation, set the Method property on the dsp.LMSFilter to
'Normalized LMS'. Set the length of the adaptive filter to 13 taps and the step size to 0.2.

mu = 0.2;
lms = dsp.LMSFilter(13,'StepSize',mu,'Method',...
   'Normalized LMS');

Pass the primary input signal x and the desired signal d to the LMS filter.

[y,e,w] = lms(x,d);

The output y of the adaptive filter is the signal converged to the desired signal d thereby minimizing
the error e between the two signals.

plot(1:1000, [d,y,e])
title('System Identification by Normalized LMS Algorithm')
legend('Desired','Output','Error')
xlabel('Time index')
ylabel('Signal value')
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Compare the Adapted Filter to the Unknown System

The weights vector w represents the coefficients of the LMS filter that is adapted to resemble the
unknown system (FIR filter). To confirm the convergence, compare the numerator of the FIR filter
and the estimated weights of the adaptive filter.

stem([(filt.Numerator).' w])
title('System Identification by Normalized LMS Algorithm')
legend('Actual filter weights','Estimated filter weights',...
       'Location','NorthEast')
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See Also
Objects
dsp.LMSFilter

More About
• “System Identification of FIR Filter Using LMS Algorithm” on page 6-9
• “Compare Convergence Performance Between LMS Algorithm and Normalized LMS Algorithm”

on page 6-20
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Compare Convergence Performance Between LMS Algorithm
and Normalized LMS Algorithm

An adaptive filter adapts its filter coefficients to match the coefficients of an unknown system. The
objective is to minimize the error signal between the output of the unknown system and the output of
the adaptive filter. When these two outputs converge and match closely for the same input, the
coefficients are said to match closely. The adaptive filter at this state resembles the unknown system.
This example compares the rate at which this convergence happens for the normalized LMS (NLMS)
algorithm and the LMS algorithm with no normalization.

Unknown System

Create a dsp.FIRFilter that represents the unknown system. Pass the signal x as an input to the
unknown system. The desired signal d is the sum of the output of the unknown system (FIR filter) and
an additive noise signal n.

filt = dsp.FIRFilter;
filt.Numerator = fircband(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],... 
{'w' 'c'});
x = 0.1*randn(1000,1);
n = 0.001*randn(1000,1);
d = filt(x) + n;

Adaptive Filter

Create two dsp.LMSFilter objects, with one set to the LMS algorithm, and the other set to the
normalized LMS algorithm. Choose an adaptation step size of 0.2 and set the length of the adaptive
filter to 13 taps.

mu = 0.2;
lms_nonnormalized = dsp.LMSFilter(13,'StepSize',mu,...
    'Method','LMS');
lms_normalized = dsp.LMSFilter(13,'StepSize',mu,...
    'Method','Normalized LMS');

Pass the primary input signal x and the desired signal d to both the variations of the LMS algorithm.
The variables e1 and e2 represent the error between the desired signal and the output of the
normalized and nonnormalized filters, respecitvely.

[~,e1,~] = lms_normalized(x,d);
[~,e2,~] = lms_nonnormalized(x,d);

Plot the error signals for both variations. The error signal for the NLMS variant converges to zero
much faster than the error signal for the LMS variant. The normalized version adapts in far fewer
iterations to a result almost as good as the nonnormalized version.

plot([e1,e2]);
title('Comparing the LMS and NLMS Conversion Performance');
legend('NLMS derived filter weights', ...
       'LMS derived filter weights','Location', 'NorthEast');
xlabel('Time index')
ylabel('Signal value')
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See Also
Objects
dsp.LMSFilter

More About
• “System Identification of FIR Filter Using LMS Algorithm” on page 6-9
• “System Identification of FIR Filter Using Normalized LMS Algorithm” on page 6-17
• “Noise Cancellation Using Sign-Data LMS Algorithm” on page 6-22
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Noise Cancellation Using Sign-Data LMS Algorithm
When the amount of computation required to derive an adaptive filter drives your development
process, the sign-data variant of the LMS (SDLMS) algorithm might be a very good choice, as
demonstrated in this example.

In the standard and normalized variations of the LMS adaptive filter, coefficients for the adapting
filter arise from the mean square error between the desired signal and the output signal from the
unknown system. The sign-data algorithm changes the mean square error calculation by using the
sign of the input data to change the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients plus the error multiplied
by the step size µ. If the error is negative, the new coefficients are again the previous coefficients
minus the error multiplied by µ — note the sign change.

When the input is zero, the new coefficients are the same as the previous set.

In vector form, the sign-data LMS algorithm is:

w k + 1 = w k + μe k sgn x k ,

where

sgn x k =
1, x k > 0
0, x k = 0
−1, x k < 0

with vector w containing the weights applied to the filter coefficients and vector x containing the
input data. The vector e is the error between the desired signal and the filtered signal. The objective
of the SDLMS algorithm is to minimize this error. Step size is represented by μ.

With a smaller μ, the correction to the filter weights gets smaller for each sample, and the SDLMS
error falls more slowly. A larger μ changes the weights more for each step, so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely. To ensure a good
convergence rate and stability, select μ within the following practical bounds.

0 < μ < 1
N InputSignalPower ,

where N is the number of samples in the signal. Also, define μ as a power of two for efficient
computing.

Note: How you set the initial conditions of the sign-data algorithm profoundly influences the
effectiveness of the adaptation process. Because the algorithm essentially quantizes the input signal,
the algorithm can become unstable easily.

A series of large input values, coupled with the quantization process might result in the error growing
beyond all bounds. Restrain the tendency of the sign-data algorithm to get out of control by choosing
a small step size μ ≪ 1  and setting the initial conditions for the algorithm to nonzero positive and
negative values.

In this noise cancellation example, set the Method property of dsp.LMSFilter to 'Sign-Data
LMS'. This example requires two input data sets:
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• Data containing a signal corrupted by noise. In the block diagram under “Noise or Interference
Cancellation –– Using an Adaptive Filter to Remove Noise from an Unknown System” on page 6-7,
this is the desired signal d k . The noise cancellation process removes the noise from the signal.

• Data containing random noise. In the block diagram under “Noise or Interference Cancellation ––
Using an Adaptive Filter to Remove Noise from an Unknown System” on page 6-7, this is x k . The
signal x k  is correlated with the noise that corrupts the signal data. Without the correlation
between the noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.

signal = sin(2*pi*0.055*(0:1000-1)');

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise
through a lowpass FIR filter and then add the filtered noise to the signal.

noise = randn(1000,1);
filt = dsp.FIRFilter;
filt.Numerator = fir1(11,0.4);
fnoise = filt(noise);
d = signal + fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data algorithm.

To prepare the dsp.LMSFilter object for processing, set the initial conditions of the filter weights
and mu (StepSize). As noted earlier in this section, the values you set for coeffs and mu determine
whether the adaptive filter can remove the noise from the signal path.

In “System Identification of FIR Filter Using LMS Algorithm”, you constructed a default filter that
sets the filter coefficients to zeros. In most cases that approach does not work for the sign-data
algorithm. The closer you set your initial filter coefficients to the expected values, the more likely it is
that the algorithm remains well behaved and converges to a filter solution that removes the noise
effectively.

For this example, start with the coefficients used in the noise filter (filt.Numerator), and modify
them slightly so the algorithm has to adapt.

coeffs = (filt.Numerator).'-0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for dsp.LMSFilter prepared, construct the LMS filter object,
run the adaptation, and view the results.

lms = dsp.LMSFilter(12,'Method','Sign-Data LMS',...
   'StepSize',mu,'InitialConditions',coeffs);
[~,e] = lms(noise,d);
L = 200;
plot(0:L-1,signal(1:L),0:L-1,e(1:L));
title('Noise Cancellation by the Sign-Data Algorithm');
legend('Actual signal','Result of noise cancellation',...
       'Location','NorthEast');
xlabel('Time index')
ylabel('Signal values')
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When dsp.LMSFilter runs, it uses far fewer multiplication operations than either of the standard
LMS algorithms. Also, performing the sign-data adaptation requires only multiplication by bit shifting
when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in this plot is quite good, the sign-data
algorithm is much less stable than the standard LMS variations. In this noise cancellation example,
the processed signal is a very good match to the input signal, but the algorithm could very easily
grow without bound rather than achieve good performance.

Changing the weight initial conditions (InitialConditions) and mu (StepSize), or even the
lowpass filter you used to create the correlated noise, can cause noise cancellation to fail.

See Also
Objects
dsp.LMSFilter

More About
• “Noise Cancellation Using Sign-Error LMS Algorithm”
• “Noise Cancellation Using Sign-Sign LMS Algorithm”
• “System Identification of FIR Filter Using LMS Algorithm” on page 6-9
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Compare RLS and LMS Adaptive Filter Algorithms
Least mean squares (LMS) algorithms represent the simplest and most easily applied adaptive
algorithms. The recursive least squares (RLS) algorithms, on the other hand, are known for their
excellent performance and greater fidelity, but they come with increased complexity and
computational cost. In performance, RLS approaches the Kalman filter in adaptive filtering
applications with somewhat reduced required throughput in the signal processor. Compared to the
LMS algorithm, the RLS approach offers faster convergence and smaller error with respect to the
unknown system at the expense of requiring more computations.

Note that the signal paths and identifications are the same whether the filter uses RLS or LMS. The
difference lies in the adapting portion.

The LMS filters adapt their coefficients until the difference between the desired signal and the actual
signal is minimized (least mean squares of the error signal). This is the state when the filter weights
converge to optimal values, that is, they converge close enough to the actual coefficients of the
unknown system. This class of algorithms adapt based on the error at the current time. The RLS
adaptive filter is an algorithm that recursively finds the filter coefficients that minimize a weighted
linear least squares cost function relating to the input signals. These filters adapt based on the total
error computed from the beginning.

The LMS filters use a gradient-based approach to perform the adaptation. The initial weights are
assumed to be small, in most cases very close to zero. At each step, the filter weights are updated
based on the gradient of the mean square error. If the gradient is positive, the filter weights are
reduced, so that the error does not increase positively. If the gradient is negative, the filter weights
are increased. The step size with which the weights change must be chosen appropriately. If the step
size is very small, the algorithm converges very slowly. If the step size is very large, the algorithm
converges very fast, and the system might not be stable at the minimum error value. To have a stable
system, the step size μ must be within these limits:

0 < μ < 2
λmax

,

where λmax is the largest eigenvalue of the input autocorrelation matrix.

The RLS filters minimize the cost function, C by appropriately selecting the filter coefficients w(n)
and updating the filter as the new data arrives. The cost function is given by this equation:

C(wn) = ∑
i = 0

n
λn− ie2(i),

where

• wn — RLS adaptive filter coefficients.
• e(i) — Error between the desired signal d and the estimate of the desired signal dest at the

current time index. The signal dest is the output of the RLS filter, and so implicitly depends on the
current filter coefficients.

• λ — Forgetting factor that gives exponentially less weight to older samples, specified in the range
0 < λ ≤ 1. When λ = 1, all previous errors are considered of equal weight in the total error. As λ
approaches zero, the past errors play a smaller role in the total. For example, when λ = 0.1, the
RLS algorithm multiplies an error value from 50 samples in the past by an attenuation factor of
0.150 = 1 x 10−50, considerably de-emphasizing the influence of the past errors on the current total
error.
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In cases where the error value might come from a spurious input data point or points, the
forgetting factor lets the RLS algorithm reduce the significance of older error data by multiplying
the old data by the forgetting factor.

This table summarizes the key differences between the two types of algorithms:

LMS Algorithm RLS Algorithm
Simple and can be easily applied. Increased complexity and computational cost.
Takes longer to converge. Faster convergence.
Adaptation is based on the gradient-based
approach that updates filter weights to converge
to the optimum filter weights.

Adaptation is based on the recursive approach
that finds the filter coefficients that minimize a
weighted linear least squares cost function
relating to the input signals.

Larger steady state error with respect to the
unknown system.

Smaller steady state error with respect to
unknown system.

Does not account for past data. Accounts for past data from the beginning to the
current data point.

Objective is to minimize the current mean square
error between the desired signal and the output.

Objective is to minimize the total weighted
squared error between the desired signal and the
output.

No memory involved. Older error values play no
role in the total error considered.

Has infinite memory. All error data is considered
in the total error. Using the forgetting factor, the
older data can be de-emphasized compared to the
newer data.

Since 0 ≤ λ < 1, applying the factor is equivalent
to weighting the older error.

LMS based FIR adaptive filters in DSP System
Toolbox:

• dsp.LMSFilter
• dsp.FilteredXLMSFilter
• dsp.BlockLMSFilter

RLS based FIR adaptive filters in DSP System
Toolbox:

• dsp.RLSFilter
• dsp.FastTransversalFilter

Within limits, you can use any of the adaptive filter algorithms to solve an adaptive filter problem by
replacing the adaptive portion of the application with a new algorithm.

See Also
Objects
dsp.LMSFilter | dsp.RLSFilter

More About
• “System Identification of FIR Filter Using LMS Algorithm” on page 6-9
• “System Identification of FIR Filter Using Normalized LMS Algorithm” on page 6-17
• “Noise Cancellation Using Sign-Data LMS Algorithm” on page 6-22
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• “Inverse System Identification Using RLS Algorithm” on page 6-29
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Inverse System Identification Using RLS Algorithm
This example demonstrates the RLS adaptive algorithm using the inverse system identification model
shown here.

Cascading the adaptive filter with an unknown filter causes the adaptive filter to converge to a
solution that is the inverse of the unknown system.

If the transfer function of the unknown system and the adaptive filter are H(z) and G(z), respectively,
the error measured between the desired signal and the signal from the cascaded system reaches its
minimum when G(z)×H(z) = 1. For this relation to be true, G(z) must equal 1/H(z), the inverse of the
transfer function of the unknown system.

To demonstrate that this is true, create a signal s to input to the cascaded filter pair.

s = randn(3000,1);

In the cascaded filters case, the unknown filter results in a delay in the signal arriving at the
summation point after both filters. To prevent the adaptive filter from trying to adapt to a signal it has
not yet seen (equivalent to predicting the future), delay the desired signal by 12 samples, which is the
order of the unknown system.

Generally, you do not know the order of the system you are trying to identify. In that case, delay the
desired signal by number of samples equal to half the order of the adaptive filter. Delaying the input
requires prepending 12 zero-value samples to the input s.

delay = zeros(12,1);
d = [delay; s(1:2988)]; % Concatenate the delay and the signal.

You have to keep the desired signal vector d the same length as x, so adjust the signal element count
to allow for the delay samples.

Although not generally the case, for this example you know the order of the unknown filter, so add a
delay equal to the order of the unknown filter.

For the unknown system, use a lowpass, 12th-order FIR filter.

filt = dsp.FIRFilter;
filt.Numerator = fir1(12,0.55,'low');

Filtering s provides the input data signal for the adaptive algorithm function.
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x = filt(s);

To use the RLS algorithm, create a dsp.RLSFilter object and set its Length, ForgettingFactor,
and InitialInverseCovariance properties.

For more information about the input conditions to prepare the RLS algorithm object, refer to
dsp.RLSFilter.

p0 = 2 * eye(13);
lambda = 0.99;
rls = dsp.RLSFilter(13,'ForgettingFactor',lambda,...
   'InitialInverseCovariance',p0);

This example seeks to develop an inverse solution, you need to be careful about which signal carries
the data and which is the desired signal.

Earlier examples of adaptive filters use the filtered noise as the desired signal. In this case, the
filtered noise (x) carries the unknown system's information. With Gaussian distribution and variance
of 1, the unfiltered noise d is the desired signal. The code to run this adaptive filter is:

[y,e] = rls(x,d);

where y returns the filtered output and e contains the error signal as the filter adapts to find the
inverse of the unknown system.

Obtain the estimated coefficients of the RLS filter.

b = rls.Coefficients;

View the frequency response of the adapted RLS filter (inverse system, G(z)) using freqz. The
inverse system looks like a highpass filter with linear phase.

freqz(b,1)
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View the frequency response of the unknown system, H(z). The response is that of a lowpass filter
with a cutoff frequency of 0.55.

freqz(filt.Numerator,1)
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The result of the cascade of the unknown system and the adapted filter is a compensated system with
an extended cutoff frequency of 0.8.

overallCoeffs = conv(filt.Numerator,b);
freqz(overallCoeffs,1)
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See Also
Objects
dsp.RLSFilter

More About
• “Compare RLS and LMS Adaptive Filter Algorithms” on page 6-26
• “System Identification of FIR Filter Using LMS Algorithm” on page 6-9

References
[1] Hayes, Monson H., Statistical Digital Signal Processing and Modeling. Hoboken, NJ: John Wiley &

Sons, 1996, pp.493–552.

[2] Haykin, Simon, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall, Inc., 1996.
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Signal Enhancement Using LMS and NLMS Algorithms
Using the least mean square (LMS) and normalized LMS algorithms, extract the desired signal from a
noise-corrupted signal by filtering out the noise. Both these algorithms are available with the
dsp.LMSFilter System object™.

Create the Signals for Adaptation

The desired signal (the output from the process) is a sinusoid with 1000 samples per frame.

sine = dsp.SineWave('Frequency',375,'SampleRate',8000,'SamplesPerFrame',1000)

sine = 
  dsp.SineWave with properties:

          Amplitude: 1
          Frequency: 375
        PhaseOffset: 0
      ComplexOutput: false
             Method: 'Trigonometric function'
         SampleRate: 8000
    SamplesPerFrame: 1000
     OutputDataType: 'double'

s = sine();

To perform adaptation, the filter requires two signals:

• A reference signal
• A noisy signal that contains both the desired signal and an added noise component

Generate the Noise Signal

Create a noise signal with autoregressive noise (defined as v1). In autoregressive noise, the noise at
time t depends only on the previous values and a random disturbance.

v = 0.8*randn(sine.SamplesPerFrame,1); % Random noise part.
ar = [1,1/2];          % Autoregression coefficients.
ARfilt = dsp.IIRFilter('Numerator',1,'Denominator',ar)

ARfilt = 
  dsp.IIRFilter with properties:

            Structure: 'Direct form II transposed'
            Numerator: 1
          Denominator: [1 0.5000]
    InitialConditions: 0

  Show all properties

v1 = ARfilt(v);

Corrupt the Desired Signal to Create a Noisy Signal

To generate the noisy signal that contains both the desired signal and the noise, add the noise signal
v1 to the desired signal s. The noise-corrupted sinusoid x is:
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x = s + v1;

Adaptive filter processing seeks to recover s from x by removing v1. To complete the signals needed
to perform adaptive filtering, the adaptation process requires a reference signal.

Create a Reference Signal

Define a moving average signal v2 that is correlated with v1. The signal v2 is the reference signal for
this example.

ma = [1, -0.8, 0.4, -0.2];
MAfilt = dsp.FIRFilter('Numerator',ma)

MAfilt = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form'
      NumeratorSource: 'Property'
            Numerator: [1 -0.8000 0.4000 -0.2000]
    InitialConditions: 0

  Show all properties

v2 = MAfilt(v);

Construct Two Adaptive Filters

Two similar, sixth-order adaptive filters — LMS and NLMS — form the basis of this example. Set the
order as a variable in MATLAB™ and create the filters.

L = 7;
lms = dsp.LMSFilter(L,'Method','LMS')

lms = 
  dsp.LMSFilter with properties:

                   Method: 'LMS'
                   Length: 7
           StepSizeSource: 'Property'
                 StepSize: 0.1000
            LeakageFactor: 1
        InitialConditions: 0
           AdaptInputPort: false
    WeightsResetInputPort: false
            WeightsOutput: 'Last'

  Show all properties

nlms = dsp.LMSFilter(L,'Method','Normalized LMS')

nlms = 
  dsp.LMSFilter with properties:

                   Method: 'Normalized LMS'
                   Length: 7
           StepSizeSource: 'Property'
                 StepSize: 0.1000
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            LeakageFactor: 1
        InitialConditions: 0
           AdaptInputPort: false
    WeightsResetInputPort: false
            WeightsOutput: 'Last'

  Show all properties

Choose the Step Size

LMS-like algorithms have a step size that determines the amount of correction applied as the filter
adapts from one iteration to the next. A step size that is too small increases the time for the filter to
converge on a set of coefficients. A step size that is too large might cause the adapting filter to
diverge and never reach convergence. In this case, the resulting filter might not be stable.

As a rule of thumb, smaller step sizes improve the accuracy with which the filter converges to match
the characteristics of the unknown system, at the expense of the time it takes to adapt.

The maxstep function of dsp.LMSFilter object determines the maximum step size suitable for each
LMS adaptive filter algorithm that ensures that the filter converges to a solution. Often, the notation
for the step size is µ.

[mumaxlms,mumaxmselms] = maxstep(lms,x)

mumaxlms = 0.2127

mumaxmselms = 0.1312

[mumaxnlms,mumaxmsenlms] = maxstep(nlms,x)

mumaxnlms = 2

mumaxmsenlms = 2

Set the Adapting Filter Step Size

The first output of the maxstep function is the value needed for the mean of the coefficients to
converge, while the second output is the value needed for the mean squared coefficients to converge.
Choosing a large step size often causes large variations from the convergence values, so generally
choose smaller step sizes.

lms.StepSize  = mumaxmselms/30 

lms = 
  dsp.LMSFilter with properties:

                   Method: 'LMS'
                   Length: 7
           StepSizeSource: 'Property'
                 StepSize: 0.0044
            LeakageFactor: 1
        InitialConditions: 0
           AdaptInputPort: false
    WeightsResetInputPort: false
            WeightsOutput: 'Last'

  Show all properties
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nlms.StepSize = mumaxmsenlms/20 

nlms = 
  dsp.LMSFilter with properties:

                   Method: 'Normalized LMS'
                   Length: 7
           StepSizeSource: 'Property'
                 StepSize: 0.1000
            LeakageFactor: 1
        InitialConditions: 0
           AdaptInputPort: false
    WeightsResetInputPort: false
            WeightsOutput: 'Last'

  Show all properties

Filter with the Adaptive Filters

You have set up the parameters of the adaptive filters and are now ready to filter the noisy signal. The
reference signal v2 is the input to the adaptive filters. x is the desired signal in this configuration.

Through adaptation, y, the output of the filters, tries to emulate x as closely as possible.

Since v2 is correlated only with the noise component v1 of x, it can only really emulate v1. The error
signal (the desired x), minus the actual output y, constitutes an estimate of the part of x that is not
correlated with v2 — s, the signal to extract from x.

[~,elms,wlms] = lms(v2,x);
[~,enlms,wnlms] = nlms(v2,x);

Compute the Optimal Solution

For comparison, compute the optimal FIR Wiener filter.

reset(MAfilt);
bw = firwiener(L-1,v2,x); % Optimal FIR Wiener filter
MAfilt = dsp.FIRFilter('Numerator',bw)

MAfilt = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form'
      NumeratorSource: 'Property'
            Numerator: [1.0001 0.3060 0.1050 0.0482 0.1360 0.0959 0.0477]
    InitialConditions: 0

  Show all properties

yw = MAfilt(v2); % Estimate of x using Wiener filter
ew = x - yw; % Estimate of actual sinusoid

Plot the Results

Plot the resulting denoised sinusoid for each filter — the Wiener filter, the LMS adaptive filter, and
the NLMS adaptive filter — to compare the performance of the various techniques.
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n = (1:1000)';
plot(n(900:end),[ew(900:end), elms(900:end),enlms(900:end)])
legend('Wiener filter denoised sinusoid',...
    'LMS denoised sinusoid','NLMS denoised sinusoid')
xlabel('Time index (n)')
ylabel('Amplitude')

As a reference point, include the noisy signal as a dotted line in the plot.

hold on
plot(n(900:end),x(900:end),'k:')
xlabel('Time index (n)')
ylabel('Amplitude')
hold off

Compare the Final Coefficients

Finally, compare the Wiener filter coefficients with the coefficients of the adaptive filters. While
adapting, the adaptive filters try to converge to the Wiener coefficients.

[bw.' wlms wnlms]

ans = 7×3

    1.0001    0.8644    0.9690
    0.3060    0.1198    0.2661
    0.1050   -0.0020    0.1226
    0.0482   -0.0046    0.1074
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    0.1360    0.0680    0.2210
    0.0959    0.0214    0.1940
    0.0477    0.0292    0.1127

Reset the Filter Before Filtering

You can reset the internal filter states at any time by calling the reset function on the filter object.

For instance, these successive calls produce the same output after resetting the object.

[ylms,elms,wlms] = lms(v2,x);
[ynlms,enlms,wnlms] = nlms(v2,x);

If you do not reset the filter object, the filter uses the final states and coefficients from the previous
run as the initial conditions and data set for the next run.

Investigate Convergence Through Learning Curves

To analyze the convergence of the adaptive filters, use the learning curves. The toolbox provides
methods to generate the learning curves, but you need more than one iteration of the experiment to
obtain significant results.

This demonstration uses 25 sample realizations of the noisy sinusoids.

reset(ARfilt)
reset(sine);
release(sine);
n = (1:5000)';
sine.SamplesPerFrame = 5000

sine = 
  dsp.SineWave with properties:

          Amplitude: 1
          Frequency: 375
        PhaseOffset: 0
      ComplexOutput: false
             Method: 'Trigonometric function'
         SampleRate: 8000
    SamplesPerFrame: 5000
     OutputDataType: 'double'

s = sine();
nr = 25;
v = 0.8*randn(sine.SamplesPerFrame,nr);
ARfilt = dsp.IIRFilter('Numerator',1,'Denominator',ar)

ARfilt = 
  dsp.IIRFilter with properties:

            Structure: 'Direct form II transposed'
            Numerator: 1
          Denominator: [1 0.5000]
    InitialConditions: 0

  Show all properties
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v1 = ARfilt(v);
x = repmat(s,1,nr) + v1;
reset(MAfilt);
MAfilt = dsp.FIRFilter('Numerator',ma)

MAfilt = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form'
      NumeratorSource: 'Property'
            Numerator: [1 -0.8000 0.4000 -0.2000]
    InitialConditions: 0

  Show all properties

v2 = MAfilt(v);

Compute the Learning Curves

Now compute mean squared error. To speed things up, compute the error every 10 samples.

First, reset the adaptive filters to avoid using the coefficients it has already computed and the states
it has stored. Then plot the learning curves for the LMS and NLMS adaptive filters.

reset(lms);
reset(nlms);
M = 10; % Decimation factor
mselms = msesim(lms,v2,x,M);
msenlms = msesim(nlms,v2,x,M);
plot(1:M:n(end),mselms,'b',1:M:n(end),msenlms,'g')
legend('LMS learning curve','NLMS learning curve')
xlabel('Time index (n)')
ylabel('MSE')
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In this plot you see the calculated learning curves for the LMS and NLMS adaptive filters.

Compute the Theoretical Learning Curves

For the LMS and NLMS algorithms, functions in the toolbox help you compute the theoretical
learning curves, along with the minimum mean squared error (MMSE), the excess mean squared
error (EMSE), and the mean value of the coefficients.

MATLAB might take some time to calculate the curves. The figure shown after the code plots the
predicted and actual LMS curves.

reset(lms);
[mmselms,emselms,meanwlms,pmselms] = msepred(lms,v2,x,M);
x = 1:M:n(end);
y1 = mmselms*ones(500,1);
y2 = emselms*ones(500,1);
y3 = pmselms;
y4 = mselms;
plot(x,y1,'m',x,y2,'b',x,y3,'k',x,y4,'g')
legend('MMSE','EMSE','Predicted LMS learning curve',...
    'LMS learning curve')
xlabel('Time index (n)')
ylabel('MSE')
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Noise Cancellation in Simulink Using Normalized LMS Adaptive
Filter

In this section...
“Create an Acoustic Environment in Simulink” on page 6-43
“LMS Filter Configuration for Adaptive Noise Cancellation” on page 6-44
“Modify Adaptive Filter Parameters During Model Simulation” on page 6-47

Create an Acoustic Environment in Simulink
Adaptive filters are filters whose coefficients or weights change over time to adapt to the statistics of
a signal. They are used in a variety of fields including communications, controls, radar, sonar,
seismology, and biomedical engineering.

In this topic, you learn how to create an acoustic environment that simulates both white noise and
colored noise added to an input signal. You later use this environment to build a model capable of
adaptive noise cancellation using adaptive filtering:

1 At the MATLAB command line, type dspanc.

The DSP System Toolbox Acoustic Noise Cancellation example opens.

2 Copy and paste the subsystem called Acoustic Environment into a new model.
3 Double-click the Acoustic Environment subsystem.

Gaussian noise is used to create the signal sent to the Exterior Mic output port. If the input to the
Filter port changes from 0 to 1, the Digital Filter block changes from a lowpass filter to a
bandpass filter. The filtered noise output from the Digital Filter block is added to signal coming
from a .wav file to produce the signal sent to the Pilot's Mic output port.
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You have now created an acoustic environment. In the following topics, you use this acoustic
environment to produce a model capable of adaptive noise cancellation.

LMS Filter Configuration for Adaptive Noise Cancellation
In the previous topic, “Create an Acoustic Environment in Simulink” on page 6-43, you created a
system that produced two output signals. The signal output at the Exterior Mic port is composed of
white noise. The signal output at the Pilot's Mic port is composed of colored noise added to a signal
from a .wav file. In this topic, you create an adaptive filter to remove the noise from the Pilot's Mic
signal. This topic assumes that you are working on a Windows operating system:

1 If the model you created in “Create an Acoustic Environment in Simulink” on page 6-43 is not
open on your desktop, you can open an equivalent model by typing

ex_adapt1_audio

at the MATLAB command prompt.
2 From the DSP System Toolbox Filtering library, and then from the Adaptive Filters library, click-

and-drag an LMS Filter block into the model that contains the Acoustic Environment subsystem.
3 Double-click the LMS Filter block. Set the block parameters as follows, and then click OK:

• Algorithm = Normalized LMS
• Filter length = 40
• Step size (mu) = 0.002
• Leakage factor (0 to 1) = 1

The block uses the normalized LMS algorithm to calculate the forty filter coefficients. Setting the
Leakage factor (0 to 1) parameter to 1 means that the current filter coefficient values depend
on the filter's initial conditions and all of the previous input values.

4 Click-and-drag the following blocks into your model.

Block Library Quantity
Constant Simulink/Sources 2
Manual Switch Simulink/Signal Routing 1
Terminator Simulink/Sinks 1
Downsample Signal Operations 1
Audio Device Writer Sinks 1
Waterfall Scope Sinks 1

5 Connect the blocks so that your model resembles the following figure.
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6 Double-click the Constant block. Set the Constant value parameter to 0 and then click OK.
7 Double-click the Downsample block. Set the Downsample factor, K parameter to 32. Click OK.

The filter weights are being updated so often that there is very little change from one update to
the next. To see a more noticeable change, you need to downsample the output from the Wts
port.

8 Double-click the Waterfall Scope block. The Waterfall scope window opens.
9 Click the Scope parameters button.

The Parameters window opens.
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10 Click the Axes tab. Set the parameters as follows:

• Y Min = -0.188
• Y Max = 0.179

11 Click the Data history tab. Set the parameters as follows:

• History traces = 50
• Data logging = All visible

12 Close the Parameters window leaving all other parameters at their default values.

You might need to adjust the axes in the Waterfall scope window in order to view the plots.
13 Click the Fit to view button in the Waterfall scope window. Then, click-and-drag the axes until

they resemble the following figure.
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14 In the Modeling tab, click Model Settings. In the Solver pane, set the parameters as follows,
and then click OK:

• Stop time = inf
• Type = Fixed-step
• Solver = Discrete (no continuous states)

15 Run the simulation and view the results in the Waterfall scope window. You can also listen to the
simulation using the speakers attached to your computer.

16 Experiment with changing the Manual Switch so that the input to the Acoustic Environment
subsystem is either 0 or 1.

When the value is 0, the Gaussian noise in the signal is being filtered by a lowpass filter. When
the value is 1, the noise is being filtered by a bandpass filter. The adaptive filter can remove the
noise in both cases.

You have now created a model capable of adaptive noise cancellation. The adaptive filter in your
model is able to filter out both low frequency noise and noise within a frequency range. In the next
topic, “Modify Adaptive Filter Parameters During Model Simulation” on page 6-47, you modify the
LMS Filter block and change its parameters during simulation.

Modify Adaptive Filter Parameters During Model Simulation
In the previous topic, “LMS Filter Configuration for Adaptive Noise Cancellation” on page 6-44, you
created an adaptive filter and used it to remove the noise generated by the Acoustic Environment
subsystem. In this topic, you modify the adaptive filter and adjust its parameters during simulation.
This topic assumes that you are working on a Windows operating system:

1 If the model you created in “Create an Acoustic Environment in Simulink” on page 6-43 is not
open on your desktop, you can open an equivalent model by typing
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ex_adapt2_audio 

at the MATLAB command prompt.
2 Double-click the LMS filter block. Set the block parameters as follows, and then click OK:

• Specify step size via = Input port
• Initial value of filter weights = 0
• Select the Adapt port check box.
• Reset port = Non-zero sample

The Block Parameters: LMS Filter dialog box should now look similar to the following figure.

Step-size, Adapt, and Reset ports appear on the LMS Filter block.
3 Click-and-drag the following blocks into your model.
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Block Library Quantity
Constant Simulink/Sources 6
Manual Switch Simulink/Signal Routing 3

4 Connect the blocks as shown in the following figure.

5 Double-click the Constant2 block. Set the block parameters as follows, and then click OK:

• Constant value = 0.002
• Select the Interpret vector parameters as 1-D check box.
• Sample time (-1 for inherited) = inf
• Output data type mode = Inherit via back propagation

6 Double-click the Constant3 block. Set the block parameters as follows, and then click OK:

• Constant value = 0.04
• Select the Interpret vector parameters as 1-D check box.
• Sample time (-1 for inherited) = inf
• Output data type mode = Inherit via back propagation

7 Double-click the Constant4 block. Set the Constant value parameter to 0 and then click OK.
8 Double-click the Constant6 block. Set the Constant value parameter to 0 and then click OK.
9 In the Debug tab, select Information Overlays > Nonscalar Signals and Signal Dimensions.
10 Double-click Manual Switch2 so that the input to the Adapt port is 1.
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11 Run the simulation and view the results in the Waterfall scope window. You can also listen to the
simulation using the speakers attached to your computer.

12 Double-click the Manual Switch block so that the input to the Acoustic Environment subsystem is
1. Then, double-click Manual Switch2 so that the input to the Adapt port to 0.

The filter weights displayed in the Waterfall scope window remain constant. When the input to
the Adapt port is 0, the filter weights are not updated.

13 Double-click Manual Switch2 so that the input to the Adapt port is 1.

The LMS Filter block updates the coefficients.
14 Connect the Manual Switch1 block to the Constant block that represents 0.002. Then, change the

input to the Acoustic Environment subsystem. Repeat this procedure with the Constant block
that represents 0.04.

You can see that the system reaches steady state faster when the step size is larger.
15 Double-click the Manual Switch3 block so that the input to the Reset port is 1.

The block resets the filter weights to their initial values. In the Block Parameters: LMS Filter
dialog box, from the Reset port list, you chose Non-zero sample. This means that any nonzero
input to the Reset port triggers a reset operation.

You have now experimented with adaptive noise cancellation using the LMS Filter block. You adjusted
the parameters of your adaptive filter and viewed the effects of your changes while the model was
running.

For more information about adaptive filters, see the following block reference pages:

• LMS Filter
• RLS Filter
• Block LMS Filter
• Fast Block LMS Filter

References
[1] Hayes, Monson H., Statistical Digital Signal Processing and Modeling. Hoboken, NJ: John Wiley &

Sons, 1996, pp.493–552.

[2] Haykin, Simon, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall, Inc., 1996.

See Also

Related Examples
• “Time-Delay Channel Estimation Through Adaptive Filtering” on page 4-295
• “Adaptive Noise Cancellation Using RLS Adaptive Filtering” on page 4-276
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Multirate and Multistage Filters

Learn how to analyze, design, and implement multirate and multistage filters in MATLAB and
Simulink.

• “Overview of Multirate Filters” on page 7-2
• “Overview of Multistage Filters” on page 7-11
• “Overview of Filter Banks” on page 7-14
• “Two-Channel Filter Bank Using Halfband Decimators and Halfband Interpolators” on page 7-19
• “Channelize and Synthesize Sine Wave in MATLAB” on page 7-26
• “Multilevel Filter Banks” on page 7-28
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Overview of Multirate Filters

In this section...
“Decimation and Interpolation” on page 7-2
“Decimators” on page 7-3
“Interpolators” on page 7-4
“Sample Rate Converters” on page 7-6

Multirate filters are digital filters that change the sample rate of a digital signal without introducing
aliasing or imaging in the rate-converted signal. These filters are categorized as decimators that
reduce the sample rate, interpolators that increase the sample rate, and rate converters that do a
combination of both. DSP System Toolbox offers several MATLAB System objects and Simulink blocks
which implement decimators, interpolators, and rate converters. Advanced filter technologies such as
channelizers, channel synthesizers, two-channel halfband filter banks, and multilevel filter banks use
these filters as building components.

Decimation and Interpolation
A filter that reduces the input rate is called a decimator. A filter that increases the input rate is called
an interpolator. The process of decimation reduces the sample rate by compressing the data,
retaining only the desired information. Interpolation, on the other hand, increases the sample rate of
the signal. Interpolation is useful, for example, when you need to feed a signal to a system operating
at a higher rate. To visualize this process, examine the following figure, which illustrates the
processes of interpolation and decimation in the time domain.

If you start with the top signal, sampled at a frequency Fs, then the bottom signal is sampled at Fs/2
frequency. In this case, the decimation factor M is 2. The process of decimation and interpolation
allow sample rate to be decreased or increased while minimizing undesirable effects of errors such
aliasing and imaging.
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Decimators
Conceptually, the decimator consists of an anti-aliasing lowpass filter followed by a downsampler. The
role of the lowpass filter is to bandlimit the input signal before downsampling it, so that the Nyquist
sampling theorem is satisfied.

The downsampler reduces the sample rate from fs to fs/M. To prevent aliasing at the lower rate of
fs/M, the decimator uses a lowpass filter prior to the downsampler. The lowpass filter bandlimits the
input signal to less than fs/2M. This bandlimiting operation makes sure that the Nyquist criterion for
sampling is satisfied, and therefore guarantees near perfect reconstruction of the filtered signal w[n].
If the Nyquist criterion is not satisfied, aliasing occurs and the signal cannot be perfectly
reconstructed.

Accordiing to the Nyquist theorem, for bandlimited signals, the sample rate must be at least twice the
bandwidth of the signal. For example, if you have a lowpass filter with the highest frequency of 10
MHz, and a sample rate of 60 MHz, the highest frequency that can be handled by the system without
aliasing is 60/2 = 30 MHz, which is greater than 10 MHz. You can safely set M = 2 in this case, since
(60/2)/2 = 15 MHz, which is still greater than 10 MHz.

For the lowpass filter to be anti-aliasing, the filter must satisfy the following requirements:

• Stopband must contain the frequency range fs/2M ≤ f ≤ fs/2.
• Passband must be contained in the frequency range 0 ≤ f < fs/2M.
• To not lose any information in the decimation process, the highest frequency of interest in the

original signal fp must be less than fs/2M. This condition when not satisfied results in aliasing.

Effect on the Time and Frequency Domain

Consider a decimator with a downsample factor of 3.

Pass the input signal x[n] through an anti-aliasing lowpass filter to yield w[n]. The downsampler that
follows reduces the filtered data by a factor of 3 by discarding 2 samples for every 3 samples to yield
y[m].
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In the frequency domain, the input signal with a sample rate of 6 kHz first passes through the
lowpass filter. The lowpass filter bandlimits the signal and removes image frequencies, which would
otherwise cause aliasing. The downsampler that follows downsamples the filtered signal by a factor of
3 to a sample rate of 2 kHz.

The spectral components in the dashed lines are the frequencies that would have been aliased if the
input signal x[n] was not bandlimited by the lowpass filter. The spectrum clearly shows the role of
lowpass filtering in avoiding aliasing.

Interpolators
Conceptually, an interpolator consists of an upsampler followed by an anti-imaging lowpass filter. The
role of the lowpass filter is to remove the image frequencies caused by the upsampler.
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The upsampler inserts L − 1 zero-valued samples to form the new signal w[m] at a rate of Lfs. This
rate increase creates image frequencies beyond the Nyquist interval. To remove these image
frequencies, pass the w[m] signal through an anti-imaging lowpass filter. The lowpass filter
bandlimits the w[m] signal to fs/2 or less. The highest valid frequency after you increase the rate to
Lfs is Lfs/2. To eliminate spectral images, use the lowpass filter to bandlimit the upsampled signal to
Lfs/2L or fs/2.

Based on these constraints, the lowpass filter must satisfy the following filter requirements:

• Stopband must contain the frequency range fs/2 ≤ f ≤ Lfs/2.
• Passband must be contained in the frequency range 0 ≤ f < fs/2.
• A gain of L in the passband of the filter to compensate for the amplitude reduction by the

interpolation process. Insertion of L − 1 zeros spreads the average energy of each signal sample
over L output samples. This effectively attenuates each sample by a factor of L. To compensate for
this attenuation, each sample of the output y[m] needs to be multiplied by L.

Effect on the Time and Frequency Domain

Consider an interpolator with an upsample factor of 3.

Pass the input signal through an upsampler. The upsampler inserts two zero-valued samples to form a
new signal w[m]. Lowpass filter the signal to remove image frequencies created by the rate increase
to yield the y[m] signal.

In the frequency domain, pass the input signal with a sample rate of 2 kHz through an upsampler. The
sample rate changes to 6 kHz. The lowpass filter that follows bandlimits the signal and removes
image frequencies which would otherwise cause aliasing.

The spectral components in the dashed lines are the frequencies removed by the anti-imaging
lowpass filter.
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For more information about the effects of decimation and interpolation on a sampled signal, see
“References” on page 7-9.

Sample Rate Converters
Sample rate converters change the sample rate of a signal by a noninteger factor, L/M. The sample
rate change is achieved by first interpolating the data by L and then decimating by M. The
interpolation precedes decimation because in that order the overall process is not as lossy.

Conceptually, a sample rate converter can be represented using the following diagram.
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You can combine the two lowpass filters into a single filter since they are in cascade and have a
common sample rate. The cascaded filter h(k) must be both anti-aliasing and anti-imaging in order to
effectively rate convert the signal without introducing significant aliasing and imaging errors. The
combined filter has a cutoff frequency of min(fs/2, Lfs/2M).

The rate converter resamples the signal according to the values of L and M:

• L < M and L/M is not an integer –– Decimation with a noninteger conversion ratio.
• L > M and L/M is not an integer –– Interpolation with a noninteger conversion ratio.
• L/M = K/1, where K is an integer –– Interpolation with an integer conversion ratio.
• L/M = 1/K –– Decimation with an integer conversion ratio.

Effect on the Time and Frequency Domain

Consider a sample rate converter with a noninteger conversion factor 3/2.

Pass the input signal through an upsampler. The upsampler inserts two zero-valued samples for each
sample of x[n]. Lowpass filter the signal to yield v[i]. Then pass the filtered data through a
downsampler. The downsampler reduces the signal by a factor of 2 by retaining only one sample for
every two samples of v[i].
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In the frequency domain, the input signal with a sample rate of 2 kHz is first increased by a factor of
3 to 6 kHz. The lowpass filter that follows bandlimits the signal and removes image frequencies which
would otherwise cause aliasing. The filtered signal is then downsampled by a factor of 2 to 3 kHz.

The spectral components in the dashed lines are the frequencies which are removed by the lowpass
filter.
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When the sample rate conversion ratio is large, it is more efficient to implement the rate converter in
two or more stages rather than in a single stage. For more details, see “Multistage Rate Conversion”
on page 4-177.
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See Also

Related Examples
• “Multirate Filtering in MATLAB and Simulink” on page 1-36
• “Overview of Multistage Filters” on page 7-11
• “Overview of Filter Banks” on page 7-14
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Overview of Multistage Filters
In this section...
“Multistage Decimator” on page 7-11
“Multistage Interpolator” on page 7-12
“Determine the number of stages and rate conversion factor for each stage” on page 7-12

Multistage filters are composed of several filter stages connected in series or parallel.

When you need to change the sample rate of a signal by a large factor, or implement a filter with a
very narrow transition width, it is more efficient to implement the design in two or more stages
rather than in one single stage. When the design is long (contains many coefficients) and costly
(requires many multiplications and additions per input sample), the multistage approach is more
efficient to implement compared to the single-stage approach.

Implementing a multirate filter with a large rate conversion factor using multiple stages allows for a
gradual decrease or increase in the sample rate, allowing for a more relaxed set of requirements for
the anti-aliasing or anti-imaging filter at each stage. Implementing a filter with a very narrow
transition width in a single stage requires many coefficients and many multiplications and additions
per input sample. When there are strict hardware requirements and it is impossible to implement
long filters, the multistage approach acts as an efficient alternative. Though a multistage approach is
efficient to implement, design advantages come at the cost of increased complexity.

Multistage Decimator
Consider an I-stage decimator. The overall decimation factor M is split into smaller factors with each
factor being the decimation factor of the corresponding individual stage. The combined decimation of
all the individual stages must equal the overall decimation. The combined response must meet or
exceed the given design specifications.

The overall decimation factor M is expressed as the product of smaller factors:

M = M1M2⋯MI

where Mi is the decimation factor for stage i. Each stage is an independent decimator. The sample
rate at the output of each ith stage is:

f i =
f i− 1
Mi

, i = 1, 2, ..., I
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If M ≫ 1, the multistage approach reduces computational and storage requirements significantly.

Multistage Interpolator
Consider a J-stage interpolator. The overall interpolation factor L is split into smaller factors with
each factor being the interpolation factor of the corresponding individual stage. The filter in each
interpolator eliminates the images introduced by the upsampling process in the corresponding
interpolator. The combined interpolation of all the individual stages must equal the overall
interpolation. The combined response must meet or exceed the given design specifications.

The overall interpolation factor L is expressed as the product of smaller factors:

L = L1L2⋯LJ

where Lj is the interpolation factor for stage j. Each stage is an independent interpolator. The sample
rate at the output of each jth stage is:

f j = L jf j− 1, j = 1, 2, ..., J

If L ≫ 1, the multistage approach reduces computational and storage requirements significantly.

Determine the number of stages and rate conversion factor for each
stage
For a given rate conversion factor R, there is more than one possible configuration of filter stages.
The number of stages and the rate conversion factor for each stage depends on the number of smaller
factors R can be divided into. An optimal configuration is the sequence of filter stages leading to the
least computational effort, with the computational effort measured by the number of multiplications
per input sample, number of additions per input sample, and, in general, the total number of filter
coefficients.

In the optimal configuration of multistage decimation filters, the shortest filter appears first and the
longest filter (with the narrowest transition width) appears last. This sequence ensures that the filter
with the longest length operates at the lowest sample rate, thereby reducing the cost of
implementing the filter significantly.

Similarly, in the optimal configuration of multistage interpolation filters, the longest filter appears
first and the shortest filter appears last. This sequence again ensures that the filter with the longest
length operates at the lowest sample rate.
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The designMultistageDecimator and designMultistageInterpolator functions in DSP
System Toolbox automatically determine the optimal configuration, which includes determining the
number of stages and the rate conversion factor for each stage. An optimal configuration leads to the
least computational effort, and you can measure the cost of such an implementation using the cost
function. For an example, see “Multistage Rate Conversion” on page 4-177.

See Also
Functions
cost | designMultistageDecimator | designMultistageInterpolator

Related Examples
• “Multistage Rate Conversion” on page 4-177
• “Overview of Multirate Filters” on page 7-2
• “Overview of Filter Banks” on page 7-14
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Overview of Filter Banks
A digital filter bank is an array of digital bandpass filters with either a common input or a common
output. A filter bank can be an analysis filter bank with a series of analysis filters, or a synthesis filter
bank with a series of synthesis filters. The analysis filter bank separates the input broadband signal
x[n] into multiple components, each carrying a subband of the original signal. The synthesis filter
bank merges these subbands into a single broadband signal, a reconstructed version of the original
input signal.

Analysis Filter Bank (Channelizer)
The generic analysis filter bank, also known as the channelizer, consists of a series of parallel
bandpass filters that split an input broadband signal, x[n], into a series of narrow subbands. Each
bandpass filter retains a different portion of the input signal. After the bandwidth is reduced by one of
the bandpass filters, the signal is downsampled to a lower sample rate commensurate with the new
bandwidth.

The first branch in the filter bank contains a lowpass filter, H0(z), which acts as a prototype filter. The
remaining filters H1(z) through HM−1(z) are modulated versions of this filter. These modulated
versions can be rearranged in terms of a complex exponential (modulation factor) followed by the
prototype lowpass filter H0(z).
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y1[m], y2[m], …, yM-1[m] are narrow subband signals translated into baseband.

For more details on this structure, see Analysis Filter Bank.

This filter bank can be implemented efficiently using a polyphase structure. For more details on the
polyphase structure and how it is implemented in the dsp.Channelizer object and the Channelizer
block, see Channelizer Algorithm. The chief advantage of this polyphase implementation is that you
can downsample the signal prior to filtering, thereby allowing you to filter the signal at a lower
sample rate.

Synthesis Filter Bank (Channel synthesizer)
The synthesis filter bank, also known as the channel synthesizer, consists of a set of parallel bandpass
filters that merge multiple input narrowband signals, y0[m], y1[m], y2[m], … , yM-1[m] into a single
broadband signal, v[n]. The input narrowband signals are in the baseband. Each narrowband signal is
interpolated to a higher sample rate by using the upsampler, and then filtered by the lowpass filter. A
complex exponential that follows the lowpass filter centers the baseband signal around wk, where
wk = 2πk/M and k = 0, 1, 2, ..., M − 1.
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This filter bank is implemented efficiently using the polyphase structure described in Channel
Synthesizer Algorithm. The dsp.ChannelSynthesizer object and the Channel Synthesizer block in
DSP System Toolbox use this implementation.

Two-Channel (Halfband) Filter Bank
Two-channel filter bank is a special case of the generic M-channel filter bank, where the number of
filter branches is two.

The DFT matrix of the analysis portion looks like the following matrix.

The first row adds the two polyphase branches to give the lowpass subband output. The second row
subtracts the two polyphase branches to give the highpass subband output. The halfband decimator
objects and blocks in DSP System Toolbox implement their algorithm as shown in this diagram. A0(z)
and A1(z) are the allpass polyphase components. This structure is the analysis portion of the two-
channel halfband filter bank. Due to the halfband nature of the filters, one of the branches in this
polyphase structure becomes a pure delay component.

For more details on this structure and its derivation, see Polyphase Implementation under
Algorithms on these reference pages.
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Two-Channel Filter Bank MATLAB Simulink
Analysis portion using FIR
halfband filter

dsp.FIRHalfbandDecimator FIR Halfband Decimator

Analysis portion using IIR
halfband filter

dsp.IIRHalfbandDecimator IIR Halfband Decimator

Similarly, the halfband interpolator objects and blocks in DSP System Toolbox implement their
algorithm as shown in this diagram. This structure is the synthesis portion of the two-channel
halfband filter bank. Due to the halfband nature of the filters, one of the branches in this polyphase
structure becomes a pure delay component.

For more details on this structure and its derivation, see Polyphase Implementation under
Algorithms on these reference pages.

Two-Channel Filter Bank MATLAB Simulink
Synthesis portion using FIR
halfband filter

dsp.FIRHalfbandInterpola
tor

FIR Halfband Interpolator

Synthesis portion using IIR
halfband filter

dsp.IIRHalfbandInterpola
tor

IIR Halfband Interpolator

The other two-channel filter bank features that DSP System Toolbox offers let you specify the lowpass
and highpass filter coefficients. These features can customize the partitioning of the broadband
signal. For an example, see “Reconstruction Through Two-Channel Filter Banks” on page 4-258.

Two-Channel Filter Bank MATLAB Simulink
Analysis filter bank dsp.SubbandAnalysisFilte

r
Two-Channel Analysis Subband
Filter

Synthesis filter bank dsp.SubbandSynthesisFilt
er

Two-Channel Synthesis Subband
Filter

You can use the subband analysis and synthesis filter banks as basic units and create multilevel filter
banks. For more details, see “Multilevel Filter Banks” on page 7-28.

See Also

Related Examples
• “Two-Channel Filter Bank Using Halfband Decimators and Halfband Interpolators” on page 7-

19
• “Channelize and Synthesize Sine Wave in MATLAB” on page 7-26
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• “Synthesize and Channelize Audio in Simulink” on page 14-2
• “Reconstruction Through Two-Channel Filter Banks” on page 4-258
• “Multilevel Filter Banks” on page 7-28

External Websites
• Filter Bank Method: A Better Approach to Spectral Analysis
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Two-Channel Filter Bank Using Halfband Decimators and
Halfband Interpolators

A two-channel filter bank is a special case of the generic M-channel filter bank, where there are two
filter branches. Implement the analysis portion of the filter bank using halfband decimators.
Implement the synthesis portion of the filter bank using halfband interpolators.

These features implement the halfband decimators and halfband interpolators in DSP System
Toolbox™.

• dsp.FIRHalfbandDecimator and FIR Halfband Decimator: Implement the analysis portion of
the filter bank by using the FIR halfband filter.

• dsp.IIRHalfbandDecimator and IIR Halfband Decimator: Implement the analysis portion of
the filter bank by using the IIR halfband filter.

• dsp.FIRHalfbandInterpolator and FIR Halfband Interpolator: Implement the synthesis
portion of the filter bank by using the FIR halfband filter.

• dsp.IIRHalfbandInterpolator and IIR Halfband Interpolator: Implement the synthesis
portion of the filter bank by using the IIR halfband filter.

The two-channel analysis filter bank accepts a broadband signal as the input and splits this signal into
lowpass and highpass subband signals. The two-channel synthesis filter bank accepts the lowpass and
highpass subband signals as inputs and reconstructs the broadband signal using these two subbands.

Use either the FIR halfband or IIR halfband filters in the filter bank. Each filter has its own
advantages and disadvantages and your choice should depend on the computational requirements of
the application. IIR filters require fewer coefficients than FIR filters to execute similar filtering
operations. IIR filters work faster and require less memory space. However, FIR filters are always
stable. When the coefficients of an FIR filter are symmetric or anti-symmetric, the filter exhibits
linear phase response.

Use an audio file input and compare the power spectrum of the filter bank output with that of the
input signal. Then compare the cost of implementing both the FIR and IIR halfband filter banks.

Note: If you are using R2016a or an earlier release, replace each call to the object with the equivalent
step syntax. For example, obj(x) becomes step(obj,x).

Note: The audioDeviceWriter System object™ is not supported in MATLAB Online.

FIR Halfband Two-Channel Filter Bank

Set up the audio file reader and device writer. Create the FIR halfband decimator and interpolator to
design a minimum order filter with a transition width of 2000 Hz and a stopband attenuation of 80
dB. Finally, set up the spectrum analyzer to display the power spectra of the filter bank input and
output.

AF = dsp.AudioFileReader('speech_dft.mp3','SamplesPerFrame',1024);
AP = audioDeviceWriter('SampleRate',AF.SampleRate);

filterspec = 'Transition width and stopband attenuation';
TW = 2000;
Astop = 80;

firhalfbanddecim = dsp.FIRHalfbandDecimator(...
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    'Specification',filterspec, ...
    'StopbandAttenuation',Astop,...
    'TransitionWidth',TW, ...
    'SampleRate',AF.SampleRate);

firhalfbandinterp = dsp.FIRHalfbandInterpolator(...
    'Specification',filterspec, ...
    'StopbandAttenuation',Astop,...
    'TransitionWidth',TW, ...
    'SampleRate',AF.SampleRate/2,...
    'FilterBankInputPort',true);

SpecAna = spectrumAnalyzer('SampleRate',AF.SampleRate,...
    'PlotAsTwoSidedSpectrum',false,...
    'ShowLegend',true,...
    'ChannelNames',{'Input signal','Filtered output signal'});

Read the audio 1024 samples at a time. Filter the input to obtain the lowpass and highpass subband
signals decimated by a factor of two. This is the analysis portion of the filter bank. Use the FIR
halfband interpolator as the synthesis filter bank. Display the running power spectrum of the audio
input and the output of the synthesis filter bank. Play the output using the audio device writer.

while ~isDone(AF)
    audioInput = AF();
    [xlo,xhigh] = firhalfbanddecim(audioInput);
    audioOutput = firhalfbandinterp(xlo,xhigh);
    spectrumInput = [audioInput audioOutput];
    SpecAna(spectrumInput);
    AP(audioOutput);
end

release(AF);
release(AP);
release(SpecAna);
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IIR Halfband Two-Channel Filter Bank

Set up the IIR halfband decimator and interpolator. The filters are of minimum order, have a
transition width of 2000 Hz, and a stopband attenuation of 80 dB. Set up the spectrum analyzer to
display the power spectra of the filter bank input and the output.

AF = dsp.AudioFileReader('speech_dft.mp3','SamplesPerFrame',1024);
AP = audioDeviceWriter('SampleRate',AF.SampleRate);

filterspec = 'Transition width and stopband attenuation';
TW = 2000;
Astop = 80;

iirhalfbanddecim = dsp.IIRHalfbandDecimator(...
    'Specification',filterspec,'StopbandAttenuation',Astop,...
    'TransitionWidth',TW,'SampleRate',AF.SampleRate);

iirhalfbandinterp = dsp.IIRHalfbandInterpolator(...
    'Specification',filterspec,'StopbandAttenuation',Astop,...
    'TransitionWidth',TW,'SampleRate',AF.SampleRate/2,...
    'FilterBankInputPort',true);

SpecAna = spectrumAnalyzer('SampleRate',AF.SampleRate,...
    'PlotAsTwoSidedSpectrum',false,...
    'ShowLegend',true,...
    'ChannelNames',{'Input signal','Filtered output signal'});
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Read the audio 1024 samples at a time. Filter the input signal to obtain the lowpass and highpass
subband signals decimated by a factor of two. This is the analysis portion of the filter bank. Use the
IIR halfband interpolator as the synthesis filter bank. Display the running power spectrum of the
audio input and the output of the synthesis filter bank. Play the output using the audio device writer.

while ~isDone(AF)
    audioInput = AF();
    [xlo,xhigh] = iirhalfbanddecim(audioInput);
    audioOutput = iirhalfbandinterp(xlo,xhigh);
    spectrumInput = [audioInput audioOutput];
    SpecAna(spectrumInput);
    AP(audioOutput);
end

release(AF);
release(AP);
release(SpecAna);

Compare the Cost

Compare the cost of implementing the FIR and IIR halfband decimators using the cost function. You
can see that IIR halfband decimator is computationally more efficient.

cost(firhalfbanddecim)

ans = struct with fields:
                  NumCoefficients: 27
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                        NumStates: 50
    MultiplicationsPerInputSample: 13.5000
          AdditionsPerInputSample: 13

cost(iirhalfbanddecim)

ans = struct with fields:
                  NumCoefficients: 5
                        NumStates: 7
    MultiplicationsPerInputSample: 2.5000
          AdditionsPerInputSample: 5

Compare the cost of implementing the FIR and IIR halfband interpolators. Again, the computational
cost of implementing the IIR halfband interpolator is much less compared to the computational cost
of implementing the IIR halfband decimator.

cost(firhalfbandinterp)

ans = struct with fields:
                  NumCoefficients: 26
                        NumStates: 25
    MultiplicationsPerInputSample: 26
          AdditionsPerInputSample: 25

cost(iirhalfbandinterp)

ans = struct with fields:
                  NumCoefficients: 5
                        NumStates: 7
    MultiplicationsPerInputSample: 5
          AdditionsPerInputSample: 10

Compare the Group Delay

You can also compare the group delay of the FIR and the IIR halfband filters.

Use fvtool to display the group delay response of the FIR halfband and IIR halfband filters in the
decimator. The FIR halfband filter has a linear phase response with a group delay of 25 samples. The
IIR halfband filter has a nonlinear phase response, especially around the cutoff frequency of the filter.
A constant group delay ensures that all the frequency components are delayed by the same amount.

h = fvtool(firhalfbanddecim,iirhalfbanddecim,'Analysis','grpdelay');
legend(h,'FIR Halfband Decimator','IIR Halfband Decimator')
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Similarly in the interpolator, the FIR halfband filter has a linear phase response, while the IIR
halfband filter has a nonlinear phase response.

h = fvtool(firhalfbandinterp,iirhalfbandinterp,'Analysis','grpdelay');
legend(h,'FIR Halfband Interpolator','IIR Halfband Interpolator')
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See Also
Objects
dsp.AudioFileReader | audioDeviceWriter | dsp.FIRHalfbandDecimator |
dsp.FIRHalfbandInterpolator | dsp.IIRHalfbandDecimator |
dsp.IIRHalfbandInterpolator

Related Examples
• “Overview of Filter Banks” on page 7-14
• “Channelize and Synthesize Sine Wave in MATLAB” on page 7-26
• “Synthesize and Channelize Audio in Simulink” on page 14-2
• “Multilevel Filter Banks” on page 7-28
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Channelize and Synthesize Sine Wave in MATLAB
Channelize and synthesize a sine wave signal with multiple frequencies using an M -channel filter
bank.

The M -channel filter bank contains an analysis filter bank section and a synthesis filter bank section.
The dsp.Channelizer object implements the analysis filter bank section. The
dsp.ChannelSynthesizer object implements the synthesis filter bank section. These objects use
an efficient polyphase structure to implement the filter bank. For more details, see Polyphase
Implementation under Algorithms on the object reference pages.

Initialization

Initialize the dsp.Channelizer and dsp.ChannelSynthesizer System objects. Each object is set
up with 8 frequency bands, 8 polyphase branches in each filter, 12 coefficients per polyphase branch,
and a stopband attenuation of 140 dB. Use a sine wave with multiple frequencies as the input signal.
View the input spectrum and the output spectrum using a spectrum analyzer.

offsets = [-40,-30,-20,10,15,25,35,-15];
sinewave = dsp.SineWave('ComplexOutput',true,'Frequency',...
    offsets+(-375:125:500),'SamplesPerFrame',800);

channelizer = dsp.Channelizer('StopbandAttenuation',140);
synthesizer = dsp.ChannelSynthesizer('StopbandAttenuation',140);
spectrumAnalyzer = spectrumAnalyzer('ShowLegend',true,...
    'SampleRate',sinewave.SampleRate,...
    'ChannelNames',{'Input','Output'},...
    'Title',"Input and Output Spectra");

Streaming

Use the channelizer to split the broadband input signal into multiple narrow bands. Then pass the
multiple narrowband signals into the synthesizer, which merges these signals to form the broadband
signal. Compare the spectra of the input and output signals. The input and output spectra match very
closely.

for i = 1:5000
    x = sum(sinewave(),2);
    y = channelizer(x);
    v = synthesizer(y);
    spectrumAnalyzer(x,v)
end
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See Also
dsp.Channelizer | dsp.ChannelSynthesizer

Related Examples
• “Overview of Filter Banks” on page 7-14
• “Two-Channel Filter Bank Using Halfband Decimators and Halfband Interpolators” on page 7-19
• “Synthesize and Channelize Audio in Simulink” on page 14-2
• “Multilevel Filter Banks” on page 7-28
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Multilevel Filter Banks
Multirate filters alter the sample rate of the input signal during the filtering process. Such filters are
useful in both rate conversion and filter bank applications.

The Dyadic Analysis Filter Bank block decomposes a broadband signal into a collection of subbands
with smaller bandwidths and slower sample rates. The Dyadic Synthesis Filter Bank block
reconstructs a signal decomposed by the Dyadic Analysis Filter Bank block.

To use a dyadic synthesis filter bank to perfectly reconstruct the output of a dyadic analysis filter
bank, the number of levels and tree structures of both filter banks must be the same. In addition, the
filters in the synthesis filter bank must be designed to perfectly reconstruct the outputs of the
analysis filter bank. Otherwise, the reconstruction will not be perfect.

Dyadic Analysis Filter Banks
Dyadic analysis filter banks are constructed from the following basic unit. The unit can be cascaded
to construct dyadic analysis filter banks with either a symmetric or asymmetric tree structure.

Each unit consists of a lowpass (LP) and highpass (HP) FIR filter pair, followed by a decimation by a
factor of 2. The filters are halfband filters with a cutoff frequency of Fs / 4, a quarter of the input
sampling frequency. Each filter passes the frequency band that the other filter stops.

The unit decomposes its input into adjacent high-frequency and low-frequency subbands. Compared
to the input, each subband has half the bandwidth (due to the half-band filters) and half the sample
rate (due to the decimation by 2).

Note The following figures illustrate the concept of a filter bank, but not how the block implements a
filter bank; the block uses a more efficient polyphase implementation.
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n-Level Asymmetric Dyadic Analysis Filter Bank

Use the above figure and the following figure to compare the two tree structures of the dyadic
analysis filter bank. Note that the asymmetric structure decomposes only the low-frequency output
from each level, while the symmetric structure decomposes the high- and low-frequency subbands
output from each level.

n-Level Symmetric Dyadic Analysis Filter Bank
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The following table summarizes the key characteristics of the symmetric and asymmetric dyadic
analysis filter bank.

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks

Characteristic N-Level Symmetric N-Level Asymmetric
Low- and High-
Frequency Subband
Decomposition

All the low-frequency and
high-frequency subbands
in a level are decomposed
in the next level.

Each level's low-frequency subband is decomposed in
the next level, and each level's high-frequency band is
an output of the filter bank.

Number of Output
Subbands

2n n+1

Bandwidth and Number
of Samples in Output
Subbands

For an input with
bandwidth BW and N
samples, all outputs have
bandwidth BW / 2n and
N / 2n samples.

For an input with bandwidth BW and N samples, yk has
the bandwidth BWk, and Nk samples, where

BWk =
BW /2k (1 ≤ k ≤ n)

BW /2n (k = n + 1)

Nk =
N/2k (1 ≤ k ≤ n)

N/2n (k = n + 1)

The bandwidth of, and number of samples in each
subband (except the last) is half those of the previous
subband. The last two subbands have the same
bandwidth and number of samples since they originate
from the same level in the filter bank.

Output Sample Period All output subbands have a
sample period of 2n(Tsi)

Sample period of kth output

=
2k(Tsi) (1 ≤ k ≤ n)

2n(Tsi) (k = n + 1)

Due to the decimations by 2, the sample period of each
subband (except the last) is twice that of the previous
subband. The last two subbands have the same sample
period since they originate from the same level in the
filter bank.

Total Number of Output
Samples

The total number of samples in all of the output subbands is equal to the number of
samples in the input (due to the decimations by 2 at each level).

Wavelet Applications In wavelet applications, the highpass and lowpass wavelet-based filters are
designed so that the aliasing introduced by the decimations are exactly canceled in
reconstruction.

Dyadic Synthesis Filter Banks
Dyadic synthesis filter banks are constructed from the following basic unit. The unit can be cascaded
to construct dyadic synthesis filter banks with either a asymmetric or symmetric tree structure as
illustrated in the figures titled 'n-Level Asymmetric Dyadic Synthesis Filter Bank' and 'n-Level
Symmetric Dyadic Synthesis Filter Bank'.
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Each unit consists of a lowpass (LP) and highpass (HP) FIR filter pair, preceded by an interpolation by
a factor of 2. The filters are halfband filters with a cutoff frequency of Fs / 4, a quarter of the input
sampling frequency. Each filter passes the frequency band that the other filter stops.

The unit takes in adjacent high-frequency and low-frequency subbands, and reconstructs them into a
wide-band signal. Compared to each subband input, the output has twice the bandwidth and twice
the sample rate.

Note The following figures illustrate the concept of a filter bank, but not how the block implements a
filter bank; the block uses a more efficient polyphase implementation.

n-Level Asymmetric Dyadic Synthesis Filter Bank

Use the above figure and the following figure to compare the two tree structures of the dyadic
synthesis filter bank. Note that in the asymmetric structure, the low-frequency subband input to each
level is the output of the previous level, while the high-frequency subband input to each level is an
input to the filter bank. In the symmetric structure, both the low- and high-frequency subband inputs
to each level are outputs from the previous level.
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n-Level Symmetric Dyadic Synthesis Filter Bank

The following table summarizes the key characteristics of symmetric and asymmetric dyadic
synthesis filter banks.
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Notable Characteristics of Asymmetric and Symmetric Dyadic Synthesis Filter Banks

Characteristic N-Level Symmetric N-Level Asymmetric
Input Paths Through
the Filter Bank

Both the high-frequency and low-
frequency input subbands to each level
(except the first) are the outputs of the
previous level. The inputs to the first
level are the inputs to the filter bank.

The low-frequency subband input to each
level (except the first) is the output of the
previous level. The low-frequency subband
input to the first level, and the high-
frequency subband input to each level, are
inputs to the filter bank.

Number of Input
Subbands

2n n+1

Bandwidth and
Number of Samples
in Input Subbands

All inputs subbands have
bandwidth BW / 2n and N / 2n samples,
where the output has bandwidth BW
and N samples.

For an output with bandwidth BW and N
samples, the kth input subband has the
following bandwidth and number of samples.

BWk =
BW /2k (1 ≤ k ≤ n)

BW /2n (k = n + 1)

Nk =
N/2k (1 ≤ k ≤ n)

N/2n (k = n + 1)
Input Sample Periods All input subbands have a sample period

of 2n(Tso), where the output sample
period is Tso.

Sample period of kth input subband

=
2k(Tso) (1 ≤ k ≤ n)

2n(Tso) k = n + 1

where the output sample period is Tso.
Total Number of
Input Samples

The number of samples in the output is always equal to the total number of samples in
all of the input subbands.

Wavelet Applications In wavelet applications, the highpass and lowpass wavelet-based filters are carefully
selected so that the aliasing introduced by the decimation in the dyadic analysis filter
bank is exactly canceled in the reconstruction of the signal in the dyadic synthesis
filter bank.

For more information, see Dyadic Synthesis Filter Bank.

See Also
Objects
dsp.SubbandAnalysisFilter | dsp.SubbandSynthesisFilter |
dsp.DyadicAnalysisFilterBank | dsp.DyadicSynthesisFilterBank

Blocks
Two-Channel Analysis Subband Filter | Two-Channel Synthesis Subband Filter | Dyadic Analysis Filter
Bank | Dyadic Synthesis Filter Bank
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Related Examples
• “Overview of Filter Banks” on page 7-14
• “Two-Channel Filter Bank Using Halfband Decimators and Halfband Interpolators” on page 7-19
• “Channelize and Synthesize Sine Wave in MATLAB” on page 7-26
• “Synthesize and Channelize Audio in Simulink” on page 14-2
• “Calculate Channel Latencies Required for Wavelet Reconstruction” on page 17-9
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Dataflow

• “Dataflow Domain” on page 8-2
• “Model Multirate Signal Processing Systems Using Dataflow” on page 8-8
• “Multicore Simulation and Code Generation of Dataflow Domains” on page 8-10
• “Multicore Execution using Dataflow Domain” on page 8-17
• “Multicore Code Generation for Dataflow Domain” on page 8-22
• “Perform Multicore Analysis for Dataflow” on page 8-29
• “Multicore Analysis Using a Dataflow Domain” on page 8-37
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Dataflow Domain
Using a dataflow domain, you can model and simulate a computationally intensive signal processing
or multirate signal processing system. Dataflow domains simulate using a model of computation
synchronous dataflow, which is data-driven and statically scheduled.

There are two primary reasons to use a dataflow domain in your model.

• Improve simulation throughput with multithreaded execution.

A dataflow domain leverages the multicore CPU architecture of the host computer and can
improve simulation speed significantly. The domain automatically partitions your model and
simulates the system using multiple threads. By adding latency to your system, you can further
increase concurrency and improve the simulation throughput of your model.

• Automatically infer signal sizes for frame-based multirate models.

When the Automatic frame-size calculation parameter is enabled, dataflow domains
automatically calculate frame sizes and insert buffers into your model, avoiding signal size
propagation errors in multirate signal processing systems.

Specifying Dataflow Domains
To create a dataflow domain, use the Dataflow Subsystem block. The domain of the Dataflow
Subsystem block is preconfigured.

To convert an existing subsystem into a Dataflow Subsystem:

1 In the Execution tab of the Property Inspector, select the Set execution domain check box.

If the Property Inspector is not visible, in the Modeling tab, under Design, select Property
Inspector. For more information on the Property Inspector, see “Setting Model and Block
Properties with Property Inspector” (Simulink).

2 With the subsystem selected, set the Domain to Dataflow.

Inside the subsystem, in the lower left corner of the model canvas, there is now a  icon, which
indicates that the subsystem is a Dataflow subsystem.

Note Dataflow domains are supported only at the subsystem level. You cannot set the Domain of a
top-level model to Dataflow.

Simulation of Dataflow Domains
Simulation of dataflow domains leverages the multicore CPU architecture of the host computer. It
automatically partitions your model and simulates the subsystem using multiple threads.

The first time you simulate a dataflow domain, the simulation is single threaded. During this
simulation, the software performs a cost analysis. The next time the model compiles, the software
automatically partitions the system for multithreaded execution.

Each time you make a change inside the dataflow domain, the next simulation may be single threaded
to allow the software to perform a new cost analysis. Following a cost analysis simulation, the next
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time the model compiles, the software repartitions the domain and subsequent simulations are
multithreaded.

Some blocks and language features are not supported for multithreaded simulation. If a dataflow
subsystem contains blocks or language features that do not support multithreaded simulation,
Simulink issues a warning and the subsystem always simulates in a single thread.

The To Workspace block and signal logging inside a Dataflow Subsystem block support multithreaded
simulation. However, during multi-threaded execution, the output of the To Workspace block or
logged signal data may be different than the single-threaded execution. This is because of the
distribution of the pipeline delays inside the Dataflow Subsystem block for multithreading. These
delays impact the output due to the latencies in the model. You can visualize these delays and the
relationship between the output of the To Workspace block or the logged signals and the delays.

If a dataflow subsystem contains blocks or language features that are not supported inside a dataflow
subsystem, Simulink generates an error. For more information, see “Unsupported Simulink Software
Features in Dataflow Domains” on page 8-6.

Dataflow Parameters
Latency

To increase the throughput of a system, it can be advantageous to increase the latency of a system.
Specify the Latency value in the Execution tab of the Property Inspector.

When latency is introduced into a dataflow domain, the output of the dataflow subsystem is marked
with a delay icon on the model canvas. Changes to the model within the dataflow subsystem may
require a cost analysis and repartition.
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If your model contains several dataflow subsystems, you can use the Performance Advisor to analyze
and suggest a latency for each of the dataflow subsystems in a single step. To find the optimal latency
settings for the Dataflow subsystems in your model, open the Performance Advisor. In the
Performance Advisor > Simulation > Checks that Require Simulation to Run folder, run the
Check Dataflow Domain Settings check.

For more information on types of parallelism in dataflow domains, see “Multicore Simulation and
Code Generation of Dataflow Domains” on page 8-10.

You can also use the following settings for the optimal simulation performance. These settings are
also provided in the toolstrip when you perform multicore analysis, see “Perform Multicore Analysis
for Dataflow” on page 8-29.

• Set Compiler optimization level to Optimizations on (faster runs).

set_param(gcs, 'SimCompilerOptimization', 'on')
• Disable the Ensure responsiveness parameter.

set_param(gcs, 'SimCtrlC', 'off')
• Set Wrap on overflow to none.

set_param(gcs, 'IntegerOverflowMsg', 'none')
• Set Saturate on overflow to none.

set_param(gcs, 'IntegerSaturationMsg', 'none')

To further improve the simulation performance, follow the steps presented in “Perform Multicore
Analysis for Dataflow” on page 8-29.

Automatic Frame Size Calculation

Simulink can automatically calculate the frame sizes needed for each block in a frame-based signal
processing system, and insert buffers where needed. To enable automatic frame size calculation in a
Dataflow subsystem, select Automatic frame size calculation in the Execution tab of the Property
Inspector.
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Features Supported for Automatic Frame Size Calculation

Automatic frame size calculation is supported only for signals whose data types are one of the
numeric types (built-in integer, double, single, or fixed-point). Signals using an enumerated type or
whose data type is a bus are not supported.

Frame size calculation supports only two-dimensional signals.

Blocks Supported for Automatic Frame Size Calculation

The following blocks support automatic frame size calculation.

Note Not every configuration of these blocks supports automatic frame size calculation.

Simulink Blocks

• MATLAB System
• MATLAB Function
• Selector
• Add
• Delay
• Product
• From
• Goto
• Gain
• Vector Concatenate, Matrix Concatenate
• Terminator
• Mux
• Demux
• Math Function
• Data Type Conversion
• Abs
• Relational Operator
• Logical Operator
• Unit Delay
• Discrete FIR Filter
• Bitwise Operator
• Bias
• Signal Specification
• Squeeze
• Ground
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DSP System Toolbox Blocks

• Submatrix
• Window Function
• Pad
• Buffer
• Minimum
• Mean
• Maximum
• Standard Deviation
• RMS
• Multiport Selector
• FFT
• IFFT
• Downsample
• Upsample
• Array-Vector Add
• Array-Vector Subtract
• Array-Vector Multiply
• Array-Vector Divide
• Flip
• FIR Decimation
• FIR Interpolation
• Biquad Filter
• Two-Channel Analysis Subband Filter
• Repeat
• LMS Filter
• Variable Selector
• FIR Rate Conversion

Unsupported Simulink Software Features in Dataflow Domains
Dataflow subsystems do not support the following Simulink software features.

Not Supported Description
Variable-size signals The software does not support variable-size

signals. A variable-size signal is a signal whose
size (number of elements in a dimension), in
addition to its values, can change during model
execution.

Referenced models Model blocks are not supported in dataflow
domains.
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Not Supported Description
Nonvirtual Simulink subsystems, including
Triggered Subsystem, Enabled Subsystem, and
atomic subsystems

Only virtual subsystems are supported in
dataflow domains.

Blocks with non-constant or non-inherited sample
times

All sample times inside dataflow subsystems must
be inherited (-1), or constant (inf).

Continuous blocks Blocks in the “Continuous” (Simulink) library are
not supported in dataflow domains.

Simulink indicates in the model canvas at edit-
time that these blocks are not supported by
highlighting the block in orange.

Data Store blocks Data Store Memory, Data Store Read, and Data
Store Write blocks are not supported inside
dataflow subsystems.

Subset of Simulink blocks If a dataflow subsystem contains blocks or
language features that are not supported,
Simulink generates an error when the model
compiles.

For some blocks, such as Scope blocks, Simulink
indicates in the model canvas at edit-time that
they are not supported by highlighting the block
in orange.

Stateflow® charts Stateflow charts are not supported inside
dataflow subsystems.

SimEvents® blocks SimEvents blocks are not supported inside
dataflow subsystems.

HDL code generation Only C/C++ code generation is supported for
models with dataflow subsystems.

See Also
Dataflow Subsystem

More About
• “Multicore Simulation and Code Generation of Dataflow Domains” on page 8-10
• “Model Multirate Signal Processing Systems Using Dataflow” on page 8-8
• “Perform Multicore Analysis for Dataflow” on page 8-29
• “Multicore Execution using Dataflow Domain” on page 8-17
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Model Multirate Signal Processing Systems Using Dataflow
This example shows how to model multirate signal processing systems using the dataflow subsystem.
When you set the domain of a subsystem to dataflow and enable the Automatic frame size
calculation parameter, the software calculates the signal sizes of frame-based multirate models and
inserts buffers so that the model compiles with no frame size propagation errors.

For more information on dataflow domains, see “Dataflow Domain” on page 8-2.

1 To begin, open the model.

addpath (fullfile(docroot, 'toolbox', 'dsp', 'examples'));
ex_multistage_filter

The subsystem of this model contains several rate conversion blocks.

2 When you update the model diagram, Simulink generates an error due to a port dimension
mismatch in the model. To fix this error, set the domain of the subsystem to dataflow.

3 If the Property Inspector is not visible, in the Modeling tab, under Design, select Property
Inspector.

With the subsystem selected, in the Execution tab of the Property Inspector, select Set
execution domain. Set the Domain to Dataflow.

4 Select Automatic frame size calculation to have the software automatically calculate frame
sizes and insert buffers where needed.

5 Update the diagram again. The model now updates successfully.
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Badges on the model canvas at the input of the subsystem indicate where buffers are inserted.

See Also
Dataflow Subsystem

More About
• “Dataflow Domain” on page 8-2
• “Multicore Execution using Dataflow Domain” on page 8-17
• “Perform Multicore Analysis for Dataflow” on page 8-29
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Multicore Simulation and Code Generation of Dataflow
Domains

Simulation of Dataflow Domains
Simulation of dataflow domains leverages the multicore CPU architecture of the host computer. It
automatically partitions your model and simulates the subsystem using multiple threads.

The first time you simulate a dataflow domain, the simulation is single threaded. During this
simulation, the software performs a cost-analysis. The next time the model compiles, the software
automatically partitions the system for multithreaded execution. Subsequent simulations are
multithreaded.

Code Generation of Dataflow Domains
Dataflow domains support code generation for both single-core and multi-core targets. When all
blocks inside a dataflow subsystem support multithreading, and the model is configured for multicore
code generation, the generated code is multithreaded. During code generation, the dataflow
subsystem is automatically partitioned according to the specified target hardware.

Types of Parallelism
In both simulation and code generation of models with dataflow domains, the software identifies
possible concurrencies in your system, and partitions the dataflow domain using the following types
of parallelism.

Task Parallelism

Task parallelism achieves parallelism by splitting up an application into multiple tasks. Task
parallelism involves distributing tasks within an application across multiple processing nodes. Some
tasks can have data dependency on others, so all tasks do not run at exactly the same time.

Consider a system that involves four functions. Functions F2a() and F2b() are in parallel, that is, they
can run simultaneously. In task parallelism, you can divide your computation into two tasks. Function
F2b() runs on a separate processing node after it gets data Out1 from Task 1, and it outputs back to
F3() in Task 1.

The figure shows the timing diagram for this parallelism. Task 2 does not run until it gets data Out1
from Task 1. Hence, these tasks do not run completely in parallel. The time taken per processor cycle,
known as cycle time, is

t = tF1 + max(tF2a, tF2b) + tF3.
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Model Pipeline Execution (Pipelining)

The software uses model pipeline execution, or pipelining, to work around the problem of task
parallelism where threads do not run completely in parallel. This approach involves modifying the
system to introduce delays between tasks where there is a data dependency.

In this figure, the system is divided into three tasks to run on three different processing nodes, with
delays introduced between functions. At each time step, each task takes in the value from the
previous time step by way of the delay.

Each task can start processing at the same time, as this timing diagram shows. These tasks are truly
parallel and they are no longer serially dependent on each other in one processor cycle. The cycle
time does not have any additions but is the maximum processing time of all the tasks.

t = max(Task1, Task2, Task3) = max(tF1, tF2a, tF2b, tF3).

Pipelining can be used when you can introduce delays artificially in your concurrently executing
system. The resulting overhead due to this introduction must not exceed the time saved by pipelining.

Unfolding

When the cost analysis identifies a single block in a system that is computationally dominant, the
system uses unfolding technology. Unfolding is a technique to improve throughput through
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parallelization. The software duplicates the functionality of the computationally intensive block,
divides the input data into multiple pieces, and the processor performs the same operation on each
piece of data.

Unfolding is used in scenarios where it is possible to process each piece of input data independently
without affecting the output, and the block is stateless or contains a finite number of states.

Improve Simulation Throughput with Multicore Simulation
This example shows how to improve simulation throughput of a system by simulating a subsystem
with multiple threads. To enable automatic partitioning of a system and multithreaded simulation, set
the Domain of the subsystem to Dataflow. For more information on dataflow domains, see
“Dataflow Domain” on page 8-2

1 To begin, open the model.

addpath (fullfile(docroot, 'toolbox', 'dsp', 'examples'));
ex_staple_counting

2 Simulate the model and observe the frame rate of the system in the Frame Rate Display block.
This number indicates the number of frames per second that Simulink is able to process in a
standard simulation.

3 To enable multithreaded simulation and improve the simulation throughput, set the domain of the
subsystem to dataflow.

If the Property Inspector is not visible, in the Modeling tab, under Design, select Property
Inspector.

With the subsystem selected, in the Execution tab of the Property Inspector, select Set
execution domain. Set the Domain to Dataflow.

4 Sometimes, you can increase the available concurrency in your system by adding Latency to the
system. To select an optimal latency value, use the Dataflow Simulation Assistant. Click the
Dataflow assistant button to open the Dataflow Simulation Assistant.

5 In addition to suggesting a latency value, the Dataflow Simulation Assistant also suggests model
settings for optimal simulation performance. In this example, to improve the simulation
performance, the Dataflow Simulation Assistant suggests disabling the Ensure responsiveness
parameter.

To accept the proposed model settings, next to Suggested model settings for simulation
performance, click Accept all.

6 Next, click the Analyze button. The Dataflow Simulation Assistant analyzes the subsystem for
simulation performance and suggests an optimal latency for your Dataflow Subsystem.

The dataflow analysis is a two-step process. During the first step, the dataflow subsystem
simulates using a single-thread. During this simulation, the software performs a cost analysis.
The next time the model compiles, the software automatically partitions the subsystem into one
or more threads to take advantage of concurrency in the model. Subsequent simulations are
multithreaded. The assistant suggests a latency value that optimizes the throughput of the
system.
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7 Click the Accept button to apply the suggested latency to the system. The Dataflow Simulation
Assistant applies the latency to the model and indicates the number of threads the model will use
during subsequent simulations. The latency of the system is indicated with a delay icon on the
model canvas at the output of the subsystem.

8 Simulate the model again. Observe the improved simulation throughput from the multithreaded
simulation in the Frame Rate Display block.
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Generate Multicore Code from a Dataflow Subsystem
Configure Your Model for Multicore Code Generation

Code generation requires a Simulink Coder or an Embedded Coder® license. Single-core and
multicore targets are supported.

Code generated for single-core targets generates nonvirtual subsystem code.

To generate multicore code, you must configure your model for concurrent execution. If you do not
configure your model for concurrent execution, the generated code will be single threaded.

1 In Configuration Parameters > Solver > Solver selection, choose Fixed-step for the Type
and auto (Automatic solver selection) for the Solver.

2 Select the Allow tasks to execute concurrently on target check box in the Solver pane under
Solver details. Selecting this check box is optional for models referenced in the model hierarchy.
When you select this option for a referenced model, Simulink allows each rate in the referenced
model to execute as an independent concurrent task on the target processor.

3 In Configuration Parameters > Code Generation > Interface > Advanced parameters,
clear the MAT-file logging check box.

4 Click Apply to apply the settings to the model.

Generate Multicore Code

To generate multicore code, the software performs cost analysis and partitions the dataflow domain
based on your specified target. The partitioning of the dataflow domain may or may not match the
partitioning during simulation.

The generated C code contains one void(void) function for each task or thread created by the
dataflow subsystem. Each of these functions consists of:

• The C code corresponding to the blocks that were partitioned into that thread
• The code that is generated to handle how data is transferred between the threads.

This can be in the form of pipeline delays or target-specific implementation of data
synchronization semaphores.

The following multicore targets are supported for code generation.

• Linux, Windows, and Mac OS desktop targets using ert.tlc and grt.tlc.
• Simulink Real-Time™ using slrealtime.tlc.
• Embedded Coder targets using Linux and VxWorks® operating systems.

Code generated for grt.tlc and ert.tlc desktop targets is multithreaded using OpenMP within
the dataflow subsystem. Code generated for Embedded Coder targets is multithreaded using POSIX
threads.

For multicore custom targets, use the DataflowThreadingImplementation parameter to select
POSIX threads (Pthreads) or OpenMP threading implementation for multicore custom targets using
dataflow domain. The parameter takes the values off, OpenMP, or Pthreads. By default, the
parameter is set to Off which means that dataflow generates single core code (not multiple threads).

set_param(myModel, 'DataflowThreadingImplementation','off') 
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For information about customizing system target files, see “Customize System Target Files”
(Embedded Coder).

If your system contains blocks that do not support multithreaded execution, the generated code is
single-threaded.

To build the model and generate code, press Ctrl+B.

In the generated code, you can observe calls to the threading API and the pipeline delays that were
inserted into the model to create more concurrency.

The following example shows that there are two thread functions generated by dataflow subsystem,
ex_staple_counting_ThreadFcn0 and ex_staple_counting_ThreadFcn1, which are executed
using OpenMP sections. These functions are part of the dataflow_subsystem_output/step()
function.
static void ex_staple_counting_ThreadFcn0(void)
     {
       ...

      if (pipeStage_Concurrent0 >= 2) {
        /* Delay: '<S3>/TmpDelayBufferAtDraw Markers1Inport1' */
        memcpy(&ex_staple_counting_B.TmpDelayBufferAtDrawMarkers1I_i[0],
               &ex_staple_counting_DW.TmpDelayBufferAtDrawMarkers1I_i[0], 202176U *
               sizeof(real32_T));
    
        /* Delay: '<S3>/TmpDelayBufferAtDraw Markers1Inport2' */
        line_idx_1 = (int32_T)ex_staple_counting_DW.CircBufIdx * 100;
        memcpy(&ex_staple_counting_B.TmpDelayBufferAtDrawMarkers1Inp[0],
               &ex_staple_counting_DW.TmpDelayBufferAtDrawMarkers1Inp[line_idx_1],
               100U * sizeof(real_T));
...
        }

void ex_staple_counting_Concurrent0(void)
    {
...
    
    #pragma omp parallel num_threads(3)
    
      {
    #pragma omp sections
    
        {
    
    #pragma omp section
    
          {
            ex_staple_counting_ThreadFcn0();
          }
    
    #pragma omp section
    
          {
            ex_staple_counting_ThreadFcn1();
          }
    
    #pragma omp section
    
          {
            ex_staple_counting_ThreadFcn2();
          }
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        }
      }

See Also
Dataflow Subsystem

More About
• “Dataflow Domain” on page 8-2
• “Perform Multicore Analysis for Dataflow” on page 8-29
• “Multicore Programming with Simulink” (Simulink)
• “Optimize and Deploy on a Multicore Target” (Simulink)

8 Dataflow

8-16



Multicore Execution using Dataflow Domain
This example shows how to speed up execution of models using dataflow domain in Simulink. We use
the digital up converter and digital down converter blocks to create a family radio service transmitter
and receiver.

Introduction

Dataflow execution domain allows you to make use of multiple cores in the simulation of
computationally intensive signal processing systems.

This example shows how to specify dataflow as the execution domain of a subsystem, improve
simulation performance of the model, and generate multicore code.

Family Radio Service System

This example uses the Digital Up-Converter (DUC) and Digital Down-Converter (DDC) blocks to
create a Family Radio Service (FRS) transmitter and receiver. The Digital Up-Converter (DUC) block
converts a complex digital baseband signal to real passband signal. The Digital Down-Converter
(DDC) block converts the digitized real signal back to a baseband complex signal. Open
familyRadioServiceExample model.

Simulate the model and measure the execution time. Execution time is measured using the output of
the sim command which returns the simulation execution time of the model. To measure the time
taken primarily for the dataflow subsystem, comment out the Spectrum Analyzer blocks and Audio
Device Writer block.

Simulation execution time for single-threaded model = 5.80s

 Multicore Execution using Dataflow Domain

8-17

matlab:familyRadioServiceExample
matlab:familyRadioServiceExample


Specify Dataflow Execution Domain

In Simulink, you specify dataflow as the execution domain for a subsystem by setting the Domain
parameter to Dataflow using Property Inspector. To access Property Inspector, in the Simulink
Toolstrip, on the Modeling tab, in the Design gallery select Property Inspector or on the Simulation
tab, Prepare gallery, select Property Inspector. In the Property Inspector, you can set the Domain to
Dataflow by selecting Set domain specification and then choosing Dataflow for Domain setting.
You can also use Dataflow Subsystem block from the Dataflow library of DSP System toolbox to get a
subsystem that is preconfigured with the dataflow execution domain.

Multicore Simulation of Dataflow Domain

Dataflow domains automatically partition your model into multiple threads for better performance.
Once you set the Domain parameter to Dataflow, you can use the Multicore tab analysis to
analyze your model to get better performance. The Multicore tab is available in the toolstrip when
there is a dataflow domain in the model. To learn more about the Multicore tab, see “Perform
Multicore Analysis for Dataflow” on page 8-29.

For this example the Multicore tab mode is set to Simulation Profiling for simulation
performance analysis.

It is recommended to optimize model settings for optimal simulation performance. To accept the
proposed model settings, on the Multicore tab, click Optimize. Alternatively, you can use the drop
menu below the Optimize button to change the settings individually. In this example the model
settings are already optimal.

On the Multicore tab, click the Run Analysis button to start the analysis of the dataflow domain for
simulation performance. Once the analysis is finished, the Analysis Report and Suggestions window
shows how many threads the dataflow subsystem uses during simulation.

After analyzing the model, the Analysis Report and Suggestions window shows one thread because
the data dependency between the blocks in the model prevents blocks from being executed
concurrently. By pipelining the data dependent blocks, the dataflow subsystem can increase
concurrency for higher data throughput. The Analysis Report and Suggestions window shows the
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recommended number of pipeline delays as Suggested for Increasing Concurrency. The suggested
latency value is computed to give the best performance.

The following diagram shows the Analysis Report and Suggestions window where the suggested
latency is 2 for the dataflow subsystem.

Click the Accept button to use the recommended latency for the dataflow subsystem. This value can
also be entered directly in the Property Inspector for Latency parameter. Simulink shows the
Latency parameter value using  tags at the output ports of the dataflow subsystem.

The Analysis Report and Suggestions window now shows the number of threads as 2 meaning that
the blocks inside the dataflow subsystem simulate in parallel using 2 threads. Highlight threads
highlights the blocks with colors based on their thread allocation as shown in the Thread
Highlighting Legend. Show pipeline delays shows where pipelining delays were inserted within
the dataflow subsystem using  tags.

Compensating for Latency

When latency is increased in the dataflow execution domain to break data dependencies between
blocks and create concurrency, that delay needs to be accounted for in other parts of the model. For
example, signals that are compared or combined with the signals at the output ports of the dataflow
subsystem must be delayed to align in time with the signals at the output ports of the dataflow
subsystem. In this example, the audio signal from the source block that goes to the Audio Device
Writer must be delayed to align with other signals. To compensate for the latency specified on the
dataflow subsystem, use a delay block to delay this signal by 2 frames. For this signal, the frame

 Multicore Execution using Dataflow Domain

8-19



length is 1000. A delay value of 2000 is set in the delay block to align the signal from source and the
signal processed through dataflow subsystem.

Dataflow Simulation Performance

Simulate the model and measure model execution time. When measuring the time taken for
simulating the model, comment out the Spectrum Analyzer blocks and Audio Device Writer blocks to
measure the time taken primarily for the dataflow subsystem. Execution time is measured using the
sim command, which returns the simulation execution time of the model. We can measure the amount
of speedup obtained by dividing the execution time taken by the model using multiple threads with
the execution time taken by the original model. This number is computed and shown below.

These numbers and analysis were published on a Windows desktop computer with Intel® Xeon® CPU
E5-1650 v3 @ 3.4 GHz 6 Cores 12 Threads processor.

Simulation execution time for multithreaded model = 2.49s
Actual speedup with dataflow: 2.3x

Code Generation

Code generation requires a Simulink Coder™ or an Embedded Coder® license. Press Ctrl+B to build
the model and generate single-core code for your desktop target. If your desktop machine is Windows
or Linux, you can generate multicore code for the model. To enable multicore code generation for the
model, you must select the Allow tasks to execute concurrently on target parameter in the
Solver pane under Solver details. Selecting this parameter allows:

• Each rate in the model to execute as an independent concurrent task on the target processor
• The dataflow subsystem to generate additional concurrent tasks by automatically partitioning the

blocks

In the generated code you can observe the generated functions for each concurrent task created by
the dataflow domain and realized as an OpenMP section.
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Summary

This example shows how to specify dataflow as the execution domain in a model to design
computationally-intensive signal processing systems, improve simulation performance of the model
and generate multicore code.

Appendix

The following helper functions are used in this example.

• dspSimulateDataflowExample

See Also
Dataflow Subsystem

More About
• “Perform Multicore Analysis for Dataflow” on page 8-29
• “Dataflow Domain” on page 8-2
• “Multicore Programming with Simulink” (Simulink)
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Multicore Code Generation for Dataflow Domain
This example shows how to deploy a noise reduction application on a multicore target hardware using
Dataflow.

Before You Begin

To run this example, you must have the following software and hardware installed and set up:

• Embedded Coder® Support Package for Xilinx® Zynq® Platform
• Zynq board

For details on installing the support package and setting up the Zynq hardware, refer to “Install
Support for Xilinx Zynq Platform” (Embedded Coder Support Package for Xilinx Zynq Platform).

Introduction

The dataflow execution domain allows you to make use of the multiple cores on the target hardware
for computationally intensive signal processing systems.

This example shows how to specify dataflow as the execution domain of a subsystem and improve
performance by generating multicore code. The example uses processor-in-the-loop (PIL) simulation
for deploying the application on the ARM CPU within a Zynq hardware and execution-time profiling
for measuring the performance.

Noise Reduction System

The model in this example uses two Variable Bandwidth IIR filter blocks configured as a low-pass and
a high-pass filter respectively. The filters are connected in series within the Dataflow Subsystem to
collectively form a bandpass noise filtering system. The source signal is a random noise. Open
dataflowzynq model.
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Configure Hardware Settings

Configure the model to generate code for the Zynq-based hardware. This example uses a Zynq-7000
SoC ZC702 Evaluation Kit and performs processor-in-the-loop (PIL) simulation on the target
hardware.
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Configure PIL simulation and execution-time profiling

Configure the model to generate a PIL block when code is generated for a subsystem. This allows you
to measure the time taken for the Dataflow Subsystem block on the target hardware. For details on
configuring PIL simulation with PIL blocks, see “Simulation with Subsystem Blocks” (Embedded
Coder).

Enable profiling of function execution times for subsystems. For details on profiling with PIL, see
“Code Execution Profiling with SIL and PIL” (Embedded Coder).

Generate code and simulate on target

Build the Dataflow Subsystem block. This step generates the PIL block from Dataflow Subsystem.

Replace Dataflow Subsystem block in the original model with the generated PIL block.

Simulate the model and measure average execution time of the subsystem using the profiling results
retrieved at the end of PIL simulation. Average execution time can be obtained by dividing the total
execution time taken by the subsystem by the number of calls to the subsystem. This number is
computed and shown below.

Average execution time of generated code for single-core = 5.6 ms

Specify Dataflow Execution Domain for Subsystem

Dataflow domains automatically partition your model and generates code with multiple threads for
multicore targets. In Simulink, you specify dataflow as the execution domain for a subsystem by
setting the Domain parameter to Dataflow using Property Inspector. You can view the Property
Inspector for a subsystem, first by selecting the subsystem and then selecting View>Property
Inspector. In the Property Inspector, you can set the domain to dataflow by selecting Set domain
specification and then selecting "Dataflow" for Domain setting. You can also use the Dataflow
Subsystem block from the Dataflow library of DSP System toolbox to get a subsystem that is
preconfigured with the dataflow execution domain.
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To increase the throughput of a system, it can be advantageous to increase the latency of a system.
Specify the Latency value in the Execution tab of the Property Inspector. Setting a Latency value of
1 will add a pipeline delay to break dependency between the filter blocks and enable the dataflow
domain to achieve concurrency.

Multi-Core Code Generation of Dataflow Subsystem

To enable multicore code generation, you must select the Allow tasks to execute concurrently on
target parameter in the Solver pane of the Configuration Parameters under Solver details.

Rebuild the Dataflow Subsystem block to generate the multicore version of the PIL block.

After code generation is completed for the subsystem, you can observe the generated functions for
each concurrent thread created by the dataflow domain and how they are triggered during execution
of the model step function.

The Dataflow Subsystem block generates two thread functions, Dataflow_ThreadFcn0 and
Dataflow_ThreadFcn1.
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The thread functions are registered as POSIX threads at model initialization and triggered during
each model step. The consecutive trigger and wait function calls implement the fork-join pattern for
the dataflow threads.
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Multicore Execution Performance

Simulate the model with the multicore version of the PIL block and repeat the measurement for the
execution time of the subsystem.

Average execution time of generated code for multicore = 3.9 ms

Actual speedup with dataflow: 1.44x

Copyright 2020 The MathWorks, Inc.

See Also
Dataflow Subsystem
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More About
• “Dataflow Domain” on page 8-2
• “Perform Multicore Analysis for Dataflow” on page 8-29
• “Multicore Programming with Simulink” (Simulink)
• “Optimize and Deploy on a Multicore Target” (Simulink)
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Perform Multicore Analysis for Dataflow
When a subsystem in a model is configured to use a dataflow execution domain, the Multicore tab is
activated on the Simulink toolstrip. This tab consolidates multicore analysis techniques leveraged in
dataflow into an incremental and iterative workflow.

Using the controls on the Multicore tab, you can:

• Estimate the relative cost of blocks using internal Simulink heuristics.
• Profile dataflow multicore simulations.
• Measure average execution times (cost) of blocks inside the dataflow subsystems by simulating

the model with software-in-the-loop (SIL) or processor-in-the-loop (PIL) profiling . This
functionality requires an Embedded Coder license.

• Manually override the block cost values.
• Provide analysis constraints, such as maximum number of threads and threading threshold.
• Run analysis to generate a block-to-threads allocation and visualize analysis results.

This chart illustrates the steps of multicore analysis. After you specify the dataflow execution domain
for the subsystems in your model, you can select a cost calculation method, overwrite block costs,
specify analysis constraints, run analysis, and review results.
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Select the Cost Calculation Method
On the Multicore tab, in the Mode section, you can select the method of cost calculation as
Simulation Profiling, Cost Estimation, or SIL/PIL Profiling. The cost of individual blocks will be
automatically determined and used in the multicore analysis for equal distribution of the
computational load across multiple CPU cores.

Simulation Profiling

Use Simulation Profiling to:

• Profile dataflow multicore simulations.
• Display simulation multicore analysis data including cost data, latency suggestions, number of

threads, thread highlighting, and pipeline delays annotations.

When Simulation Profiling is selected, the Simulation Profile button is disabled and the Run
Analysis button is enabled.

When you perform simulation profiling, use the Optimize button to optimize settings for simulation
performance. Button is enabled for only Simulation Profiling option.
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Cost Estimation

Use Cost Estimation for:

• Quick analysis without running the simulation or generating code.
• Preliminary analysis when the model is not fully implemented. In this case, you can modify the

results of the estimation to match the anticipated cost values for the final implementation.

When you click Estimate Cost, the Cost Editor displays the estimated execution cost of each block in
your model without simulating it.

SIL/PIL Profiling

Use the software-in-the-loop (SIL) or processor-in-the-loop (PIL) profiling method (requires
Embedded Coder license) to:

• Acquire accurate cost values measured on the host computer using the generated code. The
generated code is the closest to the code that will be deployed on the hardware.

• Measure cost values on the actual target hardware in order to maximize the utilization of cores
when the final code is deployed.
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SIL/PIL profiling measures average execution times (cost) of blocks inside the dataflow subsystems by
simulating the model with SIL/PIL.

• Use Settings to configure C/C++ code generation and hardware implementation settings.
• Use Stop Time to specify the time to measure the cost.
• Use the list to select the Software-in-the-Loop (SIL) orProcessor-in-the-Loop (PIL)

setting.
• Use Profile to measure the costs associated with blocks with the specified settings.

This example shows the highlighted block in the model and its cost. Observe that Cost Editor displays
the units of the profiled cost values when you perform SIL/PIL profiling.
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Manually Change Block Costs
In Cost Estimation and SIL/PIL Profiling modes, you can manually change the block cost values to
understand their impact to the multicore behavior. To override block costs, clear the Auto column for
the corresponding block and edit the value in the Cost column.

Overwriting block costs values allows you to perform analysis for custom costs.

The costs are not editable in Simulation Profiling mode.

Specify Analysis Constraints and Run Analysis
Next, set constraints and run multicore analysis. In the Analyze section:

• Use Maximum Number of Threads to specify the maximum number of threads produced by the
analysis. By default, the tool automatically tries to determine the number of cores of the target
processor from the hardware settings and uses that as maximum number of threads. If the tool is
unable to determine the exact value, it will use the number of cores on the host platform as the
maximum number of threads.

• Specify the Multithreading Threshold to set a minimum for the total cost (in microseconds) of
the subsystem, for which the tool applies multithreading. If the total cost falls below the threshold,
the tool will not partition the subsystem. By default, the tool uses a nominal value, 25 micro-
seconds, as the threshold.

• Click Run Analysis to perform the analysis based on your configuration.

Review Results
Use the tools provided in the Review Results section to visualize and understand the multicore
behavior of your model.
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Highlight and View Threads

Select Highlight threads to highlight and visualize the threads and the assignment of blocks to the
threads based on the block execution cost values.

Select Thread Viewer to visualize the allocation of blocks to threads.
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Analysis Report and Suggestions

Analyze the Suggestions for Increasing Concurrency section to see if there are suggested
latencies for pipelining delays. By pipelining the data-dependent blocks, the Dataflow Subsystem
block can increase concurrency for higher data throughput. For more information about pipelining
delays, see “Multicore Simulation and Code Generation of Dataflow Domains” on page 8-10. The
speedup analysis is not supported in Simulation Profiling mode.

After accepting suggested latencies for pipelining delays, you can use Show pipeline delays to
visualize the delays in your model.

Use the analysis report to investigate the relative weight of dataflow subsystems and the maximum
theoretical speedup for the entire model. This speedup can be achieved as a result of the partitioning
performed during the analysis. The amount of speedup is proportional to the relative weight of
dataflow subsystems with respect to the entire model.

The analysis report displays total cost and number of threads values for each Dataflow Subsystem
block.
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The speedup is calculated using this formula, where n is the total number of Dataflow Subsystem
blocks, pctPar is the percentage of the parallel execution of a subsystem, and criticalPathCost
is the cost of the most costly thread in a subsystem.

Speedup ≤ 1

(1− ∑
i = 0

n
pctPari) + ∑

i = 0

n pctPari × criticalPathCosti
totalCostInSubsystemi

See Also
Dataflow Subsystem

More About
• “Multicore Analysis Using a Dataflow Domain” on page 8-37
• “Dataflow Domain” on page 8-2
• “Multicore Programming with Simulink” (Simulink)
• “Optimize and Deploy on a Multicore Target” (Simulink)
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Multicore Analysis Using a Dataflow Domain
This example shows how to analyze the multicore execution behavior of a dataflow domain in
Simulink.

Create a Family Radio Service System

The model in this example uses the Digital Up-Converter (DUC) and Digital Down-Converter (DDC)
blocks to create a Family Radio Service (FRS) transmitter and receiver. The DUC block converts a
complex digital baseband signal to real passband signal. The DDC block converts the digitized real
signal back to a baseband complex signal.

Open familyRadioServiceMulticoreAnalysisExample model.

model_name = 'familyRadioServiceMulticoreAnalysisExample';
open_system(model_name);
close_system([model_name '/UpConverted Signal Spectrum Analyzer'], 0);
close_system([model_name '/Baseband  Spectrum Analyzer'], 0);

Specify Dataflow Execution Domain

In Simulink®, to specify dataflow as the execution domain for a subsystem, use Property Inspector to
set the Domain parameter to Dataflow. You can view this by selecting the subsystem and then
accessing Property Inspector. To access Property Inspector, in the Simulink Toolstrip, on the Modeling
tab, in the Design gallery select Property Inspector or on the Simulation tab, Prepare gallery, select
Property Inspector. Select Set execution domain, then click Domain and select Dataflow. You can
also use a Dataflow Subsystem block from the Dataflow library of the DSP System toolbox to get a
subsystem that is preconfigured with the dataflow execution domain.
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set_param([model_name,'/Dataflow Subsystem'],'SetDomainSpec','on');
set_param([model_name,'/Dataflow Subsystem'],'DomainSpecType','Dataflow');
set_param([model_name,'/Dataflow Subsystem'],'Latency','0');
set_param([model_name,'/Dataflow Subsystem'],'AutoFrameSizeCalculation','off');

Perform Multicore Analysis Using SIL Profiling

After specifying the dataflow execution domain, Multicore tab opens on the Simulink toolstrip.

On the Multicore tab, click Simulation Profiling. From the list, select SIL/PIL Profiling.

Click Profile.

Once profiling finishes, the cost values display in the Cost Editor. Here, average execution time (cost)
for each block is displayed in microseconds. The relative load of each block with respect to the most
expensive block within the dataflow subsystem is indicated with bars of different length.
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For example, the DDC block is the most expensive block in the table and has a cost of 117035
microseconds. Click on the block name in the Block column to highlight the corresponding block in
the block diagram.

Click Run Analysis.

After analyzing the model, the Thread Highlighting Legend opens. The Thread Highlighting Legend
shows one thread because the data dependency between blocks in the model prevents blocks from
being executed concurrently. The Analysis Report and Suggestions pane that appears at the right of
the canvas shows how to increase concurrency and obtain higher data throughput by pipelining the
data-dependent blocks.
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The Dataflow Subsystem specifies a latency value of 0. The suggested latency for the system is 3.

Click the Accept button to use the recommended latency for the Dataflow Subsystem and rerun the
analysis. This value can also be entered directly in the Property Inspector for Latency parameter.
Simulink shows the Latency parameter value using  tags at the output ports of the dataflow
subsystem.

The Thread Highlighting Legend now shows two threads indicating that the blocks inside the
dataflow subsystem can be executed in two parallel threads.

Inserted pipeline delays are shown in the canvas using  tags.

Check Analysis Report

At the bottom of the Analysis Report and Suggestions pane, the maximum theoretical speedup is
shown as 1.51x for the model as a result of the partitioning performed during the analysis.
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Manually Override Cost

To perform design space exploration, you can manually change the cost of the blocks. The first two
blocks are relatively more expensive than other blocks in the subsystem, which should significantly
influence how the blocks are mapped to threads. Divide the total sum of the cost for the first two
blocks by three, then manually assign that number to the first three blocks by clearing checkboxes in
the Auto column and editing the values in the Cost column.

Click Run Analysis to rerun the analysis, then accept the provided latency suggestion. The new
result indicates that the subsystem is now partitioned into four threads with a corresponding
theoretical speedup value of 1.84x.
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See Also
Dataflow Subsystem

More About
• “Perform Multicore Analysis for Dataflow” on page 8-29
• “Dataflow Domain” on page 8-2
• “Multicore Programming with Simulink” (Simulink)
• “Optimize and Deploy on a Multicore Target” (Simulink)
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Simulink Block Examples in Multirate
and Multistage Filters

• “FIR Decimation Using Single-Rate Processing” on page 9-2
• “FIR Decimation Using Multirate Frame-Based Processing” on page 9-3
• “Polyphase Implementation of FIR Decimation Block” on page 9-4
• “Two-Stage Multirate Narrow Lowpass Filter” on page 9-6
• “FIR Interpolation Using Single-Rate Processing” on page 9-8
• “FIR Interpolation Using Multirate Frame-Based Processing” on page 9-9
• “Polyphase Implementation of FIR Interpolation Block” on page 9-10
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FIR Decimation Using Single-Rate Processing
In this example, the FIR Decimation block decimates the signal by decreasing the frame size, while
keeping the same sample rate.

Open the model. The input to the FIR Decimation block is a single-channel input with a frame size
of 64. In the block dialog box, set the Decimation factor parameter to 4 and the Rate options
parameter to Enforce single-rate processing.

Run the Model. The block operates in the single-rate processing mode. Therefore, the output frame
size of the block is  times the input frame size of the block, where M is the decimation factor.
With a decimation factor of 4, the output has a frame size of 16. As shown in the model, the input and
the output of the FIR Decimation block have the same sample rate and different frame sizes.

See Also
Blocks
Signal From Workspace | FIR Decimation | To Workspace | Probe

Related Examples
• “FIR Decimation Using Multirate Frame-Based Processing” on page 9-3
• “FIR Interpolation Using Single-Rate Processing” on page 9-8
• “Polyphase Implementation of FIR Decimation Block” on page 9-4
• “Two-Stage Multirate Narrow Lowpass Filter” on page 9-6
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FIR Decimation Using Multirate Frame-Based Processing
In this example, the FIR Decimation block decimates the signal by decreasing the sample rate of the
signal, while maintaining the frame size.

Open the model. The input to the FIR Decimation block is a single-channel input with a frame size
of 64 and a frame period of 1 second. In the block dialog box, set the Decimation factor parameter
to 4 and the Rate options parameter to Allow multirate processing.

Run the model. The block operates in the multirate frame-based processing mode. The input and
output signals of the FIR Decimation block have the same frame size, but the sample rate of the
output is  times the sample rate of the input, where M is the decimation factor. With a
decimation factor of 4, the sample rate of the output signal is 1/4 times the sample rate of the input.
The color coding in the model shows the sample time of the signal at both the input and output ports
of the FIR Decimation block.

See Also
Blocks
Signal From Workspace | FIR Decimation | To Workspace | Probe

Related Examples
• “FIR Decimation Using Single-Rate Processing” on page 9-2
• “Polyphase Implementation of FIR Decimation Block” on page 9-4
• “Two-Stage Multirate Narrow Lowpass Filter” on page 9-6
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Polyphase Implementation of FIR Decimation Block
This example shows the underlying polyphase implementation of the FIR Decimation block using
downsampling and FIR filtering as building blocks. The model compares the output of the FIR
Decimation block with the output of a polyphase decimation structure. The Time Scope block
compares the two outputs.

Open the model.

The model has two branches. The first branch contains an FIR Decimation block. The second branch
contains a polyphase decimation structure. For more details on the structure, see the “Algorithms”
section in the FIR Decimation block page.

Run the model and view the results on the scope. The first signal on the scope is the original
sinusoidal signal. The second and third signals on the scope are the outputs of the FIR Decimation
block and the polyphase structure, respectively. The last signal on the scope shows that the error
between the two decimated outputs is very small, almost zero. This negligible error confirms the
underlying polyphase implementation of the FIR Decimation block.
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See Also
Blocks
Sine Wave | FIR Decimation | Time Scope | Discrete FIR Filter | Delay | Downsample

Related Examples
• “FIR Decimation Using Single-Rate Processing” on page 9-2
• “FIR Decimation Using Multirate Frame-Based Processing” on page 9-3
• “Two-Stage Multirate Narrow Lowpass Filter” on page 9-6
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Two-Stage Multirate Narrow Lowpass Filter
Implement a two-stage multirate narrow lowpass filter using the FIR Decimation and FIR
Interpolation blocks.

Open the model.

The input signal contains a sum of two sine waves with frequencies 40 Hz and 100 Hz, respectively.
The sample rate of the signal is 8000 Hz. The input sinusoidal signal is filtered using a two-stage
multirate narrow lowpass filter. The filter is implemented as a subsystem block containing a two-stage
decimation filter followed by a two-stage interpolation filter. The decimation filter contains two FIR
Decimation blocks: first block with a decimation factor of 12 and second block with a decimation
factor of 4. The interpolation filter similarly contains two FIR Interpolation blocks: first block with an
interpolation factor of 4 and second block with an interpolation factor of 12. The overall filter you
design is a narrow lowpass filter with a passband frequency of 75 Hz.

Run the model. Use a Spectrum Analyzer to compare the power spectra of the original and filtered
signals. The block uses the Filter Bank method for spectral estimation. For more details, see
“Spectrum Estimation — Filter Bank”. The 40 Hz frequency falls in the passband of the filter and is
unattenuated. The 100 Hz frequency falls in the stopband of the filter and is therefore attenuated.
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See Also
Blocks
Sine Wave | FIR Decimation | FIR Interpolation | Spectrum Analyzer

Related Examples
• “FIR Decimation Using Single-Rate Processing” on page 9-2
• “FIR Interpolation Using Single-Rate Processing” on page 9-8
• “FIR Decimation Using Multirate Frame-Based Processing” on page 9-3
• “FIR Interpolation Using Multirate Frame-Based Processing” on page 9-9
• “Polyphase Implementation of FIR Decimation Block” on page 9-4
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FIR Interpolation Using Single-Rate Processing
In this example, the FIR Interpolation block interpolates the signal by increasing the frame size, while
keeping the same sample rate.

Open the model. The input to the FIR Interpolation block is a single-channel input with a frame size
of 16. In the block dialog box, set the Interpolation factor parameter to 4 and the Rate options
parameter to Enforce single-rate processing.

Run the model. The block operates in the single-rate processing mode. Therefore, the output frame
size of the block is L times the input frame size of the block, where L is the interpolation factor. With
an interpolation factor of 4, the output has a frame size of 64. As shown in the model, the input and
the output of the FIR Interpolation block have the same sample rate but have different frame sizes.

See Also
Blocks
FIR Interpolation | Signal From Workspace | To Workspace | Probe

Related Examples
• “FIR Interpolation Using Multirate Frame-Based Processing” on page 9-9
• “Polyphase Implementation of FIR Interpolation Block” on page 9-10
• “Two-Stage Multirate Narrow Lowpass Filter” on page 9-6
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FIR Interpolation Using Multirate Frame-Based Processing
In this example, the FIR Interpolation block interpolates the signal by increasing the sample rate of
the signal, while maintaining the frame size.

Open the model. The input to the FIR Interpolation block is a single-channel input with a frame size
of 64 and a frame period of 1 second. In the block dialog box, set the Interpolation factor
parameter to 4 and the Rate options parameter to Allow multirate processing.

Run the model. The block operates in the multirate frame-based processing mode. The input and
output signals of the FIR Interpolation block have the same frame size, but the sample rate of the
output is L times the sample rate of the input, where L is the interpolation factor. With an
interpolation factor of 4, the sample rate of the output signal is 4 times the sample rate of the input
signal. The color coding in the model shows the sample time (inverse of sample rate) of the signal at
both the input and output ports of the FIR Interpolation block.

See Also
Blocks
FIR Interpolation | Signal From Workspace | To Workspace | Probe

Related Examples
• “FIR Interpolation Using Single-Rate Processing” on page 9-8
• “Polyphase Implementation of FIR Interpolation Block” on page 9-10
• “Two-Stage Multirate Narrow Lowpass Filter” on page 9-6
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Polyphase Implementation of FIR Interpolation Block
This example shows the underlying polyphase implementation of the FIR Interpolation block using
upsampling and FIR filtering as building blocks. The model compares the output of the FIR
Interpolation block with the output of a polyphase interpolation structure. The Time Scope block
compares the two outputs.

Open the model.

The model has two branches. The first branch contains an FIR Interpolation block. The second branch
contains a polyphase interpolation structure. For more details on the derivation of this structure, see
the “Algorithms” section in the FIR Interpolation block page.

Run the model and view the results on the scope. The first signal on the scope is the original
sinusoidal signal. The second and third signals on the scope are the outputs of the FIR Interpolation
block and the polyphase structure, respectively. The last signal on the scope shows that the error
between the two interpolated outputs is very small, almost zero. This negligible error confirms the
underlying polyphase implementation of the FIR Interpolation block.
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See Also
Blocks
Sine Wave | FIR Interpolation | Time Scope | Discrete FIR Filter | Delay | Upsample

Related Examples
• “FIR Interpolation Using Single-Rate Processing” on page 9-8
• “FIR Interpolation Using Multirate Frame-Based Processing” on page 9-9
• “Two-Stage Multirate Narrow Lowpass Filter” on page 9-6
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Simulink Block Examples in Scopes and
Data Logging Category

• “Obtain Measurements Data Programmatically for spectrumAnalyzer object” on page 10-2
• “Obtain Measurements Data Programmatically for Spectrum Analyzer Block” on page 10-5
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Obtain Measurements Data Programmatically for
spectrumAnalyzer object

Compute and display the power spectrum of a noisy sinusoidal input signal using the
spectrumAnalyzer MATLAB® object. Measure the peaks, cursor placements, adjacent channel
power ratio, and distortion values in the spectrum by enabling these properties:

• PeakFinder
• CursorMeasurements
• ChannelMeasurements
• DistortionMeasurements

Initialization

The input sine wave has two frequencies: 1000 Hz and 5000 Hz. Create two dsp.SineWave System
objects to generate these two frequencies. Create a spectrumAnalyzer object to compute and
display the power spectrum.

Fs = 44100;
Sineobject1 = dsp.SineWave(SamplesPerFrame=1024,PhaseOffset=10,...
    SampleRate=Fs,Frequency=1000);
Sineobject2 = dsp.SineWave(SamplesPerFrame=1024,...
    SampleRate=Fs,Frequency=5000);
SA = spectrumAnalyzer(SampleRate=Fs,SpectrumType="power",...
    PlotAsTwoSidedSpectrum=false,ChannelNames={'Power spectrum of the input'},...
    YLimits=[-120 40],ShowLegend=true);
    

Enable Measurements Data

To obtain the measurements, set the Enabled property to true.

SA.CursorMeasurements.Enabled = true;
SA.ChannelMeasurements.Enabled = true;
SA.PeakFinder.Enabled = true;
SA.DistortionMeasurements.Enabled = true;

Use getMeasurementsData

Stream in the noisy sine wave input signal and estimate the power spectrum of the signal using the
spectrum analyzer. Measure the characteristics of the spectrum. Use the getMeasurementsData
function to obtain these measurements programmatically. The isNewDataReady function returns
true when there is new spectrum data. Store the measured data in the variable data.

data = [];
for Iter = 1:1000
    Sinewave1 = Sineobject1();
    Sinewave2 = Sineobject2();
    Input = Sinewave1 + Sinewave2;
    NoisyInput = Input + 0.001*randn(1024,1);
    SA(NoisyInput);
     if SA.isNewDataReady
        data = [data;getMeasurementsData(SA)];
     end
end
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The right side of the spectrum analyzer shows the measurement panes you enabled. The values in
these panes match the values in the last time step of the data variable. You can access the individual
fields of data to obtain the various measurements programmatically.

Compare Peak Values

Use the PeakFinder property to obtain peak values. Verify that the peak values in the last time step
of data match the values shown on the spectrum analyzer plot.

peakvalues = data.PeakFinder(end).Value 

peakvalues = 3×1

   26.9261
   24.1149
  -46.3163

frequencieskHz = data.PeakFinder(end).Frequency/1000

frequencieskHz = 3×1

    4.9957
    0.9905
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    0.0646

See Also
Functions
getMeasurementsData

Objects
spectrumAnalyzer | dsp.SineWave
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Obtain Measurements Data Programmatically for Spectrum
Analyzer Block

Compute and display the power spectrum of a noisy sinusoidal input signal using the Spectrum
Analyzer block. Measure the peaks, cursor placements, adjacent channel power ratio, distortion, and
CCDF values in the spectrum by enabling these block configuration properties:

• PeakFinder
• CursorMeasurements
• ChannelMeasurements
• DistortionMeasurements
• CCDFMeasurements

Open and Inspect the Model

Filter a streaming noisy sinusoidal input signal using a Lowpass Filter block. The input signal consists
of two sinusoidal tones: 1 kHz and 15 kHz. The noise is white Gaussian noise with zero mean and a
variance of 0.05. The sampling frequency is 44.1 kHz. Open the model and inspect the various block
settings.

model = 'spectrumanalyzer_measurements.slx';
open_system(model)
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Access the configuration properties of the Spectrum Analyzer block using the get_param function.

sablock = 'spectrumanalyzer_measurements/Spectrum Analyzer';
cfg = get_param(sablock,'ScopeConfiguration');

Enable Measurements Data

To obtain the measurements, set the Enable property of the measurements to true.

cfg.CursorMeasurements.Enable = true;
cfg.ChannelMeasurements.Enable = true;
cfg.PeakFinder.Enable = true;
cfg.DistortionMeasurements.Enable = true;

Simulate the Model

Run the model. The Spectrum Analyzer block compares the original spectrum with the filtered
spectrum.

sim(model)
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The right side of the spectrum analyzer shows the enabled measurement panes.

Using getMeasurementsData

Use the getMeasurementsData function to obtain these measurements programmatically.

data = getMeasurementsData(cfg)

data =

  1x5 table

    SimulationTime    PeakFinder    CursorMeasurements    ChannelMeasurements    DistortionMeasurements
    ______________    __________    __________________    ___________________    ______________________

      {[0.9985]}      1x1 struct        1x1 struct            1x1 struct               1x1 struct      

The values shown in measurement panes match the values shown in data. You can access the
individual fields of data to obtain the various measurements programmatically.
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Compare Peak Values

As an example, compare the peak values. Verify that the peak values obtained by data.PeakFinder
match with the values seen in the Spectrum Analyzer window.

peakvalues = data.PeakFinder.Value
frequencieskHz = data.PeakFinder.Frequency/1000

peakvalues =

   26.9114
   26.3594
   -4.1304

frequencieskHz =

   15.0015
    1.0049
    6.3738

Save and Close the Model

save_system(model);
close_system(model);

See Also
Functions
getMeasurementsData

Objects
SpectrumAnalyzerConfiguration

Blocks
Spectrum Analyzer | Sine Wave | Lowpass Filter
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DSP System Toolbox Simulink block
Examples in Signal Input and Output
Category

• “Write and Read Binary Files in Simulink” on page 11-2
• “Write and Read Matrix Data from Binary Files in Simulink” on page 11-6
• “Write and Read Fixed-Point Data from Binary Files in Simulink” on page 11-8
• “Write and Read Character Data from Binary Files in Simulink” on page 11-10
• “Change the Endianness of the Data in Simulink” on page 11-12
• “Data Transmission Using UDP in Simulink” on page 11-14
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Write and Read Binary Files in Simulink
Create a binary file with a custom header using the Binary File Writer block. Write data to this file.
Read the header and data using the Binary File Reader block.

Write the Data

Specify the file header in the File header parameter of the Binary File Writer block as
struct('A',[1 2 3 4],'B','x7'). The block writes the header first, followed by the data to the
ex_file.bin file. The data is a noisy sine wave signal with a frequency of 100 Hz containing 1000
samples per frame. The sample rate of the signal is 1000 Hz. Set the Time span of the Time Scope
block to 1 second.

Open the model.

writeModel = 'writeData';
open_system(writeModel)

Run the model to write the data to ex_file.bin. Alternatively, view the data in a time scope.

sim(writeModel)
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Read the Data

Read the data in ex_file.bin file using the Binary File Reader block. The data is read as a
single channel (column) containing multiple frames, where each frame has 1000 samples. View the
data in a time scope.

Specify the header using the File header parameter in the reader. If the exact header is not known,
you must at least specify the prototype of the header, that is, its size and data type. In this example,
the header prototype is struct('A',[0 0 0 0],'B','-0') which has the same format as the
header structure.

Open the model.

readModel = 'readData';
open_system(readModel)
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Run the model to read the data. Alternatively, view the data in a time scope.

sim(readModel)

The output data in both the timescopes matches exactly. Once the processing is complete, close the
models.
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close_system(readModel);
close_system(writeModel);

See Also
Binary File Writer | Binary File Reader | Sine Wave | Random Source | Time Scope
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Write and Read Matrix Data from Binary Files in Simulink
Use a Binary File Reader block to read real and complex matrix data from a binary file in a row-major
format.

Write the Data

Write the matrix A = [1 2 3 8; 4 5 6 10; 7 8 9 11] to a binary file, Matdata.bin using the Binary File
Writer block. The block writes the specified header, struct('A',[1 2],'B','x7') followed by the
data.

Open the model.

open_system('writeMatrixData')

Run the model to write the data to Matdata.bin.

sim('writeMatrixData')

Read the Data

The Binary File Reader block reads the data in binary file Matdata.bin into 4 channels, with
each channel containing 5 samples. The File header parameter of the reader specifies the header of
the data. If the exact header is not known, you must at least specify the prototype of the header, that
is, its size and data type.

Open the model.

open_system('readMatrixData')

Run the model to read the data. Display the output data variable, yout.

sim('readMatrixData')
display(yout)
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yout =

     1     2     3     8
     4     5     6    10
     7     8     9    11
     0     0     0     0
     0     0     0     0

Each frame of yout contains frames of the matrix A, followed by zeros to complete the frame. The
original matrix A contains 4 channels with 3 samples in each channel. The reader is specified to read
data into 4 channels, with each channel containing 5 samples. Because there are not enough samples
to complete the frame, the reader appends zeros at the end of each frame.

If you select the Data is complex parameter, the reader reads the data as an M-by- N matrix of
complex values, where M and N are specified by the Samples per frame and Number of channels
parameters, respectively. Select the Data is complex parameter and run the model.

set_param('readMatrixData/Binary File Reader','IsDataComplex','on')
sim('readMatrixData')
display(yout)

yout =

   1.0000 + 2.0000i   3.0000 + 8.0000i   4.0000 + 5.0000i   6.0000 +10.0000i
   7.0000 + 8.0000i   9.0000 +11.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

The block reads the data as interleaved real and imaginary components. If there are not enough
samples in the binary file to complete the matrix, the reader fills those samples with zeros.

If you make any changes to the model, save the model before closing.

save_system('readMatrixData')
close_system('readMatrixData')
close_system('writeMatrixData')

See Also
To Workspace | Binary File Writer | Binary File Reader
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Write and Read Fixed-Point Data from Binary Files in Simulink
The Binary File Writer and Binary File Reader blocks do not support writing and reading fixed-point
data. As a workaround, you can write the stored integer portion of the fi data, read the data, and use
this value to reconstruct the fi data.

Write the Fixed-Point Data

Create a fi object to represent 100 signed random numbers with a word length of 14 and a fraction
length of 12.

data = randn(100,1);
fiDataWriter = fi(data,1,14,12);
storeIntData = storedInteger(fiDataWriter);

Write the stored integer portion of the fi object to the data file myFile.dat. The built-in data type is
int16, which can be computed using class(storeIntData).

writeModel = 'writeFixedData';
open_system(writeModel)
sim(writeModel)

Read the Fixed-Point Data

Specify the reader to read the stored integer data as int16 data with 100 samples per data frame.

readModel = 'readFixedData';
open_system(readModel)
sim(readModel)

The real-world value of the fixed-point number can be represented using 2^[-
fractionLength*storedInteger]. If you know the signedness, word length, and fraction length
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of the fixed-point data, you can reconstruct the fi data using
fi(realValue,signedness,wordLength,fractionLength). In this example, the data is signed
with a word length of 14 and a fraction length of 12.

fractionLength = 12;
wordLength = 14;
realValue = 2^(-fractionLength)*double(dataRead);
fiDataReader = fi(realValue,1,wordLength,fractionLength);

Verify that the writer data is same as the reader data.

isequal(fiDataWriter,fiDataReader)

ans =

  logical

   1

See Also
To Workspace | Binary File Writer | Binary File Reader | Signal From Workspace

 Write and Read Fixed-Point Data from Binary Files in Simulink

11-9



Write and Read Character Data from Binary Files in Simulink
The Binary File Writer and Binary File Reader blocks do not support writing and reading characters.
As a workaround, cast character data to one of the built-in data types and write the integer data.
After the reader reads the data, convert the data to a character using the char function.

Write the Character Data

Cast the character data, 'binary_file' into uint8 using the cast function.

data = 'binary_file';

Write the cast data to the data file myCharFile.dat.

writeModel = 'writeCharData';
open_system(writeModel)
sim(writeModel)

Read the uint8 Data

Specify the reader to read the cast data as uint8 data.

readModel = 'readCharData';
open_system(readModel)
sim(readModel);

charData = char(readerData);

Verify that the writer data is same as the reader data. By default, the reader returns the data in a
column-major format.

strcmp(data,charData.')

ans =

  logical
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   1

See Also
To Workspace | Binary File Writer | Binary File Reader | Constant
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Change the Endianness of the Data in Simulink
By default, the Binary File Reader block uses the endianness of the host machine. To change the
endianness, such as when the host machine that writes the data does not have the same endianness
as the host machine that reads the data, use the swapbytes function.

Write a numeric array in big endian format into the file bigEndian.dat. Read the data using the
Binary File Reader block. The reader reads the data in little endian format.

fid = fopen('bigEndian.dat','w','b');
fwrite(fid,[1 2 3 4 5 6 7 8],'double');
fclose(fid);

Open and simulate the model.

model = 'changeEndian';
open_system(model)
sim(model)

Display the data variable, x.

display(x)

x =

  1.0e-318 *

    0.3039
    0.0003
    0.0104
    0.0206
    0.0256
    0.0307
    0.0357
    0.0408

The array x does not match the original data. Change the endianness of x using the swapbytes
function.

y = swapbytes(x);
display(y)

y =

11 DSP System Toolbox Simulink block Examples in Signal Input and Output Category

11-12



     1
     2
     3
     4
     5
     6
     7
     8

That array y matches the original data.

See Also
Functions
swapbytes | fopen | fwrite | fclose

Blocks
Binary File Reader | Constant

 Change the Endianness of the Data in Simulink

11-13



Data Transmission Using UDP in Simulink
This example shows how to transfer a sine wave signal over UDP network using the UDP Send and
UDP Receive blocks in DSP System Toolbox™.

The sine wave signal has a frequency of 1 Hz, sample time of 1/1000 seconds, and samples per frame
of 1. The local IP port of the UDP Receive block and remote IP port of the UDP Send block are both
set to 25000. The blocks are configured to send and receive 1 sample at a time.

Open and run the model. Visualize the transmitted and the received sine wave signals on the two
Time Scope windows respectively.
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In this example, the UDP Send and Receive blocks exist in the same Simulink model and are run on
the same machine. However, you can also use the UDP Send and Receive blocks in two different
models and communicate across two different machines.

See Also
UDP Send | UDP Receive | Sine Wave | Time Scope
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Simulink Block Examples in Signal
Generation and Operations Category

• “Delay Signal Using Multitap Fractional Delay” on page 12-2
• “Bidirectional Linear Sweep” on page 12-7
• “Unidirectional Linear Sweep” on page 12-10
• “When Sweep Time Is Greater than Target Time” on page 12-12
• “Sweep with Negative Frequencies” on page 12-14
• “Aliased Sweep” on page 12-17
• “Generate Discrete Impulse with Three Channels” on page 12-19
• “Generate Five-Phase Output from the Multiphase Clock Block” on page 12-20
• “Count Down Through Range of Numbers” on page 12-22
• “Import Two-Channel Signal From Workspace” on page 12-24
• “Import 3-D Array From Workspace” on page 12-26
• “Generate Sample-Based Sine Waves” on page 12-28
• “Generate Frame-Based Sine Waves” on page 12-29
• “Design an NCO Source Block” on page 12-30
• “Generate Constant Ramp Signal” on page 12-33
• “Averaged Power Spectrum of Pink Noise” on page 12-34
• “Downsample a Signal” on page 12-36
• “Sample and Hold a Signal” on page 12-39
• “Generate and Apply Hamming Window” on page 12-42
• “Convert Sample Rate of Speech Signal” on page 12-45
• “Unwrap Signal” on page 12-48
• “Convolution of Two Inputs” on page 12-50
• “Select Rows or Columns from Matrices” on page 12-52
• “Convert 2-D Matrix to 1-D Array” on page 12-53
• “Pad or Truncate Matrix with Constant Values” on page 12-54
• “Extract the Phase of Sine Wave” on page 12-56
• “Queues” on page 12-58
• “Use DC Blocker to Remove DC Component of Signal” on page 12-60
• “DC Blocker with Fixed Point Data” on page 12-65
• “Truncate Data Vector Using Offset Block” on page 12-71
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Delay Signal Using Multitap Fractional Delay
Delay the input signal using the Variable Fractional Delay block. Each delay value is unique and can
vary from sample to sample within a frame, and can vary across channels. You can compute multiple
delayed versions of the same input signal concurrently by passing a delay input with the appropriate
dimension.

Consider the input to be a random signal with one channel and a frame size of 10. Apply a delay of
4.8 and 8.2 samples concurrently.

Open the model.

model = 'MultitapFractionalDelay';
open_system(model)

Run the model.

input = randn(10,1) %#ok

input =

    0.5377
    1.8339
   -2.2588
    0.8622
    0.3188
   -1.3077
   -0.4336
    0.3426
    3.5784
    2.7694

delayVec = [4.8 8.2]; %#ok
sim(model)
display(output)

output =

         0         0
         0         0
         0         0
         0         0
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    0.1075         0
    0.7969         0
    1.0153         0
   -1.6346         0
    0.7535    0.4301
   -0.0065    1.5746

Each channel in the output is delayed by 4.8 and 8.2 samples, respectively. The block uses the
'Linear' interpolation method to compute the delayed value. For more details, see 'Algorithms' in the
Variable Fractional Delay block page.

For the same delay vector, if the input has 2 channels, each element of the delay vector is applied on
the corresponding channel in the input.

input = randn(10,2);

sim(model);
display(output);

output =

         0         0
         0         0
         0         0
         0         0
   -0.2700         0
   -0.4729         0
    2.5730         0
    0.5677         0
    0.0925    0.5372
    0.5308   -0.8317

To compute multiple delayed versions of the two-dimensional input signal, pass the delay vector as a
three-dimensional array. The third dimension contains the taps or delays to apply on the signal. If you
pass a non-singleton third dimension (1-by-1-by-P), where P represents the number of taps, the same
tap is applied across all the channels. Pass the delays [4.8 8.2] in the third dimension.

clear delayVec;
delayVec(1,1,1) = 4.8;
delayVec(1,1,2) = 8.2; %#ok
whos delayVec

  Name          Size             Bytes  Class     Attributes

  delayVec      1x1x2               16  double              

delayVec is a 1-by-1-by-2 array. Pass the two-dimensional input to the Variable Fractional
Delay block with this delay vector.

sim(model)
display(output)

output(:,:,1) =
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         0         0
         0         0
         0         0
         0         0
   -0.2700    0.1343
   -0.4729    0.2957
    2.5730   -0.8225
    0.5677    0.8998
    0.0925    1.4020
    0.5308    0.5981

output(:,:,2) =

         0         0
         0         0
         0         0
         0         0
         0         0
         0         0
         0         0
         0         0
   -1.0799    0.5372
    2.1580   -0.8317

whos output

  Name         Size             Bytes  Class     Attributes

  output      10x2x2              320  double              

output(:,:,1) represents the input signal delayed by 4.8 samples. output(:,:,2) represents the
input signal delayed by 8.2 samples. The same delay is applied across all the channels.

In addition, if you pass a non-singleton second dimension (1-by-L-by-P), where L is the number of
input channels, taps vary across channels. Apply the delay vectors [2.3 3.5] and [4.4 5.6] to compute
the two delayed versions of the input signal.

clear delayVec;
delayVec(1,1,1) = 2.3;
delayVec(1,2,1) = 3.5;
delayVec(1,1,2) = 4.4;
delayVec(1,2,2) = 5.6; %#ok
whos delayVec

  Name          Size             Bytes  Class     Attributes

  delayVec      1x2x2               32  double              

sim(model)
display(output)

output(:,:,1) =
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         0         0
         0         0
   -0.9449         0
    1.7195    0.3357
    1.4183   -0.2680
    0.1735   -0.2451
    0.4814    1.1737
    0.0709    1.0596
   -0.1484    0.7618
    1.0055    0.8808

output(:,:,2) =

         0         0
         0         0
         0         0
         0         0
   -0.8099         0
    1.2810    0.2686
    1.6492   -0.0801
    0.2523   -0.4376
    0.4036    1.0824
    0.1629    1.1737

whos output

  Name         Size             Bytes  Class     Attributes

  output      10x2x2              320  double              

output(:,:,1) contains the input signal delayed by the vector [2.3 3.5]. output(:,:,2) contains the input
signal delayed by the vector [4.4 5.6].

To vary the delay within a frame from sample to sample, the first dimension of the delay vector (N-
by-1-by-P or N-by-L-by-P) must equal the frame size of the input (N-by-L). Pass a delay vector of size
10-by-1-by-2.

clear delayVec;
delayVec(:,1,1) = 3.1:0.1:4;
delayVec(:,1,2) = 0.1:0.1:1;
whos delayVec

  Name           Size             Bytes  Class     Attributes

  delayVec      10x1x2              160  double              

sim(model)
display(output)

output(:,:,1) =

         0         0
         0         0
         0         0
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   -0.8099    0.4029
    0.8425   -0.2680
    2.1111   -0.4376
    0.4889    0.9911
    0.0925    1.4020
    0.6228    0.5435
   -0.2050    1.0347

output(:,:,2) =

   -1.2149    0.6043
    2.1580   -0.8317
    1.4183    0.1398
    0.2523    1.2650
    0.3258    1.0596
    0.3469    0.7072
   -0.1807    0.9424
    0.1986    0.5208
    1.4816   -0.2437
    1.4090    0.2939

Delay varies across each element in a channel. Same set of delay values apply across all channels.
delayVec(:,1,1) applies to the first delayed signal and delayVec(:,1,2) applies to the second
delayed signal.

See Also
Blocks
Delay | Unit Delay | Variable Integer Delay
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Bidirectional Linear Sweep
In this example, the Chirp block outputs a bidirectional, linearly swept chirp signal, which is
displayed by the Time Scope and the Spectrum Analyzer. You can also export the signal to the
MATLAB workspace by the Signal To Workspace block.

To create a bidirectional sweep, set the Sweep mode parameter to Bidirectional. Specify the
final frequency of a bidirectional sweep by setting Target time equal to Sweep time, in which case
the Target frequency becomes the final frequency in the sweep. Note that in the bidirectional
sweep, the period of the sweep is twice the Sweep time of the unidirectional sweep.

Run the model to see the output in the Time Scope and the Spectrum Analyzer.
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You can also view the spectrogram by saving the output to the workspace and using this command:

spectrogram(dsp_examples_yout,hamming(128),110,0:.01:40,400)
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See Also
Blocks
Chirp | Signal To Workspace | Spectrum Analyzer | Time Scope
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Unidirectional Linear Sweep
In this example, the Chirp block outputs a unidirectional, linearly swept chirp signal. The Time Scope
displays the signal output in the time domain and the Spectrum Analyzer displays the spectrogram in
the frequency domain.

To obtain a unidirectional sweep with known initial and final frequency values, in the Chirp block set
the Target time equal to Sweep time. In which case, the Target frequency becomes the final
frequency in the sweep. Since the Target time is set to equal Sweep time (1 second), the Target
frequency (25 Hz) is the final frequency of the unidirectional sweep. This technique might not work
for swept cosine sweeps. For details, see the “Frequency sweep” described for the Frequency sweep
parameter.

Run the model to see the time domain output:
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See Also
Blocks
Chirp | Spectrum Analyzer | Time Scope
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When Sweep Time Is Greater than Target Time
This example shows the unexpected behavior that might arise in the Chirp block when the Sweep
time is greater than Target time. The Time Scope displays the signal output, and the Spectrum
Analyzer displays the spectrogram in the frequency domain.

Set the Sweep time parameter to 1.5 and specify the final frequency of a bidirectional sweep by
setting Target time equal to Sweep time. The sweep reaches the Target frequency (25 Hz) at the
Target time (1 second), but since Sweep time is greater than Target time, the sweep continues on
its linear path until one Sweep time (1.5 seconds) is traversed.

Unexpected behavior might arise when you set Sweep time greater than Target time.

Run the model to see the chirp signal output and a spectrogram of the frequency domain.
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See Also
Blocks
Chirp | Spectrum Analyzer | Time Scope
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Sweep with Negative Frequencies
In this example, the Chirp block outputs a chirp signal containing negative frequencies. The Time
Scope displays the signal output in the time domain, and the Spectrum Analyzer displays the
spectrogram in the frequency domain.

Set the Sweep time to 1.5, Initial frequency to 25, Target frequency to 0, and Target time equal
to Sweep time. The output chirp of this example might not behave as you expect because the sweep
contains negative frequencies between 1 and 1.5 seconds. The sweep reaches the Target frequency
(0 Hz) at 1 second, then continues on its negative slope, taking on negative frequency values until it
traverses one Sweep time (1.5 seconds).

Run the model to see the time domain output.
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See Also
Blocks
Chirp | Spectrum Analyzer | Time Scope
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Aliased Sweep
In this example, the Chirp block outputs a chirp signal containing negative frequencies. The Time
Scope displays the signal output in the time domain, and the Spectrum Analyzer displays the
spectrogram in the frequency domain.

Set the Target frequency to 275 and specify Target time equal to Sweep time. The output chirp of
this example might not behave as you expect because the sweep contains frequencies greater than
half the sampling frequency (200 Hz). If you unexpectedly get a chirp output with a spectrogram
resembling the one following, your chirp's sweep might contain frequencies greater than half the
sampling frequency.

Run the model to see the signal output and the spectrogram.

 Aliased Sweep
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See Also
Blocks
Chirp | Spectrum Analyzer | Time Scope
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Generate Discrete Impulse with Three Channels
This example shows how to generate a discrete impulse signal with three channels and a data type of
double. The Discrete Impulse block has the following settings:

• Delay = [0 3 5]
• Sample time = 0.25
• Samples per frame = 4
• Output data type = double

Run the model and look at the output, dsp_examples_yout. The first few samples of each channel
are shown below:

dsp_examples_yout(1:10,:)
ans =
     1     0     0
     0     0     0
     0     0     0
     0     1     0
     0     0     0
     0     0     1
     0     0     0
     0     0     0
     0     0     0
     0     0     0

The block generates an impulse at sample 1 of channel 1 (first column), at sample 4 of channel 2
(second column), and at sample 6 of channel 3 (third column).

See Also
Blocks
Discrete Impulse | To Workspace

 Generate Discrete Impulse with Three Channels
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Generate Five-Phase Output from the Multiphase Clock Block
This example shows how to use the Multiphase Clock block to generate a 100 Hz five-phase output in
which the third signal is first to become active. The block uses a high active level with a duration of
one interval.

The Scope window below shows the output of the Multiphase Clock block. Note that the first active
level appears at t=0 on y(3), the second active level appears at t=0.002 on y(4), the third active
level appears at t=0.004 on y(5), the fourth active level appears at t=0.006 on y(1), and the fifth
active level appears at t=0.008 on y(2). Each signal becomes active 1/(5*100) seconds after the
previous signal.
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See Also
Blocks
Multiphase Clock | Scope

 Generate Five-Phase Output from the Multiphase Clock Block
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Count Down Through Range of Numbers
This example shows how to use the Counter block to count down through a range of numbers. The
Pulse Generator block drives the Dec port of the Counter block, and the N-Sample Enable block
triggers the Rst port. All inputs to and outputs from the Counter block are multiplexed into a single
To Workspace block using a 4-port Mux block.

The following figure shows the first 22 samples of the four-column output, dsp_examples_yout.
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You can see that the seventh input sample to both the Dec and Rst ports of the Counter block
represent trigger events (rising edges). When this occurs, the block first resets the counter to its
initial value of 5, and then immediately decrements the counter to 4. When the counter reaches its
minimum value of 0, the block restarts the counter at its maximum value of 20 the next time a trigger
event occurs at the Dec port.

See Also
Blocks
Counter | N-Sample Enable | To Workspace | Pulse Generator

 Count Down Through Range of Numbers
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Import Two-Channel Signal From Workspace
Import a two-channel signal, A, from the MATLAB® workspace into the Simulink® model using the
Signal From Workspace block. Use the To Workspace block to write the imported data to the
MATLAB workspace. In this model, the To Workspace block writes slightly modified data to the
MATLAB workspace.

The parameters in the Signal From Workspace block are configured as follows:

• Sample time set to 1: This parameter determines, Ts , the sample period of the output.
• Samples per frame set to 4: Number of samples, Mo , to buffer into each output frame. The

output frame period is MoTs.
• Form output after final value by set to Setting to zero: The block generates zero-valued

outputs for the duration of the simulation after generating the last frame of the signal.

Open and simulate the model.

The Signal From Workspace block imports the signal from the variable A, which is a 10-by-2 matrix.
When you simulate the model, the data output has a frame size of 4 and a frame period, MoTs , of 4
seconds. All outputs after the third frame (at t = 8) are zero because the Form output after final
data value by parameter is set to Setting to zero in this model. The To Workspace block writes
this modified output to the MATLAB workspace in the variable dsp_ex_yout.

This figure shows the signal in the input variable A and how this data is written to the output array
dsp_ex_yout.
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See Also
Blocks
Signal From Workspace | Signal To Workspace

 Import Two-Channel Signal From Workspace
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Import 3-D Array From Workspace
Import a 3-D array A from the MATLAB® workspace into the Simulink® model using the Signal
From Workspace block. Use the To Workspace block to write the imported data to the MATLAB
workspace. In this model, the To Workspace block slightly modifies data.

The parameters in the Signal From Workspace block are configured as follows:

• Sample time set to 1: This parameter determines, Ts , the sample period of the output.
• Samples per frame set to 1: Number of samples, Mo , to buffer into each output frame. The

output frame period is MoTs.
• Form output after final data value by set to Setting to zero: The block generates zero-

valued outputs for the duration of the simulation after generating the last frame of the signal.

Open and simulate the model.

The Signal From Workspace block imports the signal from the variable A, which is a 2-by-2-by-3
array. When you simulate the model, each of the three pages (a 2-by-2 matrix) is output in sequence
with period Ts. The third page is a matrix of zeros because the Form output after final data value
by parameter is set to Setting to zero in this model. The To Workspace block writes the
sequence of these matrices to the MATLAB workspace in the variable dsp_ex_yout.

This figure shows the signal in the input variable A and how this data is written to the output array
dsp_ex_yout.
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See Also
Blocks
Signal From Workspace | Signal To Workspace

 Import 3-D Array From Workspace
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Generate Sample-Based Sine Waves
This example compares the different methods of generating sample-based sine waves from the Sine
Wave block in DSP System Toolbox.

See Also
Blocks
Sine Wave | To Workspace | Display | Maximum | Add | Zero-Order Hold | Gain | Digital Clock |
Trigonometric Function | Abs
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Generate Frame-Based Sine Waves
This example compares the different methods of generating frame-based sine waves from the Sine
Wave block in DSP System Toolbox™.

See Also
Blocks
Sine Wave | To Workspace | Display | Maximum | Add

 Generate Frame-Based Sine Waves
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Design an NCO Source Block
This example shows how to design an NCO source block with the following specifications:

• Desired output frequency: 
• Frequency resolution: 
• Spurious free dynamic range: 
• Sample period: 
• Desired phase offset: 

1. Calculate the number of required accumulator bits from the equation for frequency resolution:

Note that N must be an integer value. The value of N is rounded up to the nearest integer; 18
accumulator bits are needed to accommodate the value of the frequency resolution.

2. Using this best value of N, calculate the frequency resolution that will be achieved by the NCO
block:

3. Calculate the number of quantized accumulator bits from the equation for spurious free dynamic
range and the fact that for a lookup table with 2^P entries, P is the number of quantized accumulator
bits:

4. Select the number of dither bits. In general, a good choice for the number of dither bits is the
accumulator word length minus the number of quantized accumulator bits; in this case 4.

5. Calculate the phase increment:

phase increment = 
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phase increment = 

phase increment = 16712

6. Calculate the phase offset, , using the desired phase offset, :

7. Open and simulate the model:

 Design an NCO Source Block
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8. Experiment with the model to observe the effects on the output shown on the Spectrum Analyzer.
For example, try turning dithering on and off, and try changing the number of dither bits.

See Also
Blocks
NCO | Signal To Workspace | Spectrum Analyzer | Gain | Data Type Conversion
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Generate Constant Ramp Signal
This example shows how to generate a ramp signal from the Constant Ramp block. The Ramp length
equals number of parameter allows you to specify which dimension of the input signal determines
the length of the generated constant ramp signal.

For N-D input signals, set the Ramp length equals number of parameter to Elements in
specified dimension. Then specify the desired dimension using the Dimension parameter.

See Also
Blocks
Constant Ramp | To Workspace | Signal From Workspace | DSP Constant (Obsolete)

 Generate Constant Ramp Signal
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Averaged Power Spectrum of Pink Noise
This example shows how to generate two-channels of pink noise from the Colored Noise block and
compute the power spectrum based on a running average of 50 PSD estimates.

The Colored Noise block generates two-channels of pink noise with 1024 samples. The Spectrum
Analyzer computes modified periodograms using a Hamming window and 50% overlap. The running
average of the PSD uses 50 spectral averages.
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See Also
Blocks
Colored Noise | Spectrum Analyzer

 Averaged Power Spectrum of Pink Noise
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Downsample a Signal
Downsample a signal by a factor of 2 using the Downsample block.

Open the System and Run the Model

The Signal From Workspace block generates a two-channel signal with a frame size of 4. The two
Probe (Simulink) blocks are specified to show the sample time of the signal before and after the
downsampling operation.

Run the model. The sample time of the signal before the downsampling operation is half the sample
time of the signal after the operation. You can see this from the Ts parameter visible on the two
Probe blocks.

One-Frame Latency

The Input processing parameter in the Downsample block is set to Columns as channels
(frame based) and the input frame size (number of rows in the input), Mi, is greater than 1. Hence,
the latency of the signal is one frame. The Initial conditions parameter is set to [11 -11;12
-12;13 -13;14 -14]. In all cases of one-frame latency, the Mi rows of the initial condition matrix
appear in sequence as the first four output rows. Input sample D+1 (i.e, row D+1 of the input matrix)
appears in the output as sample Mi+1, followed by input sample D+1+K, input sample D+1+2K, and
so on.

• Mi - Number of input rows. In this example, Mi equals 4.
• D - Sample offset parameter. In this example, D equals 1.
• K - Downsample factor. In this example, K equals 2.

The Initial conditions value can be an Mi-by- N matrix containing one value for each channel, or a
scalar to be repeated across all elements of the Mi-by- N matrix.

Here is the downsampled output signal written to the dsp_examples_yout variable in the base
workspace.

dsp_examples_yout =

    11   -11
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    12   -12
    13   -13
    14   -14
     2    -2
     4    -4
     6    -6
     8    -8
    10   -10
    12   -12
    14   -14
    16   -16
    18   -18
    20   -20
    22   -22
    24   -24
    26   -26
    28   -28
    30   -30
    32   -32
    34   -34
    36   -36
    38   -38
    40   -40
    42   -42
    44   -44
    46   -46
    48   -48
    50   -50
    52   -52
    54   -54
    56   -56
    58   -58
    60   -60
    62   -62
    64   -64
    66   -66
    68   -68
    70   -70
    72   -72
    74   -74
    76   -76
    78   -78
    80   -80
    82   -82
    84   -84
    86   -86
    88   -88
    90   -90
    92   -92
    94   -94
    96   -96
    98   -98
   100  -100
     0     0
     0     0
     0     0
     0     0
     0     0

 Downsample a Signal
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     0     0
     0     0
     0     0
     0     0
     0     0

See Also
Blocks
Signal From Workspace | Downsample | Probe | To Workspace
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Sample and Hold a Signal
Sample an input signal when a trigger event occurs and hold the value until the next trigger event
using the Sample and Hold block. The trigger event can be one of the following:

• Rising edge - Negative value or zero to a positive value.
• Falling edge - Positive value or zero to a negative value.
• Either edge - Negative value or zero to a positive value and positive value or zero to a negative

value.

Open the Model

The model contains three Sample and Hold blocks which accept the three type of trigger events.
The input signal is a continuous-time sine wave with an amplitude of 1 and a frequency of 8 rad/sec.
The trigger signal is a square wave with an amplitude of 0.5 and a frequency of 1 Hz.

Run the Model

When you run the model, the Time Scope block shows the source and trigger signals on the first plot.
You can see the three sample and hold outputs on the three remaining plots.

 Sample and Hold a Signal
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The Initial condition parameter in all the three Sample and Hold blocks is set to 0. Hence, the
three output plots start at 0 value. The first trigger is a rising edge that happens at 0.5 seconds. The
first and third outputs respond to this trigger by dropping to the value of the input sine wave at that
point in time. This input value is held until the next respective trigger event occurs. The second
output plot responds to the first falling edge that occurs at 1 second. At 1 second, the second output
plot jumps to 1, which is the value of the sine wave at that point in time. This value is held until 2
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seconds when the next falling edge event occurs. The output of the second plot then drops down to
the value of the sine wave at that point in time. This value is held until the next trigger event occurs.

See Also
Blocks
Sine Wave | Sample and Hold | Time Scope | Mux | Ground | Signal Generator

 Sample and Hold a Signal
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Generate and Apply Hamming Window
The following model uses the Window Function block to generate and apply a Hamming window to a
3-dimensional input array.

In this example, set the Operation parameter of the Window Function block to Generate and
apply window. The block provides two outputs: the window vector, Window at the Win port, and the
result of the multiplication, simout at the Out port.

Open the model ex_windowfunction_ref.

Run the model.

The length of the first dimension of the input array is 10, so the Window Function block generates
and outputs a Hamming window vector of length 10. To see the window vector generated by the
Window Function block, type Window at the MATLAB® command line.

Window = 

    0.0800
    0.1876
    0.4601
    0.7700
    0.9723
    0.9723
    0.7700
    0.4601
    0.1876
    0.0800

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 15

To see the result of the multiplication, type simout at the MATLAB command line.

simout = 

(:,:,1) =
    0.0791    0.0791
    0.1875    0.1875
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    0.4600    0.4600
    0.7695    0.7695
    0.9717    0.9717
    0.9717    0.9717
    0.7695    0.7695
    0.4600    0.4600
    0.1875    0.1875
    0.0791    0.0791
(:,:,2) =
    0.0791    0.0791
    0.1875    0.1875
    0.4600    0.4600
    0.7695    0.7695
    0.9717    0.9717
    0.9717    0.9717
    0.7695    0.7695
    0.4600    0.4600
    0.1875    0.1875
    0.0791    0.0791
(:,:,3) =
    0.0791    0.0791
    0.1875    0.1875
    0.4600    0.4600
    0.7695    0.7695
    0.9717    0.9717
    0.9717    0.9717
    0.7695    0.7695
    0.4600    0.4600
    0.1875    0.1875
    0.0791    0.0791
(:,:,4) =
    0.0791    0.0791
    0.1875    0.1875
    0.4600    0.4600
    0.7695    0.7695
    0.9717    0.9717
    0.9717    0.9717
    0.7695    0.7695
    0.4600    0.4600
    0.1875    0.1875
    0.0791    0.0791
(:,:,5) =
    0.0791    0.0791
    0.1875    0.1875
    0.4600    0.4600
    0.7695    0.7695
    0.9717    0.9717
    0.9717    0.9717
    0.7695    0.7695
    0.4600    0.4600
    0.1875    0.1875
    0.0791    0.0791

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed

 Generate and Apply Hamming Window
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            WordLength: 16
        FractionLength: 10

See Also
Blocks
Window Function
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Convert Sample Rate of Speech Signal
This example shows how to use the FIR Rate Conversion block to convert the sample rate of a
speech signal. It compares the output/signal behavior in two scenarios -single rate processing and
multirate processing. Convert the sample rate of a speech signal from 22.5 kHz to 8 kHz.

Enforce single-rate processing

The output signal rate and the input signal rate in Simulink® are the same.

The interpolation factor L is set to 160 and the decimation factor K is set to 441. The output frame
size is L/K times the input frame size.

Open and run the model to listen to the output. High frequency content has been removed from the
signal, although the speech sounds basically the same.

The output and the input signal rate are the same in Simulink. This is shown by the green color-coded
signal lines at the input and output of the block.

 Convert Sample Rate of Speech Signal
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Allow multirate processing

Change the Rate options parameter to Allow multirate processing.

Run the model. You can see that the output signal and the blocks connected to the output signal
operate at a rate that is L/K times the rate at which the input signal operates in Simulink.
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See Also
Blocks
Signal From Workspace | FIR Rate Conversion | Audio Device Writer | Signal To Workspace

 Convert Sample Rate of Speech Signal
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Unwrap Signal
This example shows how to use the Unwrap block to unwrap a 3-by-2-by-3 array that has
discontinuity.

Each 3-by-2 frame of the signal has a discontinuity. In the first frame, there is a discontinuity between
the second and the third element greater than the tolerance of  set in the block parameters. In the
second frame, the discontinuity between the second and third element is less than , and in the third
frame, the discontinuity is equal to . Since we expect the block to wrap signals with discontinuities
greater than the tolerance, unwrapping the signal does not affect the second or third frame.

Open the Simulink model.

model = "ex_unwrap";
open_system(model);
frame1 = [0 0; 2*(pi)/3 0; -2*(pi)/3 0];
frame2 = [2*pi 0; 8*pi/3 0; 9.5*pi/3 0];
frame3 = [4*pi 0; 13*pi/3 0; 16*pi/3 0];
signal = cat(3,frame1,frame2,frame3)

signal(:,:,1) =

         0         0
    2.0944         0
   -2.0944         0

signal(:,:,2) =

    6.2832         0
    8.3776         0
    9.9484         0

signal(:,:,3) =

   12.5664         0
   13.6136         0
   16.7552         0

The Tolerance parameter of the Unwrap block is set to . The block therefore unwraps
discontinuities which are larger than .

Run the model.

output = sim(model);
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See that the output, output.unwrapped_signal does not have the first discontinuity, but the other
two remain.

output.unwrapped_output

ans =

         0         0
    2.0944         0
    4.1888         0
    6.2832         0
    8.3776         0
    9.9484         0
   12.5664         0
   13.6136         0
   16.7552         0

See Also
Blocks
Unwrap | From Workspace | To Workspace

 Unwrap Signal

12-49



Convolution of Two Inputs
Using the Convolution block, convolve two input signals.

Open the ex_convolution1.slx model, which convolves two vectors.

For this model, the Convolution block returns a 1-by-3 vector. This is because both u and v are of the
same shape and size.

model1 = "ex_convolution1";
open_system(model1);
sim(model1);

Open the ex_convolution2.slx model, which convolves a vector with a matrix.

In this model, the Convolution block returns a 3-by-3 matrix. The two inputs can be convolved
because they share the same last dimension, which becomes the size of the output's last dimension.
The number of rows of the output is equal to the sum of the first dimension of the two inputs minus
one. In this model that results in three rows, so the output is a 3-by-3 matrix.

model2 = "ex_convolution2";
open_system(model2);
sim(model2);
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When creating models that convolve N-D arrays, keep in mind that except for the first dimension, all
other dimensions must be the same.

See Also
Blocks
Convolution | Display | Constant

 Convolution of Two Inputs
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Select Rows or Columns from Matrices
This example shows how to use the Variable Selector block.

Open the Simulink model.

The Variable Selector block returns a matrix with only the selected rows or columns of the input
matrix. In this example, the Select parameter of the block is set to Rows and the Elements
parameter is set to [1 3]. All the other parameters are set to their default values. Because the input is
an identity matrix, the output is:

ans =

     1     0     0
     0     0     1

Run the model to verify this output.

See Also
Blocks
Variable Selector | Display | Identity Matrix
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Convert 2-D Matrix to 1-D Array
In this model, the Convert 2-D to 1-D block takes the 2-D input matrix and outputs an N-element
vector, where N is the total number of elements in the input matrix. The block performs a column-
wise conversion. The first set of elements of the output array is composed of the first column of the
input matrix, the second set of elements is composed of the second column, and so on.

See Also
Blocks
Convert 2-D to 1-D | Display | Constant

 Convert 2-D Matrix to 1-D Array
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Pad or Truncate Matrix with Constant Values
This example shows how to pad or truncate constant values from a matrix using the Pad block.

Open and run the model.

Pad over Rows at the Beginning

When you specify Pad over to Rows and Pad signal at to Beginning, the block pads the matrix
rows with the value specified in Pad value. The number of values padded to each row is determined
by the Row size parameter. In the first Pad block, the Row size parameter is set to 6.

Pad over Rows and Columns at the Beginning and at the End

When you specify Pad over to Columns and rows and Pad signal at to Beginning and end, the
block pads the matrix rows and columns with the value specified in Pad value. The number of values
padded to each row and column is determined by the Row size and the Column size parameters. In
the second Pad block, the Row size and the Column size parameters are set to 6, respectively.

Truncate over Rows at the End

You can also truncate the matrix by specifying the size of a specific dimension in the output to be less
than that of the input. In the third block, Pad over is set to to Rows and the output Row size
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parameter is set to 2. With this setting, the block truncates the 3-by-3 input matrix over the Rows
dimension and makes it a 3-by-2 matrix.

See Also
Blocks
Pad | Constant | Display

 Pad or Truncate Matrix with Constant Values
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Extract the Phase of Sine Wave
Extract the phase of a sine wave signal using the Phase Extractor block.

Generate the input sine wave using the Sine Wave block. Set the Sine Wave block parameters to the
following:

• Frequency set to 10 Hz
• Sample mode set to Discrete
• Output complexity set to Complex
• Sample time set to 1/1000
• Sample per frame set to 128

In the Phase Extractor block, do not select the Unwrap phase only within the frame parameter.

Open and run the model. The Time Scope block displays the extracted phase.
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See Also
Sine Wave | Phase Extractor | Time Scope

 Extract the Phase of Sine Wave
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Queues
This example shows how to push and pop elements from a queue using a Queue block with a system
of selection switches.

Applications

Queues have many practical applications. They are used in modeling to study communication traffic
over limited bandwidth channels and in any application where there is a limited resource serving an
unknown number of clients. A simple example is people lining up in front of a teller at a bank.

Queues are used in messaging systems to provide reliable delivery. In multitasking systems, they are
used to buffer requests for limited system resources.

Exploring the Example

While the model is running, toggle the 'Push Next Input' switch to update the signal from the
Triggered Signal From Workspace block and to trigger the Push port of the Queue block. The signal is
pushed into the block's FIFO register, and is shown on the 'Input Data' display. Next, toggle the 'Pop
Queue' switch to trigger the Queue block's Pop port, which causes the block to output from its FIFO
register. The output signal is shown on the 'Queue Data' display.

The 'Queue Status' display shows the state of the Queue's FIFO. The Queue block is configured to
store a maximum of three signal samples. Try changing this value in the block's Register size
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parameter and observe the behavior of the Queue block's Empty and Full states as signals are input
and output from the FIFO.

See Also
Blocks
Queue

 Queues
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Use DC Blocker to Remove DC Component of Signal
This example shows how to use the DC Blocker to remove the DC component of a signal. Use the DC
Blocker first with the IIR algorithm and then with the Subtract mean algorithm to estimate the DC
offset. Visualize the spectra of the input signal and the output of the DC Blocker using the Spectrum
Analyzer.

The input signal contains two sinusoidal tones, one at 150 Hz and the other at 250 Hz. The two sine
wave sources are set to use 1000 samples per frame because the Subtract mean estimation
algorithm requires a statistically significant number of samples to calculate a valid mean.

Open and run the model.

The spectrum of the input signal shows tones at 150 Hz and 250 Hz and a significant (0 dBW) DC
component. In the DC Blocker output, the tones at 150 Hz and 250 Hz are unaffected while the DC
component has been attenuated by 30 dB.
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Change the estimation algorithm in DC Blocker to Subtract mean.

Rerun the simulation. The spectral output from the DC Blocker shows that the Subtract mean
estimation method results in a DC component of less than -100 dBW.
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Try all three estimation methods. Modify the IIR and FIR parameters to illustrate the performance of
the DC Blocker using the various estimation techniques.

See Also
DC Blocker | Sine Wave | Spectrum Analyzer

Related Examples
• “DC Blocker with Fixed Point Data” on page 12-65
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DC Blocker with Fixed Point Data
This example shows how to use the DC Blocker to remove a DC offset from fixed point data.

Load the DC Blocker example by typing ex_dcblock_cicmode in the MATLAB command prompt.

In the model:

• 64-QAM data passes through an AWGN channel.
• A DC offset of 1 is added to the signal .
• The Double -> Fixed block converts the data to 16-bit fixed point.
• The fixed-point data passes through the DC Blocker, which has the CIC algorithm selected, to

remove the DC offset.
• The Fixed -> Double block converts the data back to floating point.

Constellation diagrams and spectrum analyzers are used to show the improvements from the DC
Blocker.

Run the simulation. The first constellation diagram, Noisy Constellation, shows a 64-QAM signal with
white noise.

 DC Blocker with Fixed Point Data
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Observe the constellation diagram of the signal after the DC offset of 1 has been applied. The signal,
represented by the yellow data points, has shifted one unit to the right.
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Look at the spectrum of the noisy signal with the DC offset. Note that the signal has a peak at 0 Hz.

 DC Blocker with Fixed Point Data
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Observe the noisy constellation after the DC offset is removed. The signal has shifted back to the left
so that the data clusters are aligned with their corresponding reference points.
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Observe the spectrum of the noisy signal after the DC Blocker removes the offset. The spectral peak
at 0 Hz has been removed.

 DC Blocker with Fixed Point Data
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To visualize the efficiency of the DC Blocker under different conditions, try changing the DC offset or
the Normalized bandwidth of lowpass IIR or CIC filter parameter.

See Also
Blocks
Random Integer Generator | Rectangular QAM Modulator Baseband | AWGN Channel | Constellation
Diagram | DC Blocker | Data Type Conversion | Constant

Related Examples
• “Use DC Blocker to Remove DC Component of Signal” on page 12-60
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Truncate Data Vector Using Offset Block
Use the Offset block to remove or keep the samples in a data vector.

The Mode parameter in the block determines the operation to perform.

• Remove beginning samples: Discard the initial values of a vector.
• Remove ending samples: Discard the final values of a vector.
• Keep beginning samples: Retain the initial values of a vector.
• Keep ending samples: Retain the final values of a vector.

The number of samples to remove or keep is determined by the offset value that is input through the
O port. The length of the output truncated vector is determined by the Output length parameter.

Open and run the model. The model shows how the block modifies the data in all the four modes of
operation. The truncated vectors are displayed by the Display block.

 Truncate Data Vector Using Offset Block
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See Also
Blocks
Offset

12 Simulink Block Examples in Signal Generation and Operations Category

12-72



Simulink Block Examples in DSP System
Toolbox

• “Why Does Reading Data from the dsp.AsyncBuffer Object Give a Dimension Mismatch Error in
MATLAB Function Block?” on page 13-2

• “Why Does the dsp.AsyncBuffer Object Error When You Call read Before write?” on page 13-9
• “Buffering Input with Overlap” on page 13-11
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Why Does Reading Data from the dsp.AsyncBuffer Object Give
a Dimension Mismatch Error in MATLAB Function Block?

If you are reading data from an asynchronous buffer inside a MATLAB Function (Simulink) block, the
block throws a dimension mismatch error if the output of the read function is not specified to be a
variable-size signal.

Here is the bufferWrapper function that contains the algorithm inside the MATLAB Function block.
When input on the cmd port is 1, the dsp.AsyncBuffer object writes the data input u to the buffer.
When input on the cmd port is 0, the object reads data from the buffer.

type bufferWrapper.m

function [y,isData] = bufferWrapper(u,cmd) 

persistent asyncBuff 
if isempty(asyncBuff) 
   asyncBuff = dsp.AsyncBuffer; 
   setup(asyncBuff,u);
end
 
if cmd % write
    write(asyncBuff,u);
    y = zeros(3,1);
    isData = false;
else % read
    y = read(asyncBuff,3);
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    isData = true;
end

You must initialize the buffer by calling either write or setup before the first call to read.

During the write operation, the first output y is zeros(3,1) and the second output isData is 0.
During the read operation, y is the data in the buffer and isData is 1.

Run the model and the following error occurs.

The output of read(asyncBuff,3) is variable sized. The output is variable sized because the size of
the signal output by the read function depends on the input arguments to read. To resolve this error,
set y as a variable-size signal and specify the upper bound.

In the MATLAB Function block Editor, click Modeling tab. In the Design section, click Symbols
Pane. The Symbols pane opens on the right.
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Right-click y and select Inspect.
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Property Inspector window opens. In the Advanced section, select the Variable size check box.
Specify the Size to 3 since that is the size of the data the MATLAB function writes to the variable y.

 Why Does Reading Data from the dsp.AsyncBuffer Object Give a Dimension Mismatch Error in MATLAB Function Block?
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Save and run the model. The error disappears. View the output y in the Time Scope.
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With cmd = 0, no data is written into the buffer. Therefore, the output is 0. To write the input data u
to the buffer, set cmd = 1. After you write some data, if you change cmd back to 0, the Time Scope
output changes to the following.
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See Also
Functions
read | write

Objects
dsp.AsyncBuffer

Blocks
MATLAB Function | Random Source | Constant | Time Scope

Related Examples
• “Why Does the dsp.AsyncBuffer Object Error When You Call read Before write?” on page 13-9
• “High Resolution Spectral Analysis in MATLAB” on page 4-16
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Why Does the dsp.AsyncBuffer Object Error When You Call read
Before write?

In the dsp.AsyncBuffer System object, you must initialize the buffer before the first call to the
read method. To initialize the buffer, call either the write or setup method.

Consider the bufferWrapper function, which writes and reads data from an asynchronous buffer.
When the input cmd is set to true, the object writes data to the buffer. When cmd is false, the
object reads data from the buffer.

function [y,isData] = bufferWrapper(u,cmd) 

persistent asyncBuff 
if isempty(asyncBuff) 
   asyncBuff  = dsp.AsyncBuffer; 
end 

if cmd % write 
   write(asyncBuff,u); 
   y = zeros(128,1); 
   isData = false; 
else % read 
    isData = true; 
    y = read(asyncBuff,128,64); 
end 

Call the buffer with cmd set to false.

bufferWrapper(1,false);

The function errors with the following message:

Buffer not initialized. You must call write before read.

When you generate code from this function, the object throws an error that the buffer 'Cache' is
undefined.

codegen bufferWrapper -args {1,false}

??? Property 'Cache' is undefined on some execution paths but is used inside the called function.

Both these error messages indicate that the buffer is not initialized at the first call to the read
method in one of the execution paths.

To resolve these errors, call write or setup before the first call to read. If you are calling setup,
call it only once at the beginning, during the buffer construction.

In this function, setup is called before read.

function [y,isData] = bufferWrapper_setup(u,cmd) 

persistent asyncBuff 
if isempty(asyncBuff) 
   asyncBuff = dsp.AsyncBuffer; 
   setup(asyncBuff,u);
end 
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if cmd % write 
   write(asyncBuff,u); 
   y = zeros(128,1); 
   isData = false; 
else % read 
    isData = true; 
    y = read(asyncBuff,128,64); 
end 

You can now read the buffer without any errors.

bufferWrapper_setup(1,false);

Generating code from this function now successfully generates the MEX file, because the cache is
defined on all execution paths.

codegen bufferWrapper_setup -args {1,false}

See Also
Objects
dsp.AsyncBuffer

Related Examples
• “High Resolution Spectral Analysis in MATLAB” on page 4-16

More About
• “Why Does Reading Data from the dsp.AsyncBuffer Object Give a Dimension Mismatch Error in

MATLAB Function Block?” on page 13-2
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Buffering Input with Overlap
Buffering Two-Channel Input with Overlap

In the ex_buffer_tut4 model, the Buffer block uses a one-sample overlap and rebuffers a signal
with the frame size of 4 into a signal with the frame size of 3.

Open and run the model.

two_channel_model = "ex_buffer_tut4";
open_system(two_channel_model);
sim(two_channel_model);

The following diagram illustrates the inputs and outputs of the Buffer block.

The output is delayed by eight samples. This latency occurs because of the parameter settings chosen
in this model, and because the model is running in Simulink in the multitasking mode. The first eight
output samples therefore adopt the value specified in the Initial conditions parameter, which in this
case is zero. You can use the rebuffer_delay function to determine the latency of the Buffer block for
any combination of frame size and overlap values.

Buffering Four-Channel Input with Overlap

The ex_buffer_tut3 model buffers a 1-by-4 input signal using an output buffer size of 3 and a buffer
overlap of 1. The buffered output is a 3-by-4 signal.

Open and run the model.

 Buffering Input with Overlap
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four_channel_model = "ex_buffer_tut3";
open_system(four_channel_model);
sim(four_channel_model);

This diagram illustrates the inputs and outputs of the Buffer block.

The input vectors do not begin appearing at the output until the second row of the second matrix.
This is due to latency in the Buffer block. The first output matrix (all zeros in this example) reflects
the value of the Initial conditions parameter, while the first row of zeros in the second output is a
result of the one-sample overlap between consecutive output frames.

You can use the rebuffer_delay function with a frame size of 1 to precisely compute the delay (in
samples).

d = rebuffer_delay(1,3,1)

d =

     4
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This number agrees with the four samples of delay (zeros) per channel shown in the previous figure.

See Also
Blocks
Buffer | Signal From Workspace | To Workspace

Functions
rebuffer_delay
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• “Synthesize and Channelize Audio in Simulink” on page 14-2
• “Filter input with Butterworth Filter in Simulink” on page 14-9
• “SSB Modulation” on page 14-10
• “Wavelet Reconstruction and Noise Reduction” on page 14-15
• “Filter Noisy Signal Using Fourth-Order Section (FOS) Filter in Simulink” on page 14-17
• “Adapt Multiple Filters Using LMS Update block” on page 14-19
• “Model Adaptive Linear Combiner using LMS Update Block” on page 14-26
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Synthesize and Channelize Audio in Simulink
Synthesize a series of four stereo signals into a broadband signal by using the Channel Synthesizer
block. At the receiving end of the model, split this broadband signal back into the individual
narrowband signals by using the Channelizer block.

The inputs to the model are four stereo signals.

• FunkyDrums.mp3
• SoftGuitar.ogg
• RockDrums.mp3
• RockGuitar.wav

Each signal has a size of 1024-by-2 samples. The two columns (channels) represent the left channel
and the right channel of the stereo signal. To store the stereo channels, the 'Convert to Complex and
Mux' block converts each signal into complex signals. It then multiplexes the complex signals by a
Matrix Concatenate block to form a 1024-by-4 matrix. The Channel Synthesizer block synthesizes
these four signals into a single broadband signal of size 4096-by-1. The Channelizer block that follows
splits this broadband signal back into narrow subbands. The output of the Channelizer block is a
1024-by-4 matrix, with each channel representing a narrow band.

Open the model by clicking on the 'Open Model' button on the example in the MATLAB® help
browser.

Select the audio signal you want to listen to and play this signal using the Audio Device Writer block.

Run the model. View the spectra of the input, muxed, and output signals.
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The Muxed Spectrum window shows the spectrum of the broadband signal. The Channelized
Spectrum window shows the spectra of the four narrowband signals. The input and output spectra
match for any selected signal.

Increase the oversampling ratio of the Channelizer block to 2, which means the M/D ratio described
in “Algorithm” is now 2. You can do this by decreasing the decimation factor to 2, so that M/D = 4/2,
which equals 2.

 Synthesize and Channelize Audio in Simulink
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As you can see in the Output Spectrum plot, the output sample rate of the polyphase filter bank has
increased by a factor of 2.

Save and close the model.

See Also
Blocks
Channelizer | Channel Synthesizer | From Multimedia File | To Audio Device

14 Simulink Block Examples in DSP System Toolbox

14-8



Filter input with Butterworth Filter in Simulink
This example shows how to use the Analog Filter Design block.

Open the Simulink model.

model = "ex_analog_filter_design";
open_system(model);

The Analog Filter Design block returns the filtered input as a scalar. Run the model.

sim(model);

 Filter input with Butterworth Filter in Simulink

14-9



SSB Modulation
This example shows single sideband (SSB) modulation using sample-based and frame-based
processing.

Open the ssbMod model. This model performs SSB modulation using sample-based processing.

Simulate the model.
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Open the ssbMod_frame model. This model performs SSB modulation using frame-based processing.

Simulate the model.
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Wavelet Reconstruction and Noise Reduction
This example uses the Dyadic Analysis Filter Bank and Dyadic Synthesis Filter Bank blocks to show
both the perfect reconstruction property of wavelets and an application for noise reduction.

Open the Operation block dialog and select either Remove noise or Perfect reconstruction.
The selection will enable the corresponding enabled subsystem.

Wavelet Reconstruction subsystem shows an Analysis Filter Bank followed by the Wavelet
Reconstruction subsystem. The net effect of these two operations is perfect reconstruction of the
input signal.

Opening the Noise Reduction subsystem shows the same wavelet blocks but with a soft threshold
applied to the transformed signal bands. By attenuating the higher frequency bands, the high
frequency noise is reduced. You can adjust the threshold levels to see the effects of attenuation on the
denoising characteristics of the system.

Run the example to view the input and output signals and the difference between them. Note that for
perfect reconstruction, the difference appears to be zero. However, due to numerical effects, there is
a small difference that can be seen in the display of the running RMS display.

 Wavelet Reconstruction and Noise Reduction
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For floating-point sample-based version, open dspwaveletModel.slx. For floating-point frame-
based version, open dspwavelet_frameModel.slx. For fixed-point sample-based version, open
dspwavelet_fixptModel.slx. To find these models, open this example in MATLAB®, click on the
Open Script button in the example. The example script opens and you can find all the models in the
current working directory of MATLAB.
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Filter Noisy Signal Using Fourth-Order Section (FOS) Filter in
Simulink

Filter a noisy sinusoidal signal using the Fourth-Order Section Filter block. Visualize the original
signal and the filtered signal using a Spectrum Analyzer.

Open and run the model.

The input signal is a sum of two sine waves with the frequencies of 100 Hz and 350 Hz. The sample
rate is 1000 Hz and the number of samples in each frame is 1024. Add zero-mean white Gaussian
noise with a variance of 1e-4 to the sum of the sine waves.

The numerator and denominator coefficients of the fourth-order section filter are obtained using the
designParamEq function from the Audio Toolbox™.

The following code is used in the model to generate the coefficients.

N = [2,4];
gain = [5,10];
centerFreq = [0.025,0.75];
bandwidth = [0.025,0.35];
mode = "fos";
[num,den] = designParamEQ(N,gain,centerFreq,bandwidth,mode,Orientation="row");

Filter the noisy sinusoidal signal using the Fourth-Order Section Filter filter block. Visualize the
original sinusoidal signal and the filtered signal using the Spectrum Analyzer.

 Filter Noisy Signal Using Fourth-Order Section (FOS) Filter in Simulink
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See Also
Blocks
Fourth-Order Section Filter | Spectrum Analyzer | Sine Wave | Random Source
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Adapt Multiple Filters Using LMS Update block
This example shows how to adapt multiple filters independently using the same LMS Update block.

Adapt Both Filters

Open the Multifiltersupport model. The LMS Update block in the model has the following
settings:

• Number of adaptive filters is set to 2.
• Filter length is set to 3 taps.
• Adaptive filter mode is set to Tapped delay-line FIR filter.

The signal at the Input port is a random signal with a uniform distribution. This signal has a sample
time of 0.01 s and contains 1 sample per frame.

The error signals from filter 1 and filter 2 are generated through a series of Discrete FIR Filter
blocks. The first and the third Discrete FIR Filter blocks generate the desired signal using the
expected fixed weights. The second and the fourth Discrete FIR Filter blocks generate the actual
output using the weights estimated by the LMS Update block.

The Matrix Concantenate block concatenates the two error signals and passes the concatenated
signal back to the LMS Update block through the Error port. This error signal is used to further
adapt the filters in the direction of convergence.

Run the model.

Both the filters are adapted. The weights estimated by the LMS Update block for both the filters
converge towards the actual weights.

 Adapt Multiple Filters Using LMS Update block
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Adapt Filters Selectively

You can optionally select the individual filters to adapt by providing an appropriate value at the
Adapt port. When the Adapt port input element is not 0, the block updates the filter weights. When
the input is 0, the filter weights do not change.

Open the Multifiltersupport_Adapt model. The Enable adapt input parameter is selected in
the LMS Update block. This setting enables the Adapt port. The top portion of the model generates
the Adapt signal.

Run the model.

The first filter is enabled to adapt and the second filter is not. The weights of the first filter converge
towards the expected weights, while the weights of the second filter do not change from their initial
values (which is 0 in this case).
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See Also
LMS Update | Random Source | Discrete FIR Filter | Matrix Concatenate

Related Examples
• “Model Adaptive Linear Combiner using LMS Update Block” on page 14-26
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Model Adaptive Linear Combiner using LMS Update Block
This example shows to use the LMS Update block as an adaptive linear combiner.

The adaptive linear combiner (ALC) resembles the adaptive tapped delay-line FIR filter except that
there is no relationship between the input elements. When the LMS Update block is set to operate as
an adaptive linear combiner, the block expects the input elements to be in the form of a vector. The
block does not buffer the input samples in this case.

Open the model. The LMS Update block in the model has the following settings:

• Number of adaptive filters is set to 1.
• Filter length is set to 3 taps.
• Adaptive filter mode is set to Adaptive linear combiner.

The signal at the Input port is a random signal with a uniform distribution. The input signal has a
sample time of 0.01 seconds and contains 3 sample per frame.

The error signal is the difference between the desired signal and the actual output. The first Matrix
Multiply block multiplies the input vector with the actual filter weights to generate the desired signal.
The second Matrix Multiply block multiplies the input vector with the weights estimated by the LMS
Update block to generated the acutal output. The difference between the desired signal and the
actual output is the error signal which is input back to LMS Update block through the Error port.
This error signal is used to further adapt the filter in the direction of convergence.

Run the model. The weights estimated by the LMS Update block for both the filters converge towards
the actual weights.
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See Also
LMS Update | Random Source | Matrix Multiply

Related Examples
• “Adapt Multiple Filters Using LMS Update block” on page 14-19
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• “Compute the Maximum” on page 15-2
• “Compute the Running Maximum” on page 15-4
• “Compute the Minimum” on page 15-6
• “Compute the Running Minimum” on page 15-8
• “Compute the Variance” on page 15-10
• “Compute the Mean” on page 15-11
• “Compute the Running Mean” on page 15-13
• “Compute the Histogram of Real and Complex Data” on page 15-15
• “Compute Difference of a Matrix” on page 15-20
• “Compute Maximum Column Sum of Matrix” on page 15-21
• “LDL Factorization of 3-by-3 Hermitian Positive Definite Matrix” on page 15-22
• “Compute Power Measurements of Voltage Signal in Simulink” on page 15-23
• “Compute Matrix Exponential” on page 15-26
• “Compute Moving RMS of Noisy Step Signal” on page 15-27
• “Compute RMS of Noisy Step Signal” on page 15-30
• “Solve Matrix Equation Using Backward Substitution” on page 15-32
• “Solve Matrix Equation Using Forward Substitution” on page 15-33
• “Find Inverse of Matrix Using the LU Inverse Block” on page 15-34
• “Solve Matrix Equation Using LU Solver” on page 15-35
• “Solve Matrix Equation Using Singular Value Decomposition” on page 15-36
• “Solve Matrix Equation Using Cholesky Solver” on page 15-37
• “Factorize Matrix Using LU Factorization Block” on page 15-38
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Compute the Maximum
Compute the maximum of a 3-by-2 matrix input, dsp_examples_u, using the Maximum block.

Open the model.

model = 'ex_maximum_ref';
open_system(model)

The Mode parameter of the Maximum block is set to Value and Index. The block processes the
input as a two-channel signal with a frame size of three.

Run the model.

sim(model)

Display the input and output values.

disp('Data Input')
disp(dsp_examples_u)
disp('Maximum Values')
disp(max_val)
disp('Max Index Array')
disp(max_index)

Data Input
     6     1
     1     3
     3     9
    -7     2
     2     4
     5     1
     8     6
     0     2
    -1     5
    -3     0
     2     4
     1    17
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Maximum Values
     6     9
     5     4
     8     6
     2    17
     0     0
     0     0

Max Index Array
     1     3
     3     2
     1     1
     2     3
     1     1
     1     1

In the Value and Index mode, the block outputs:

• The maximum value over each frame of data along the channel.
• The index of the maximum value in the respective frame.

Close the model.

close_system(model)

See Also
Blocks
Maximum | Signal From Workspace
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Compute the Running Maximum
Compute the running maximum of a 3-by-2 matrix input, dsp_examples_u, using the Maximum
block.

Open the model.

model = 'ex_runningmaximum_ref';
open_system(model)

The Input processing parameter is set to Columns as channels (frame based). The block
processes the input as a two-channel signal with a frame size of three. The running maximum is reset
at t = 2 by an impulse to the block's Rst port.

Run the model.

sim(model)
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In the Running mode, the block outputs the maximum value over each channel since the last reset.
At t = 2, the reset event occurs. The maximum value in the second column changes to 6, even though
6 is less than 9, which was the maximum value since the previous reset event.

Close the model.

close_system(model)

See Also
Blocks
Maximum | Signal From Workspace | Discrete Impulse
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Compute the Minimum
Compute the minimum of a 3-by-2 matrix input, dsp_examples_u, using the Minimum block.

Open the model.

model = 'ex_minimum_ref';
open_system(model)

The Mode parameter of the Minimum block is set to Value and Index. The block processes the
input as a two-channel signal with a frame size of three.

Run the model. Display the input and output values.

sim(model)
disp('Data Input')
disp(dsp_examples_u)
disp('Minimum Values')
disp(min_val)
disp('Min Index Array')
disp(min_index)

Data Input
     6     1
     1     3
     3     9
    -7     2
     2     4
     5     1
     8     6
     0     2
    -1     5
    -3     0
     2     4
     1    17

Minimum Values
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     1     1
    -7     1
    -1     2
    -3     0
     0     0
     0     0

Min Index Array
     2     1
     1     3
     3     2
     1     1
     1     1
     1     1

In the Value and Index mode, the block outputs:

• The minimum value over each frame of data along the channel.
• The index of the minimum value in the respective frame.

Close the model.

close_system(model)

See Also
Blocks
Minimum | Signal From Workspace
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Compute the Running Minimum
Compute the running minimum of a 3-by-2 matrix input, dsp_examples_u, using the Minimum
block.

Open the model.

model = 'ex_runningminimum_ref';
open_system(model)

The Input processing parameter is set to Columns as channels (frame based). The block
processes the input as a two-channel signal with a frame size of three. The running minimum is reset
at t = 2 by an impulse to the block's Rst port.

Run the model.

sim(model)
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In the Running mode, the block outputs the minimum value over each channel since the last reset. At
t = 2, the reset event occurs. The minimum value in the second column changes to 6, and then 2,
even though these values are greater than 1, which was the minimum value since the previous reset
event.

Close the model.

close_system(model)

See Also
Blocks
Minimum | Signal From Workspace | Discrete Impulse

 Compute the Running Minimum
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Compute the Variance
Compute the variance of a 3-by-2 matrix input dsp_examples_u using the Variance block.

Open and run the model. In the Variance block dialog, set the Find the variance value over
parameter to Each column.

The Variance block processes the input as a two-channel signal with a frame size of three, and
outputs the variance value over each frame of data along both the channels.

Data Input
     6     1
     1     3
     3     9
    -7     2
     2     4
     5     1
     8     6
     0     2
    -1     5
    -3     0
     2     4
     1    17

Variance Values
    6.3333   17.3333
   39.0000    2.3333
   24.3333    4.3333
    7.0000   79.0000
         0         0
         0         0

See Also
Blocks
Variance | Signal From Workspace | To Workspace
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Compute the Mean
Compute the mean of a 3-by-2 matrix input, dsp_examples_u, using the Mean block.

Open the model.

model = 'ex_mean_ref';
open_system(model)

In the Mean block, clear the Running mean check box and set the Find the mean value over
parameter to Each column. The block processes the input as a two-channel signal with a frame size
of three.

Run the model. Display the input and output values.

sim(model)
disp('Data Input')
disp(dsp_examples_u)
disp('Mean Values')
disp(mean_val)

Data Input
     6     1
     1     3
     3     9
    -7     2
     2     4
     5     1
     8     6
     0     2
    -1     5
    -3     0
     2     4
     1    17

Mean Values
    3.3333    4.3333
         0    2.3333
    2.3333    4.3333
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         0    7.0000

Under these settings, the block outputs the mean value over each frame of data along both the
channels.

Close the model.

close_system(model)

See Also
Blocks
Mean | Signal From Workspace | To Workspace
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Compute the Running Mean
Compute the running mean of a 3-by-2 matrix input, dsp_examples_u, using the Mean block.

Open the model.

model = 'ex_runningmean_ref';
open_system(model)

The Input processing parameter is set to Columns as channels (frame based). The block
processes the input as a two-channel signal with a frame size of three. The running mean is reset at t
= 2 by an impulse to the block's Rst port.

Run the model.

sim(model)

 Compute the Running Mean
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In the Running mode, the block outputs the mean value over each channel since the last reset. At t =
2, the reset event occurs. The window of data in the second column now contains only 6.

Close the model.

close_system(model)

See Also
Blocks
Mean | Signal From Workspace | To Workspace
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Compute the Histogram of Real and Complex Data
The bin boundaries created by the Histogram block are determined by the data type of the input. The
following two models show the differences in the output of the Histogram block based on the data
type of the input.

Real Input Data

When the input data is real, the bin boundaries are cast into the data type of the input.

Open the model.

modelRealData = 'ex_realData_hist';
open_system(modelRealData)

Run the model.

sim(modelRealData)

Warning: Reported in '<a href="matlab:open_and_hilite_hyperlink
('ex_realData_hist/Histogram1','error')">ex_realData_hist/Histogram1</a>': The
bin width resulting from the specified parameters is less than the precision of
the input data type. This might cause unexpected results. Since bin width is
calculated by ((upper limit - lower limit)/number of bins), you could increase
upper limit or decrease lower limit or number of bins. 

The block produces two histogram outputs.

 Compute the Histogram of Real and Complex Data

15-15



The output of the Histogram block differs based on the data type of the input. A warning occurs in the
second histogram block, where the bin boundaries are uint8([1 1.4 1.8 2.2 2.6 3.0]) = [1 1 2 2 3 3].
The width of the first and third bins are 0, and the precision of the data is 1. The block expects the
width of each bin to be at least equal to 1.

To resolve this warning, increase the upper limit of second Histogram block to 7 and decrease the
number of bins to 2. The bin width becomes ((7-1)/2) = 3. With the integer input, the new bin
boundaries are uint8[1 4 7] = [1 4 7]. The bins are spread out more evenly.

set_param('ex_realData_hist/Histogram1','umax','7','nbins','2');

Simulate the model. The warning no longer appears and the bins spread out more evenly.

sim(modelRealData)
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Complex Input Data

When the input data is complex:

• Bin boundaries for double-precision inputs are cast into the double data type. All complex, double-
precision input values are placed in the bins according to their magnitude, which is the square
root of the sum of the squares of the real and imaginary parts.

• Bin boundaries for integer inputs are cast into the data type double and squared. All complex,
integer input values are placed in bins according to their magnitude-squared value.

Open the model.

modelComplexData = 'ex_complexData_hist';
open_system(modelComplexData)

Run the model.

sim(modelComplexData)

Warning: Reported in '<a href="matlab:open_and_hilite_hyperlink
('ex_complexData_hist/Histogram1','error')">ex_complexData_hist/Histogram1</a>':
The bin width resulting from the specified parameters is less than the precision
of the input data type. This might cause unexpected results. Since bin width is
calculated by ((upper limit - lower limit)/number of bins), you could increase
upper limit or decrease lower limit or number of bins. 

The model produces two histogram outputs.

 Compute the Histogram of Real and Complex Data
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The top figure shows the histogram for the double-precision input, and the bottom figure shows the
histogram for the integer input. The double-precision inputs are normalized for comparison, whereas
the integer inputs are placed using their magnitude-squared value. A warning occurs in the second
histogram block, where the bin boundaries are [1 (1.4)² (1.8)² (2.2)² (2.6)² (3.0)²]. The precision of the
data is at least 6, and the width of the bins is less than 2.

To resolve this warning, increase the upper limit of second Histogram block to 10. With the new
upper limit, the bin boundaries are [1 (2.8)² (4.6)² (6.4)² (8.2)² 10²] = [1 7.84 21.16 40.96 67.24 100].

set_param('ex_complexData_hist/Histogram1','umax','10');

Simulate the model. The warning no longer appears and the bins in the second Histogram block are
spread out more evenly.

sim(modelComplexData)
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Save and close the models.

save_system(modelRealData);
save_system(modelComplexData)
close_system(modelRealData);
close_system(modelComplexData);

See Also
Blocks
Histogram

 Compute the Histogram of Real and Complex Data
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Compute Difference of a Matrix
Open and run the model.

The first part of the model shows the output of the Difference block when the Running difference
parameter is set to No and the Difference along parameter is set to Columns.

The second part of model shows the output of the block in a non-running mode when Difference
along is set to Rows.

The last part of the model shows the output when the block computes the running difference.

See Also
Blocks
Difference | Display | Constant
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Compute Maximum Column Sum of Matrix
This example shows how to compute the highest column-sum of a matrix.

Open the Simulink model.

The Matrix 1-Norm block returns the highest column-sum among all the columns in the matrix. In
this case, the highest column-sum is that of the third column. It has a sum of 18, so the output is
expected to be 18.

Run the model to verify.

See Also
Blocks
Matrix 1-Norm | Display | Constant

 Compute Maximum Column Sum of Matrix
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LDL Factorization of 3-by-3 Hermitian Positive Definite Matrix
This example shows how to use LDL Factorization to LDL-factor a 3-by-3 Hermitian positive definite
matrix.

For the input in the model, the corresponding L and D values become:

L =

    1.0000         0         0
   -0.1100    1.0000         0
    0.2200   -0.6100    1.0000

D =

    9.0000         0         0
         0    7.8900         0
         0         0    3.6600

Ltranspose =

    1.0000   -0.1100    0.2200
         0    1.0000   -0.6100
         0         0    1.0000

The output matrix is composed of the bottom left triangle of the L matrix, the diagonal of the D
matrix, and the top right triangle of Ltranspose. When they are combined, the output is:

S =

    9.0000   -0.1100    0.2200
   -0.1100    7.8900   -0.6100
    0.2200   -0.6100    3.6600

In the model, the output is the same.

See Also
Blocks
LDL Factorization | Display | Constant
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Compute Power Measurements of Voltage Signal in Simulink
Compute the power measurements of a noisy sinusoidal signal using a power meter. These
measurements include average power, peak power, and peak-to-average power ratio.

Assume the maximum voltage of the signal  to be 100 V. The instantaneous values of a
sinusoidal waveform are given by the equation , where  is the
instantaneous value,  is the maximum voltage of the signal, and  is the frequency of the signal
in Hz.

Open Model

The input signal is a sum of two sine waves with frequencies set to 1 kHz and 10 kHz, respectively.
The frame length and the sampling frequency of the generated signal is 512 samples and 44.1 kHz,
respectively. Add zero-mean white Gaussian noise that has a variance of 0.001 to the sinusoidal
signal. Vary the amplitude of the sine waves.

To measure the power of this signal, use the Power Meter block. The Measurement parameter is set
to 'All'. This setting enables the block to measure the average power, peak power, and peak-to-
average power ratio. The length of the sliding window in the power meter is set to 16 samples and
the reference load is set to 50 ohms. The power is measured in dBm units. Visualize the power
measurements using the Time Scope block.

 Compute Power Measurements of Voltage Signal in Simulink
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Compute the Power Measurements

Run the model. The average power, peak power, and peak-to-average power ratio is plotted in the
Time Scope window. For details on how the power meter block computes these measurements, see
“Algorithms”.

Compare the measured value to the expected value of the average power.

The expected value of the average power P of the noisy sinusoidal signal is given by the following
equation.

where,

•  is the amplitude of the first sinusoidal signal.
•  is the amplitude of the second sinusoidal signal.
•  is the reference load in ohms.

The expected power in dBm is computed using the following equation:

Compare the expected value with the value computed by the object. All values are in dBm. These
values match very closely. To verify, view the computed measurements in the Time Scope window.
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See Also
Blocks
Power Meter | Sine Wave | Random Source | Time Scope | MATLAB Function | Pulse Generator |
Constant | Switch | Product

 Compute Power Measurements of Voltage Signal in Simulink
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Compute Matrix Exponential
Compute the matrix exponential of an input matrix.

Open and run the model.

The input matrix is a square matrix. The Matrix Exponential block computes the matrix exponential of
the square matrix using a scaling and squaring algorithm with a Pade approximation. To view the
implementation, look under the mask of the Matrix Exponential block by either clicking the down
arrow on the block mask or by right-clicking the block and clicking Mask > Look Under Mask.

See Also
Constant | Matrix Exponential | Display
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Compute Moving RMS of Noisy Step Signal
Compute the moving RMS of a noisy square wave signal using the Moving RMS block. Use the sliding
window method with a window length of 20 samples and the exponential weighting method with a
forgetting factor of 0.8 and 0.99. For more details on these two methods, see “Sliding Window
Method and Exponential Weighting Method” on page 27-5.

Generate a noisy square wave signal. Apply the sliding window method and the exponential weighting
method on this signal. View the output in the Time Scope.

 Compute Moving RMS of Noisy Step Signal
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This example compares the performance of the sliding window method with the exponential
weighting method. When the signal changes rapidly as in this example, use a smaller sliding window
and a lower forgetting factor. When the forgetting factor is low, past data have lesser impact on the
current average. This makes the transient sharper, but the signal in general contains more noise.
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See Also
Blocks
Random Source | Pulse Generator | Constant | Switch | Moving RMS | Time Scope

Related Examples
• “Sliding Window Method and Exponential Weighting Method” on page 27-5

 Compute Moving RMS of Noisy Step Signal
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Compute RMS of Noisy Step Signal
Compute the RMS of a noisy square wave signal using the RMS block.

Generate a square pulse signal of 512 samples in width using the Pulse Generator block. Vary the
amplitude of the signal between 1.5 and 0.5 using the Switch block. Add zero-mean white Gaussian
noise with a variance of 0.001 to the square pulse. The frame length of the noise signal is 512
samples. Compute the RMS of this signal across each frame using the RMS block. View the output in
the Time Scope.
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See Also
Blocks
Random Source | Pulse Generator | Constant | Switch | RMS | Time Scope

 Compute RMS of Noisy Step Signal
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Solve Matrix Equation Using Backward Substitution
Solve a matrix equation using the Backward Substitution block.

Open and run the model. The model solves the equation  using the Backward Substitution
block. The block accepts  and  matrices as inputs, and outputs the solution matrix .

You can verify the solution by using the Matrix Multiply block to perform the multiplication , as
shown in following model. The output matrix  in this model equals the input matrix  in the
previous model.

See Also
Constant | Backward Substitution | Matrix Multiply | Display

Related Examples
• “Solve Matrix Equation Using Forward Substitution” on page 15-33
• “Solve Matrix Equation Using LU Solver” on page 15-35
• “Solve Matrix Equation Using Cholesky Solver” on page 15-37
• “Solve Matrix Equation Using Singular Value Decomposition” on page 15-36
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Solve Matrix Equation Using Forward Substitution
Solve a matrix equation using the Forward Substitution block.

Open and run the model. The model solves the equation  using the Forward Substitution
block. The block accepts  and  matrices as inputs, and outputs the solution matrix .

You can verify the solution by using the Matrix Multiply block to perform the multiplication , as
shown in following model. The output matrix  in this model equals the input matrix  in the
previous model.

See Also
Constant | Forward Substitution | Matrix Multiply | Display

Related Examples
• “Solve Matrix Equation Using Backward Substitution” on page 15-32
• “Solve Matrix Equation Using LU Solver” on page 15-35
• “Solve Matrix Equation Using Cholesky Solver” on page 15-37
• “Solve Matrix Equation Using Singular Value Decomposition” on page 15-36

 Solve Matrix Equation Using Forward Substitution
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Find Inverse of Matrix Using the LU Inverse Block
Compute the inverse of a 3-by-3 square matrix  using the LU Inverse block. Multiply the input
matrix  with the computed inverse  using the Matrix Multiply block. Verify that the product

 forms an identity matrix.

Open and run the model. The output of the Matrix Multiply block yields the identity matrix of order 3,
as expected.

See Also
Constant | LU Inverse | Matrix Multiply | Display

Related Examples
• “Solve Matrix Equation Using LU Solver” on page 15-35
• “Solve Matrix Equation Using Cholesky Solver” on page 15-37
• “Solve Matrix Equation Using Singular Value Decomposition” on page 15-36
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Solve Matrix Equation Using LU Solver
Solve a matrix equation using the LU Solver block.

Open and run the model. The model solves the equation AX = B using the LU Solver block. The block
uses the A and B matrices as inputs and outputs the solution matrix X.

You can verify the solution by using the Matrix Multiply block to perform the multiplication AX, as
shown in the following model. The output matrix B in this model equals the input matrix B in the
previous model.

See Also
Constant | LU Solver | Matrix Multiply | Display

Related Examples
• “Solve Matrix Equation Using Singular Value Decomposition” on page 15-36
• “Solve Matrix Equation Using Cholesky Solver” on page 15-37
• “Solve Matrix Equation Using Forward Substitution” on page 15-33
• “Solve Matrix Equation Using Backward Substitution” on page 15-32
• “Factorize Matrix Using LU Factorization Block” on page 15-38

 Solve Matrix Equation Using LU Solver
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Solve Matrix Equation Using Singular Value Decomposition
Solve a matrix equation using the SVD Solver block.

Open and run the model. The model solves the equation AX = B using the SVD Solver block. The
block uses A and B matrices as inputs and outputs the solution matrix X.

You can verify the solution by using the Matrix Multiply block to perform the multiplication AX, as
shown in the following model. The output matrix B in this model equals the input matrix B in the
previous model.

See Also
Constant | SVD Solver | Matrix Multiply | Display

Related Examples
• “Solve Matrix Equation Using LU Solver” on page 15-35
• “Solve Matrix Equation Using Cholesky Solver” on page 15-37
• “Solve Matrix Equation Using Forward Substitution” on page 15-33
• “Solve Matrix Equation Using Backward Substitution” on page 15-32
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Solve Matrix Equation Using Cholesky Solver
Solve a matrix equation using the Cholesky Solver block.

Open and run the model. The model solves the equation SX = B using the Cholesky Solver block. The
block uses the S and B matrices as inputs and outputs the solution matrix X. Matrix S must be a
positive definite matrix.

You can verify the solution by using the Matrix Multiply block to perform the multiplication SX, as
shown in the following model. The output matrix B in this model equals the input matrix B in the
previous model.

See Also
Constant | Cholesky Solver | Matrix Multiply | Display

Related Examples
• “Solve Matrix Equation Using LU Solver” on page 15-35
• “Solve Matrix Equation Using Singular Value Decomposition” on page 15-36
• “Solve Matrix Equation Using Forward Substitution” on page 15-33
• “Solve Matrix Equation Using Backward Substitution” on page 15-32

 Solve Matrix Equation Using Cholesky Solver
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Factorize Matrix Using LU Factorization Block
Factorize a square matrix into upper and lower submatrices using the LU Factorization block.

The LU Factorization block factors the matrix Ap into upper and lower triangular submatrices U and
L, where Ap is the row-permuted version of input matrix A.

P is the permutation index vector which determines how the block reorganizes the input matrix A to

form the permuted matrix Ap. With , the block interchanges the first and second rows of
the input matrix A to form the permuted matrix Ap.

The LU output is a composite matrix containing the two submatrix factors L and U.

The product of L and U matrices equals Ap. You can verify this using the following model.
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See Also
Constant | LU Factorization | Matrix Multiply | Display

Related Examples
• “Solve Matrix Equation Using LU Solver” on page 15-35
• “Solve Matrix Equation Using Singular Value Decomposition” on page 15-36

 Factorize Matrix Using LU Factorization Block
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Simulink Block Examples in Transforms
and Spectral Analysis Category

• “Analyze a Subband of Input Frequencies Using Zoom FFT” on page 16-2
• “Group Delay Estimation in Simulink” on page 16-4
• “High Resolution Filter-Bank-Based Power Spectrum Estimation” on page 16-7
• “Estimate Data Series Using Forward Linear Predictor” on page 16-11
• “Continuous-Time Transfer Function Estimation” on page 16-13
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Analyze a Subband of Input Frequencies Using Zoom FFT
The Zoom FFT block implements zoom FFT based on the multirate multistage bandpass filter
designed in “Complex Bandpass Filter Design” on page 4-191. If you specify the center frequency and
the decimation factor, the Zoom FFT block designs and applies the filter to the input signal. Using
zoom FFT, you can zoom into the tones of the input sine wave.

The input is a noisy sine wave signal with frequencies at 1 kHz and 1.4 kHz. The noise is an additive
white Gaussian noise with zero mean and a variance of 1e-2. The input sample rate, Fs, is 44.1 kHz
and the input frame size, L, is 440 samples.

Configure the Zoom FFT block to analyze a bandwidth of 800 Hz with the center frequency at 1200
Hz. The decimation factor, D, is the ratio of the input sample rate, 44.1 kHz, and the bandwidth of
interest, 800 Hz. The FFT length is the ratio of input frame size, 440, and the decimation factor. The
FFT is computed over frequencies starting at 800 Hz and spaced by  Hz apart, which is the
resolution or the minimum frequency that can be discriminated. With the above values, the resolution
is , or approximately 100 Hz.

Open the model.

model = 'zoomfftEx';
open_system(model)

Run the model. Compute the square of the magnitude of the zoom FFT output, perform FFT shift, and
view the resulting spectrum in array plot.

sim(model)
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The spectrum shows the frequencies in the range [800 1600] Hz, with tones at 1 kHz and 1.4 kHz.
The FFT length reduced to length . This is the basic concept of zoom FFT. By decimating the
original signal, you can retain the same resolution you would achieve with a full size FFT on your
original signal by computing a small FFT on a shorter signal. You can alternatively achieve a better
resolution by using the same FFT length.

If you make any changes to the model, save the model before closing the model.

close_system(model)
bdclose('all');

See Also
Blocks
Sine Wave | Random Source | Array Plot | Math Function | Abs | Zoom FFT

 Analyze a Subband of Input Frequencies Using Zoom FFT
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Group Delay Estimation in Simulink
This example shows how to estimate the group delay of a filter in Simulink®.

To estimate the group delay of the filter, extract the phase response and compute its negative
derivative with respect to frequency. Group delay is defined as .

The Example Model

The Simulink model GroupDelayEstimator estimates the group delay of the given filter using the
following blocks:

1 Discrete Transfer Function Estimator - Estimate the discrete transfer function of the filter using
its input and output.

2 Phase Extractor - Extracts the phase response from the filter transfer function estimate.
3 Gain (Simulink) - Scales the phase response to denormalize frequency to 0 to half the sample-

rate. In this case sample-rate is set to 44.1kHz. Negative of this value is used for estimating the
group delay in number of samples.

4 Differentiator Filter - Takes the derivative of the phase with respect to frequency.
5 Array Plot - View the group delay of the filter in number of samples.

The Filter Selector block will allow you to choose from different filters. The group delay estimator
output is noisy. To filter the noise the output of the estimator is passed through a low pass filter so
that the estimated group delay can be smoothly visualized. This lowpass filter has a group delay
which is equal to half the filter order. Hence initial few samples are dropped to compensate for this
group delay.

Exploring the Example

Open and run the model. You can see the group delay of the selected filter in number of samples in
the Array Plot block. The theoretical value for a linear phase FIR Filter block is half the order of the
filter. For Biquad filter and Notch filter the theoretical group delay can be visualized by opening the
block mask and clicking the View Filter Response button. For Notch filter block, you can tune the
notch frequency and see the group delay change accordingly.
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The Lowpass filter block after the group delay estimator is used to smooth the estimate. Tune the
cutoff frequency of this filter and notice the noise in the estimated group delay.

 Group Delay Estimation in Simulink
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See Also
Blocks
Discrete Transfer Function Estimator | Phase Extractor | Gain | Differentiator Filter | Array Plot |
Biquad Filter | Lowpass Filter
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High Resolution Filter-Bank-Based Power Spectrum Estimation
This example shows how to perform high resolution spectral analysis by using an efficient polyphase
filter bank sometimes referred to as a channelizer.

Open the Model

Exploring the Example

This example compares full band and subband spectral estimators. Both spectral estimators use
polyphase filter bank (channelizer) implementations which provide good resolution and improved
accuracy when compared to Welch-method-based estimators. See “High Resolution Spectral Analysis
in MATLAB” on page 4-16 for a comparison between filter bank and Welch-based spectral estimators.

In this example, the full band estimator requires a 512-phase polyphase FIR filter and a 512-point
FFT in order to compute the spectral estimate. The sinusoid frequencies in each subband are spaced
further apart as the frequency increases. The idea is to setup a case in which higher frequency
resolution is required at the low frequency band and lower resolution is required at higher frequency
bands.

The sub-band approach is more efficient. It uses an 8-phase polyphase FIR filter and an 8-point FFT
to divide the broadband signal into 8 sub-bands. Subsequently, a 64 band filter bank estimator (itself
containing a 64-phase polyphase FIR filter and a 64-point FFT) is used with the low frequency sub-
band in order to compute the spectral estimate with the same resolution as the full band estimator.
The same implementation is used for the mid-low frequency band.

Simulate the Model

For the mid-high frequency band, the sinusoids are spaced further apart. Hence, a 32 band filter bank
estimator is used. For the high-frequency band, we use a 16 band filter bank estimator.

 High Resolution Filter-Bank-Based Power Spectrum Estimation

16-7



16 Simulink Block Examples in Transforms and Spectral Analysis Category

16-8



 High Resolution Filter-Bank-Based Power Spectrum Estimation

16-9



References

harris, f. j. Multirate Signal Processing for Communications Systems, Prentice Hall PTR, 2004.

16 Simulink Block Examples in Transforms and Spectral Analysis Category

16-10



Estimate Data Series Using Forward Linear Predictor
Estimate a data series using a third-order forward linear predictor, which is modeled by the
Autocorrelation LPC block. The block computes the predictor polynomial coefficients by minimizing
the prediction error in the least squares sense. Estimate the future values of the signal using these
predictor coefficients and past values of the signal.

First, create the signal data u as the output of a fifth order autoregressive (AR) process, driven by
normalized white Gaussian noise. The noise has zero mean and a variance of 0.001.

Pass the signal data u to the Autocorrelation LPC block. The block acts as a third order forward linear
predictor and outputs the coefficients of the predictor polynomial. Using these coefficients, estimate
the future values of the signal u. The prediction error power is output through the Port P of the
Autocorrelation LPC block. The value of this power is very close to the value of the input white noise
variance indicating that the predictor polynomial coefficients are optimal. To enable the port P, you
must select the Ouput prediction error power (P) in the block dialog box.

Compare the original signal and the estimated signal.

 Estimate Data Series Using Forward Linear Predictor

16-11



See Also
Blocks
Random Source | Discrete FIR Filter | Autocorrelation LPC | Time Scope | Display

External Websites
• https://authors.library.caltech.edu/25063/1/S00086ED1V01Y200712SPR003.pdf
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Continuous-Time Transfer Function Estimation
This example shows how to use the Discrete Transfer Function Estimator block to estimate the
magnitude and phase response of a continuous-time analog filter.

Example Model

 Continuous-Time Transfer Function Estimation
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Exploring the Example

This example estimates the magnitude and phase response of two analog filters:

a. A lowpass, eighth-order elliptical filter with a passband edge frequency of 1 MHz.

b. A bandpass, eighth-order Chebyshev II filter with lower and upper stopband edge frequencies of 2
MHz and 3 MHz, respectively.

You can use the manual switch block to toggle between the two filters while the model is running.

You can specify the following on the dialog of the Baseband Transfer Function block: the alias-free
signal bandwidth (BW), the FFT length used in transfer estimation, and the number of spectral
averages used to smooth the estimate.

The excitation input is a random signal with uniform distribution. We feed the excitation through the
filters under test. We pass both excitation and filtered signals through anti-alias analog filters with
bandwidth BW Hz, and then we then transform them to discrete-time signals using Zero-Order Hold
blocks with a sampling frequency of 2.56*BW Hz. The discrete excitation and output signals are fed
to the Discrete Transfer Estimator block. The phase response is computed using a Phase Extractor
block. We use array plot scopes to visualize the estimated filter magnitude and phase response.

Related Examples
• “Estimate the Transfer Function of an Unknown System” on page 17-44
• “Group Delay Estimation in Simulink” on page 16-4
• “High Resolution Filter-Bank-Based Power Spectrum Estimation” on page 16-7
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Transforms, Estimation, and Spectral
Analysis

Learn about transforms, estimation and spectral analysis.

• “Transform Time-Domain Data into Frequency Domain” on page 17-2
• “Transform Frequency-Domain Data into Time Domain” on page 17-5
• “Linear and Bit-Reversed Output Order” on page 17-7
• “Calculate Channel Latencies Required for Wavelet Reconstruction” on page 17-9
• “Estimate the Power Spectrum in MATLAB” on page 17-15
• “Estimate the Power Spectrum in Simulink” on page 17-28
• “Estimate the Transfer Function of an Unknown System” on page 17-44
• “View the Spectrogram Using Spectrum Analyzer” on page 17-52
• “Spectral Analysis” on page 17-61
• “Streaming Power Spectrum Estimation Using Welch's Method” on page 17-65
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Transform Time-Domain Data into Frequency Domain
This example shows how to transform time-domain data into the frequency domain using the FFT
block.

Note: To open the example and the associated models, you must have MATLAB® open. Click on the
Open Script button while you have this page open on the MATLAB help browser.

Use the Sine Wave block to generate two sinusoids, one at 15 Hz and the other at 40 Hz. Use the
Matrix Sum block to add the sinusoids point-by-point to generate the compound sinusoid:

Transform this sinusoid into the frequency domain using an FFT block. See the ex_fft_tut model:

17 Transforms, Estimation, and Spectral Analysis
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The scope shows peaks at 15 and 40 Hz, as expected. You have now transformed two sinusoidal
signals from the time domain to the frequency domain.

You can use a Spectrum Analyzer block in place of the sequence of FFT, Complex to Magnitude-Angle,
MATLAB Function, and Array Plot blocks. The Spectrum Analyzer computes the magnitude FFT and
shifts the FFT internally. See the ex_time_freq_sa model:

 Transform Time-Domain Data into Frequency Domain
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The blocks in the Power Spectrum Estimation library compute the FFT internally.

See Also
Functions
fftshift

Blocks
Sine Wave | Matrix Sum | FFT | Spectrum Analyzer | Array Plot | Complex to Magnitude-Angle

More About
• “Transform Frequency-Domain Data into Time Domain” on page 17-5
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Transform Frequency-Domain Data into Time Domain
When you want to transform frequency-domain data into the time domain, use the IFFT block.

Use the Sine Wave block to generate two sinusoids, one at 15 Hz and the other at 40 Hz. Use a Matrix
Sum block to add the sinusoids point-by-point to generate the compound sinusoid:

Transform this sinusoid into the frequency domain using an FFT block, and then immediately
transform the frequency-domain signal back to the time domain using the IFFT block. Plot the
difference between the original time-domain signal and transformed time-domain signal using a
scope:

 Transform Frequency-Domain Data into Time Domain
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The two signals are identical to within round-off error. The scope shows that the difference between
the two signals is on the order of .

See Also
Blocks
Sine Wave | Matrix Sum | FFT | IFFT | Time Scope

More About
• “Transform Time-Domain Data into Frequency Domain” on page 17-2
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Linear and Bit-Reversed Output Order
In this section...
“FFT and IFFT Blocks Data Order” on page 17-7
“Find the Bit-Reversed Order of Your Frequency Indices” on page 17-7

FFT and IFFT Blocks Data Order
The FFT block enables you to output the frequency indices in linear or bit-reversed order. Because
linear ordering of the frequency indices requires a bit-reversal operation, the FFT block may run
more quickly when the output frequencies are in bit-reversed order.

The input to the IFFT block can be in linear or bit-reversed order. Therefore, you do not have to alter
the ordering of your data before transforming it back into the time domain. However, the IFFT block
may run more quickly when the input is provided in bit-reversed order.

Find the Bit-Reversed Order of Your Frequency Indices
Two numbers are bit-reversed values of each other when the binary representation of one is the
mirror image of the binary representation of the other. For example, in a three-bit system, one and
four are bit-reversed values of each other, since the three-bit binary representation of one, 001, is the
mirror image of the three-bit binary representation of four, 100. In the diagram below, the frequency
indices are in linear order. To put them in bit-reversed order

1 Translate the indices into their binary representation with the minimum number of bits. In this
example, the minimum number of bits is three because the binary representation of 7 is 111.

2 Find the mirror image of each binary entry, and write it beside the original binary representation.
3 Translate the indices back to their decimal representation.

The frequency indices are now in bit-reversed order.

The next diagram illustrates the linear and bit-reversed outputs of the FFT block. The output values
are the same, but they appear in different order.
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Calculate Channel Latencies Required for Wavelet
Reconstruction

In this section...
“Analyze Your Model” on page 17-9
“Calculate the Group Delay of Your Filters” on page 17-10
“Reconstruct the Filter Bank System” on page 17-11
“Equalize the Delay on Each Filter Path” on page 17-12
“Update and Run the Model” on page 17-13
“References” on page 17-14

Analyze Your Model
The following sections guide you through the process of calculating the channel latencies required for
perfect wavelet reconstruction. This example uses the ex_wavelets model, but you can apply the
process to perform perfect wavelet reconstruction in any model. To open the example model, type
ex_wavelets at the MATLAB command line.

Note You must have a Wavelet Toolbox™ product license to run the ex_wavelets model.

Before you can begin calculating the latencies required for perfect wavelet reconstruction, you must
know the types of filters being used in your model.

The Dyadic Analysis Filter Bank and the Dyadic Synthesis Filter Bank blocks in the ex_wavelets
model have the following settings:

• Filter = Biorthogonal
• Filter order [synthesis/analysis] = [3/5]
• Number of levels = 3

 Calculate Channel Latencies Required for Wavelet Reconstruction

17-9

matlab:ex_wavelets


• Tree structure = Asymmetric
• Input = Multiple ports

Based on these settings, the Dyadic Analysis Filter Bank and the Dyadic Synthesis Filter Bank blocks
construct biorthogonal filters using the Wavelet Toolbox wfilters function.

Calculate the Group Delay of Your Filters
Once you know the types of filters being used by the Dyadic Analysis and Dyadic Synthesis Filter
Bank blocks, you need to calculate the group delay of those filters. To do so, you can use the Signal
Processing Toolbox FVTool.

Before you can use fvtool, you must first reconstruct the filters in the MATLAB workspace. To do so,
type the following code at the MATLAB command line:

[Lo_D, Hi_D, Lo_R, Hi_R] = wfilters('bior3.5')

Where Lo_D and Hi_D represent the low- and high-pass filters used by the Dyadic Analysis Filter
Bank block, and Lo_R and Hi_R represent the low- and high-pass filters used by the Dyadic Synthesis
Filter Bank block.

After you construct the filters in the MATLAB workspace, you can use fvtool to determine the group
delay of the filters. To analyze the low-pass biorthogonal filter used by the Dyadic Analysis Filter Bank
block, you must do the following:

• Type fvtool(Lo_D) at the MATLAB command line to launch the Filter Visualization Tool.
•

When the Filter Visualization Tool opens, click the Group delay response button ( ) on the
toolbar, or select Group Delay Response from the Analysis menu.

Based on the Filter Visualization Tool's analysis, you can see that the group delay of the Dyadic
Analysis Filter Bank block's low-pass biorthogonal filter is 5.5.
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Note Repeat this procedure to analyze the group delay of each of the filters in your model. This
section does not show the results for each filter in the ex_wavelets model because all wavelet
filters in this particular example have the same group delay.

Reconstruct the Filter Bank System
To determine the delay introduced by the analysis and synthesis filter bank system, you must
reconstruct the tree structures of the Dyadic Analysis Filter Bank and the Dyadic Synthesis Filter
Bank blocks. To learn more about constructing tree structures for the Dyadic Analysis Filter Bank and
Dyadic Synthesis Filter Bank blocks, see the following sections of the DSP System Toolbox User's
Guide:

• “Dyadic Analysis Filter Banks” on page 7-28
• “Dyadic Synthesis Filter Banks” on page 7-30
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Because the filter blocks in the ex_wavelets model use biorthogonal filters with three levels and an
asymmetric tree structure, the filter bank system appears as shown in the following figure.

The extra delay values of M and N on paths 3 and 4 in the previous figure ensure that the total delay
on each of the four filter paths is identical.

Equalize the Delay on Each Filter Path
Now that you have reconstructed the filter bank system, you can calculate the delay on each filter
path. To do so, use the following Noble identities:

You can apply the Noble identities by summing the delay on each signal path from right to left. The
first Noble identity indicates that moving a delay of 1 before a downsample of 2 is equivalent to
multiplying that delay value by 2. Similarly, the second Noble identity indicates that moving a delay of
2 before an upsample of 2 is equivalent to dividing that delay value by 2.

The fvtool analysis in step 1 found that both the low- and high-pass filters of the analysis filter bank
have the same group delay (F0 = F1 = 5.5). Thus, you can use F to represent the group delay of the
analysis filter bank. Similarly, the group delay of the low- and high-pass filters of the synthesis filter
bank is the same (G0=G1=5.5), so you can use G to represent the group delay of the synthesis filter
bank.

The following figure shows the filter bank system with the intermediate delay sums displayed below
each path.
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You can see from the previous figure that the signal delays on paths 1 and 2 are identical: 7(F+G).
Because each path of the filter bank system has identical delay, you can equate the delay equations
for paths 3 and 4 with the delay equation for paths 1 and 2. After constructing these equations, you
can solve for M and N, respectively:

Path 3 = Path 1 4M + 3(F + G) = 7(F + G)
                           M = F + G

Path 4 = Path 1 2N + (F + G) = 7(F + G)
                           N = 3(F + G)

The fvtool analysis in step 1 found the group delay of each biorthogonal wavelet filter in this model
to be 5.5 samples. Therefore, F = 5.5 and G = 5.5. By inserting these values into the two previous
equations, you get M = 11 and N = 33. Because the total delay on each filter path must be the same,
you can find the overall delay of the filter bank system by inserting F = 5.5 and G = 5.5 into the delay
equation for any of the four filter paths. Inserting the values of F and G into 7(F+G) yields an overall
delay of 77 samples for the filter bank system of the ex_wavelets model.

Update and Run the Model
Now that you know the latencies required for perfect wavelet reconstruction, you can incorporate
those delay values into the model. The ex_wavelets model has already been updated with the
correct delay values (M = 11, N = 33, Overall = 77), so it is ready to run.
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After you run the model, examine the reconstruction error in the Difference scope. To further
examine any particular areas of interest, use the zoom tools available on the toolbar of the scope
window or from the View menu.

References

[1] Strang, G. and Nguyen, T. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,
1996.
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Estimate the Power Spectrum in MATLAB
In this section...
“Estimate the Power Spectrum Using dsp.SpectrumAnalyzer” on page 17-15
“Convert the Power Between Units” on page 17-22
“Estimate the Power Spectrum Using dsp.SpectrumEstimator” on page 17-24

The power spectrum (PS) of a time-domain signal is the distribution of power contained within the
signal over frequency, based on a finite set of data. The frequency-domain representation of the signal
is often easier to analyze than the time-domain representation. Many signal processing applications,
such as noise cancellation and system identification, are based on the frequency-specific
modifications of signals. The goal of the power spectral estimation is to estimate the power spectrum
of a signal from a sequence of time samples. Depending on what is known about the signal,
estimation techniques can involve parametric or nonparametric approaches and can be based on
time-domain or frequency-domain analysis. For example, a common parametric technique involves
fitting the observations to an autoregressive model. A common nonparametric technique is
the periodogram. The power spectrum is estimated using Fourier transform methods such as
the Welch method and the filter bank method. For signals with relatively small length, the filter bank
approach produces a spectral estimate with a higher resolution, a more accurate noise floor, and
peaks more precise than the Welch method, with low or no spectral leakage. These advantages come
at the expense of increased computation and slower tracking. For more details on these methods, see
“Spectral Analysis” on page 17-61. You can also use other techniques such as the maximum entropy
method.

In MATLAB, you can perform real-time spectral analysis of a dynamic signal using the
dsp.SpectrumAnalyzer System object. You can view the spectral data in the spectrum analyzer
and store the data in a workspace variable using the isNewDataReady and getSpectrumData
object functions. Alternately, you can use the dsp.SpectrumEstimator System object followed by
dsp.ArrayPlot object to view the spectral data. The output of the dsp.SpectrumEstimator
object is the spectral data. This data can be acquired for further processing.

Estimate the Power Spectrum Using dsp.SpectrumAnalyzer
To view the power spectrum of a signal, you can use the dsp.SpectrumAnalyzer System object™.
You can change the dynamics of the input signal and see the effect those changes have on the power
spectrum of the signal in real time.

Initialization

Initialize the sine wave source to generate the sine wave and the spectrum analyzer to show the
power spectrum of the signal. The input sine wave has two frequencies: one at 1000 Hz and the other
at 5000 Hz. Create two dsp.SineWave objects, one to generate the 1000 Hz sine wave and the other
to generate the 5000 Hz sine wave.

Fs = 44100;
Sineobject1 = dsp.SineWave('SamplesPerFrame',1024,'PhaseOffset',10,...
    'SampleRate',Fs,'Frequency',1000);
Sineobject2 = dsp.SineWave('SamplesPerFrame',1024,...
    'SampleRate',Fs,'Frequency',5000);
SA = dsp.SpectrumAnalyzer('SampleRate',Fs,'Method','Filter bank',...
    'SpectrumType','Power','PlotAsTwoSidedSpectrum',false,...
    'ChannelNames',{'Power spectrum of the input'},'YLimits',[-120 40],'ShowLegend',true);
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The spectrum analyzer uses the filter bank approach to compute the power spectrum of the signal.

Estimation

Stream in and estimate the power spectrum of the signal. Construct a for-loop to run for 5000
iterations. In each iteration, stream in 1024 samples (one frame) of each sine wave and compute the
power spectrum of each frame. To generate the input signal, add the two sine waves. The resultant
signal is a sine wave with two frequencies: one at 1000 Hz and the other at 5000 Hz. Add Gaussian
noise with zero mean and a standard deviation of 0.001. To acquire the spectral data for further
processing, use the isNewDataReady and the getSpectrumData object functions. The variable
data contains the spectral data that is displayed on the spectrum analyzer along with additional
statistics about the spectrum.

data = [];
for Iter = 1:7000
    Sinewave1 = Sineobject1();
    Sinewave2 = Sineobject2();
    Input = Sinewave1 + Sinewave2;
    NoisyInput = Input + 0.001*randn(1024,1);
    SA(NoisyInput);
     if SA.isNewDataReady
        data = [data;getSpectrumData(SA)];
     end
end
release(SA);
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In the spectrum analyzer output, you can see two distinct peaks: one at 1000 Hz and the other at
5000 Hz.

Resolution Bandwidth (RBW) is the minimum frequency bandwidth that can be resolved by the
spectrum analyzer. By default, the RBWSource property of the dsp.SpectrumAnalyzer object is set
to Auto. In this mode, RBW is the ratio of the frequency span to 1024. In a two-sided spectrum, this

value is , while in a one-sided spectrum, it is . The spectrum analyzer in this example shows a
one-sided spectrum. Hence, RBW is (44100/2)/1024 or 21.53Hz

Using this value of , the number of input samples required to compute one spectral update,

 is given by the following equation: .

In this example,  is 44100/21.53 or 2048 samples.

 calculated in the 'Auto' mode gives a good frequency resolution.

To distinguish between two frequencies in the display, the distance between the two frequencies must
be at least RBW. In this example, the distance between the two peaks is 4000 Hz, which is greater
than . Hence, you can see the peaks distinctly. Change the frequency of the second sine wave to
1015 Hz. The difference between the two frequencies is less than .
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release(Sineobject2);
Sineobject2.Frequency = 1015;
for Iter = 1:5000
    Sinewave1 = Sineobject1();
    Sinewave2 = Sineobject2();
    Input = Sinewave1 + Sinewave2;
    NoisyInput = Input + 0.001*randn(1024,1);
    SA(NoisyInput);
end
release(SA);

The peaks are not distinguishable.
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To increase the frequency resolution, decrease  to 1 Hz.

SA.RBWSource = 'property';
SA.RBW = 1;
for Iter = 1:5000
    Sinewave1 = Sineobject1();
    Sinewave2 = Sineobject2();
    Input = Sinewave1 + Sinewave2;
    NoisyInput = Input + 0.001*randn(1024,1);
    SA(NoisyInput);
end
release(SA);
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On zooming, the two peaks, which are 15 Hz apart, are now distinguishable.
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When you increase the frequency resolution, the time resolution decreases. To maintain a good
balance between the frequency resolution and time resolution, change the RBWSource property to
Auto.

During streaming, you can change the input properties or the spectrum analyzer properties and see
the effect on the spectrum analyzer output immediately. For example, change the frequency of the
second sine wave when the index of the loop is a multiple of 1000.

release(Sineobject2);
SA.RBWSource = 'Auto';
for Iter = 1:5000
    Sinewave1 = Sineobject1();
    if (mod(Iter,1000) == 0)
        release(Sineobject2);
        Sineobject2.Frequency = Iter;
        Sinewave2 = Sineobject2();
    else
        Sinewave2 = Sineobject2();
    end
    Input = Sinewave1 + Sinewave2;
    NoisyInput = Input + 0.001*randn(1024,1);
    SA(NoisyInput);
end
release(SA);
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While running the streaming loop, you can see that the peak of the second sine wave changes
according to the iteration value. Similarly, you can change any of the spectrum analyzer properties
while the simulation is running and see a corresponding change in the output.

Convert the Power Between Units
The spectrum analyzer provides three units to specify the power spectral density: Watts/Hz,
dBm/Hz, and dBW/Hz. Corresponding units of power are Watts, dBm, and dBW. For electrical
engineering applications, you can also view the RMS of your signal in Vrms or dBV. The default
spectrum type is Power in dBm.

Convert the Power in Watts to dBW and dBm

Power in dBW is given by:

PdBW = 10log10(power in watt/1 watt)

Power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

For a sine wave signal with an amplitude of 1 V, the power of a one-sided spectrum in Watts is given
by:
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PWatts = A2/2
PWatts = 1/2

In this example, this power equals 0.5 W. Corresponding power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

PdBm = 10log10(0.5/10−3)

Here, the power equals 26.9897 dBm. To confirm this value with a peak finder, click Tools >
Measurements > Peak Finder.

For a white noise signal, the spectrum is flat for all frequencies. The spectrum analyzer in this
example shows a one-sided spectrum in the range [0 Fs/2]. For a white noise signal with a variance of
1e-4, the power per unit bandwidth (Punitbandwidth) is 1e-4. The total power of white noise in watts over
the entire frequency range is given by:

Pwhitenoise = Punitbandwidth * number of f requency bins,

Pwhitenoise = (10−4) * Fs/2
RBW ,

Pwhitenoise = (10−4) * 22050
21.53

The number of frequency bins is the ratio of total bandwidth to RBW. For a one-sided spectrum, the
total bandwidth is half the sampling rate. RBW in this example is 21.53 Hz. With these values, the
total power of white noise in watts is 0.1024 W. In dBm, the power of white noise can be calculated
using 10*log10(0.1024/10^-3), which equals 20.103 dBm.

Convert Power in Watts to dBFS

If you set the spectral units to dBFS and set the full scale (FullScaleSource) to Auto, power in
dBFS is computed as:

PdBFS = 20 ⋅ log10 Pwatts/Full_Scale

where:

• Pwatts is the power in watts
• For double and float signals, Full_Scale is the maximum value of the input signal.
• For fixed point or integer signals, Full_Scale is the maximum value that can be represented.

If you specify a manual full scale (set FullScaleSource to Property), power in dBFS is given by:

PFS = 20 ⋅ log10 Pwatts/FS

Where FS is the full scaling factor specified in the FullScale property.

For a sine wave signal with an amplitude of 1 V, the power of a one-sided spectrum in Watts is given
by:

PWatts = A2/2
PWatts = 1/2
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In this example, this power equals 0.5 W and the maximum input signal for a sine wave is 1 V. The
corresponding power in dBFS is given by:

PFS = 20 ⋅ log10 1/2/1

Here, the power equals -3.0103. To confirm this value in the spectrum analyzer, run these commands:

Fs = 1000;  % Sampling frequency
sinef = dsp.SineWave('SampleRate',Fs,'SamplesPerFrame',100);
scope = dsp.SpectrumAnalyzer('SampleRate',Fs,...
   'SpectrumUnits','dBFS','PlotAsTwoSidedSpectrum',false)
%%
for ii = 1:100000
xsine = sinef();
scope(xsine)
end

Then, click Tools > Measurements > Peak Finder.

Convert the Power in dBm to RMS in Vrms

Power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

Voltage in RMS is given by:

Vrms = 10PdBm/20 10−3

From the previous example, PdBm equals 26.9897 dBm. The Vrms is calculated as

Vrms = 1026.9897/20 0.001

which equals 0.7071.

To confirm this value:

1 Change Type to RMS.
2 Open the peak finder by clicking Tools > Measurements > Peak Finder.

Estimate the Power Spectrum Using dsp.SpectrumEstimator
Alternately, you can compute the power spectrum of the signal using the dsp.SpectrumEstimator
System object. You can acquire the output of the spectrum estimator and store the data for further
processing. To view other objects in the Estimation library, type help dsp in the MATLAB®
command prompt, and click Estimation.

Initialization

Use the same source as in the previous section on using the dsp.SpectrumAnalyzer to estimate
the power spectrum. The input sine wave has two frequencies: one at 1000 Hz and the other at 5000
Hz. Initialize dsp.SpectrumEstimator to compute the power spectrum of the signal using the filter
bank approach. View the power spectrum of the signal using the dsp.ArrayPlot object.

Fs = 44100;
Sineobject1 = dsp.SineWave('SamplesPerFrame',1024,'PhaseOffset',10,...
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    'SampleRate',Fs,'Frequency',1000);
Sineobject2 = dsp.SineWave('SamplesPerFrame',1024,...
    'SampleRate',Fs,'Frequency',5000);

SpecEst = dsp.SpectrumEstimator('Method','Filter bank',...
    'PowerUnits','dBm','SampleRate',Fs,'FrequencyRange','onesided');
ArrPlot = dsp.ArrayPlot('PlotType','Line','ChannelNames',{'Power spectrum of the input'},...
    'YLimits',[-80 30],'XLabel','Number of samples per frame','YLabel',...
    'Power (dBm)','Title','One-sided power spectrum with respect to samples');

Estimation

Stream in and estimate the power spectrum of the signal. Construct a for-loop to run for 5000
iterations. In each iteration, stream in 1024 samples (one frame) of each sine wave and compute the
power spectrum of each frame. Add Gaussian noise with mean at 0 and a standard deviation of 0.001
to the input signal.

for Iter = 1:5000
    Sinewave1 = Sineobject1();
    Sinewave2 = Sineobject2();
    Input = Sinewave1 + Sinewave2;
    NoisyInput = Input + 0.001*randn(1024,1);
    PSoutput = SpecEst(NoisyInput);
    ArrPlot(PSoutput);
end
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Using the filter bank approach, the spectral estimate has a high resolution and the peaks are precise
with no spectral leakage.

Convert x-axis to Represent Frequency

By default, the array plot shows the power spectral data with respect to the number of samples per
frame. The number of points on the x-axis equals the length of the input frame. The spectrum
analyzer plots the power spectral data with respect to frequency. For a one-sided spectrum, the
frequency varies in the range [0 Fs/2]. For a two-sided spectrum, the frequency varies in the range [-
Fs/2 Fs/2]. To convert the x-axis of the array plot from sample-based to frequency-based, do the
following:

• Click on the Configuration Properties icon.
• For a one-sided spectrum - On Main tab, set Sample increment to  and X-
offset to 0.

• For a two-sided spectrum - On Main tab, set Sample increment to  and X-
offset to .

In this example, the spectrum is one-sided and hence, the Sample increment and X-offset are set to
44100/1024 and 0, respectively. To specify the frequency in kHz, set the Sample increment to
44.1/1024.

ArrPlot.SampleIncrement = (Fs/1000)/1024;
ArrPlot.XLabel = 'Frequency (kHz)';
ArrPlot.Title = 'One-sided power spectrum with respect to frequency';

for Iter = 1:5000
    Sinewave1 = Sineobject1();
    Sinewave2 = Sineobject2();
    Input = Sinewave1 + Sinewave2;
    NoisyInput = Input + 0.001*randn(1024,1);
    PSoutput = SpecEst(NoisyInput);
    ArrPlot(PSoutput);
end
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Live Processing

The output of the dsp.SpectrumEstimator object contains the spectral data and is available for
further processing. The data can be processed in real-time or it can be stored in the workspace.

See Also

More About
• “Estimate the Power Spectrum in Simulink” on page 17-28
• “Estimate the Transfer Function of an Unknown System” on page 17-44
• “View the Spectrogram Using Spectrum Analyzer” on page 17-52
• “Spectral Analysis” on page 17-61
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Estimate the Power Spectrum in Simulink
In this section...
“Estimate the Power Spectrum Using the Spectrum Analyzer” on page 17-28
“Convert the Power Between Units” on page 17-37
“Estimate Power Spectrum Using the Spectrum Estimator Block” on page 17-39

The power spectrum (PS) of a time-domain signal is the distribution of power contained within the
signal over frequency, based on a finite set of data. The frequency-domain representation of the signal
is often easier to analyze than the time-domain representation. Many signal processing applications,
such as noise cancellation and system identification, are based on the frequency-specific
modifications of signals. The goal of the power spectral estimation is to estimate the power spectrum
of a signal from a sequence of time samples. Depending on what is known about the signal,
estimation techniques can involve parametric or nonparametric approaches and can be based on
time-domain or frequency-domain analysis. For example, a common parametric technique involves
fitting the observations to an autoregressive model. A common nonparametric technique is
the periodogram. The power spectrum is estimated using Fourier transform methods such as
the Welch method and the filter bank method. For signals with relatively small length, the filter bank
approach produces a spectral estimate with a higher resolution, a more accurate noise floor, and
peaks more precise than the Welch method, with low or no spectral leakage. These advantages come
at the expense of increased computation and slower tracking. For more details on these methods, see
“Spectral Analysis” on page 17-61. You can also use other techniques such as the maximum entropy
method.

In Simulink, you can perform real-time spectral analysis of a dynamic signal using the Spectrum
Analyzer block. You can view the spectral data in the spectrum analyzer. To acquire the last spectral
data for further processing, create a SpectrumAnalyzerConfiguration object and run the
getSpectrumData function on this object. Alternately, you can use the Spectrum Estimator block
from the dspspect3 library to compute the power spectrum, and Array Plot block to view the
spectrum.

Estimate the Power Spectrum Using the Spectrum Analyzer
You can view the power spectrum (PS) of a signal using the Spectrum Analyzer block. The PS is
computed in real time and varies with the input signal, and with changes in the properties of the
Spectrum Analyzer block. You can change the dynamics of the input signal and see what effect those
changes have on the spectrum of the signal in real time.

The model ex_psd_sa feeds a noisy sine wave signal to the Spectrum Analyzer block. The sine wave
signal is a sum of two sinusoids: one at a frequency of 5000 Hz and the other at a frequency of 10,000
Hz. The noise at the input is Gaussian, with zero mean and a standard deviation of 0.01.

Open and Inspect the Model

To open the model, enter ex_psd_sa in the MATLAB command prompt.
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Here are the settings of the blocks in the model.

Block Parameter Changes Purpose of the block
Sine Wave 1 • Frequency to 5000

• Sample time to 1/44100
• Samples per frame to 1024

Sinusoid signal with frequency
at 5000 Hz

Sine Wave 2 • Frequency to 10000
• Phase offset (rad) to 10
• Sample time to 1/44100
• Samples per frame to 1024

Sinusoid signal with frequency
at 10000 Hz

Random Source • Source type to Gaussian
• Variance to 1e-4
• Sample time to 1/44100
• Samples per frame to 1024

Random Source block generates
a random noise signal with
properties specified through the
block dialog box

Add List of signs to +++. Add block adds random noise to
the input signal
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Block Parameter Changes Purpose of the block
Spectrum Analyzer Click the Spectrum Settings

icon . A pane appears on
the right.

• In the Main options pane,
under Type, select Power.
Under Method, select
Filter bank.

• In the Trace options pane,
clear the Two-sided
spectrum check box. This
shows only the real-half of
the spectrum.

• If needed, select the Max-
hold trace and Min-hold
trace check boxes.

Click the Configuration

Properties icon  and set Y-
limits (Minimum) as -100 and
Y-limits (Maximum) as 40.

Spectrum Analyzer block shows
the Power Spectrum Density of
the signal

Play the model. Open the Spectrum Analyzer block to view the power spectrum of the sine wave
signal. There are two tones at frequencies 5000 Hz and 10,000 Hz, which correspond to the two
frequencies at the input.
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RBW, the resolution bandwidth is the minimum frequency bandwidth that can be resolved by the
spectrum analyzer. By default, RBW (Hz) is set to Auto. In the Auto mode, RBW is the ratio of the
frequency span to 1024. In a two-sided spectrum, this value is Fs/1024, while in a one-sided spectrum,
it is (Fs/2)/1024. The spectrum analyzer in ex_psd_sa is configured to show one-sided spectrum.
Hence, the RBW is (44100/2)/1024 or 21.53 Hz.

Using this value of RBW, the number of input samples used to compute one spectral update is given
by Nsamples = Fs/RBW, which is 44100/21.53 or 2048.

RBW calculated in this mode gives a good frequency resolution.

To distinguish between two frequencies in the display, the distance between the two frequencies must
be at least RBW. In this example, the distance between the two peaks is 5000 Hz, which is greater
than RBW. Hence, you can see the peaks distinctly. Change the frequency of the second sine wave
from 10000 Hz to 5015 Hz. The difference between the two frequencies is less than RBW.
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On zooming, you can see that the peaks are not distinguishable.
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To increase the frequency resolution, decrease RBW to 1 Hz and run the simulation.
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On zooming, the two peaks, which are 15 Hz apart, are now distinguishable
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When you increase the frequency resolution, the time resolution decreases. To maintain a good
balance between the frequency resolution and time resolution, change the RBW (Hz) to Auto.

Change the Input Signal

When you change the dynamics of the input signal during simulation, the power spectrum of the
signal also changes in real time. While the simulation is running, change the Frequency of the Sine
Wave 1 block to 8000 and click Apply. The second tone in the spectral analyzer output shifts to 8000
Hz and you can see the change in real time.
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Change the Spectrum Analyzer Settings

When you change the settings in the Spectrum Analyzer block, the effect can be seen on the spectral
data in real time.

When the model is running, in the Trace options pane of the Spectrum Analyzer block, change the
Scale to Log. The PS is now displayed on a log scale.
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For more information on how the Spectrum Analyzer settings affect the power spectrum data, see the
'Algorithms' section of the Spectrum Analyzer block reference page.

Convert the Power Between Units
The spectrum analyzer provides three units to specify the power spectral density: Watts/Hz,
dBm/Hz, and dBW/Hz. Corresponding units of power are Watts, dBm, and dBW. For electrical
engineering applications, you can also view the RMS of your signal in Vrms or dBV. The default
spectrum type is Power in dBm.

Convert the Power in Watts to dBW and dBm

Power in dBW is given by:

PdBW = 10log10(power in watt/1 watt)

Power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

For a sine wave signal with an amplitude of 1 V, the power of a one-sided spectrum in Watts is given
by:
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PWatts = A2/2
PWatts = 1/2

In this example, this power equals 0.5 W. Corresponding power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

PdBm = 10log10(0.5/10−3)

Here, the power equals 26.9897 dBm. To confirm this value with a peak finder, click Tools >
Measurements > Peak Finder.

For a white noise signal, the spectrum is flat for all frequencies. The spectrum analyzer in this
example shows a one-sided spectrum in the range [0 Fs/2]. For a white noise signal with a variance of
1e-4, the power per unit bandwidth (Punitbandwidth) is 1e-4. The total power of white noise in watts over
the entire frequency range is given by:

Pwhitenoise = Punitbandwidth * number of f requency bins,

Pwhitenoise = (10−4) * Fs/2
RBW ,

Pwhitenoise = (10−4) * 22050
21.53

The number of frequency bins is the ratio of total bandwidth to RBW. For a one-sided spectrum, the
total bandwidth is half the sampling rate. RBW in this example is 21.53 Hz. With these values, the
total power of white noise in watts is 0.1024 W. In dBm, the power of white noise can be calculated
using 10*log10(0.1024/10^-3), which equals 20.103 dBm.

Convert Power in Watts to dBFS

If you set the spectral units to dBFS and set the full scale (FullScaleSource) to Auto, power in
dBFS is computed as:

PdBFS = 20 ⋅ log10 Pwatts/Full_Scale

where:

• Pwatts is the power in watts
• For double and float signals, Full_Scale is the maximum value of the input signal.
• For fixed point or integer signals, Full_Scale is the maximum value that can be represented.

If you specify a manual full scale (set FullScaleSource to Property), power in dBFS is given by:

PFS = 20 ⋅ log10 Pwatts/FS

Where FS is the full scaling factor specified in the FullScale property.

For a sine wave signal with an amplitude of 1 V, the power of a one-sided spectrum in Watts is given
by:

PWatts = A2/2
PWatts = 1/2
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In this example, this power equals 0.5 W and the maximum input signal for a sine wave is 1 V. The
corresponding power in dBFS is given by:

PFS = 20 ⋅ log10 1/2/1

Here, the power equals -3.0103. To confirm this value in the spectrum analyzer, run these commands:

Fs = 1000;  % Sampling frequency
sinef = dsp.SineWave('SampleRate',Fs,'SamplesPerFrame',100);
scope = dsp.SpectrumAnalyzer('SampleRate',Fs,...
   'SpectrumUnits','dBFS','PlotAsTwoSidedSpectrum',false)
%%
for ii = 1:100000
xsine = sinef();
scope(xsine)
end

Then, click Tools > Measurements > Peak Finder.

Convert the Power in dBm to RMS in Vrms

Power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

Voltage in RMS is given by:

Vrms = 10PdBm/20 10−3

From the previous example, PdBm equals 26.9897 dBm. The Vrms is calculated as

Vrms = 1026.9897/20 0.001

which equals 0.7071.

To confirm this value:

1 Change Type to RMS.
2 Open the peak finder by clicking Tools > Measurements > Peak Finder.

Estimate Power Spectrum Using the Spectrum Estimator Block
Alternately, you can compute the power spectrum of the signal using the Spectrum Estimator block in
the dspspect3 library. You can acquire the output of the spectrum estimator and store the data for
further processing.
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Replace the Spectrum Analyzer block in ex_psd_sa with the Spectrum Estimator block followed by
an Array Plot block. To view the model, enter ex_psd_estimatorblock in the MATLAB command
prompt. In addition, to access the spectral estimation data in MATLAB, connect the To Workspace
block to the output of the Spectrum Estimator block. Here are the changes to the settings of the
Spectrum Estimator block and the Array Plot block.

Block Parameter Changes Purpose of the block
Spectrum Estimator • Frequency resolution

method to Number of
frequency bands.

• Frequency range to One-
sided.

Computes the power spectrum
of the input signal using the
filter bank approach.
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Block Parameter Changes Purpose of the block
Array Plot Click View and

• select Style. In the Style
window, select the Plot type
as Stairs.

• select Configuration
Properties. In the
Configuration Properties
window, on the Main tab, set
the Sample increment as
44.1/1024. On the Display
tab, change X-label to
Frequency (kHz), Y-label
to Power (dBm). For
details, see the section
'Convert x-axis to Represent
Frequency'. In addition, set
Y-limits (Minimum) to
-100 and Y-limits
(Maximum) to 40.

Displays the power spectrum
data.

The spectrum displayed in the Array Plot block is similar to the spectrum seen in the Spectrum
Analyzer block in ex_psd_sa.
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The filter bank approach produces peaks that have very minimal spectral leakage.

Convert x-axis to Represent Frequency

By default, the Array Plot block plots the PS data with respect to the number of samples per frame.
The number of points on the x-axis equals the length of the input frame. The spectrum analyzer plots
the PS data with respect to frequency. For a one-sided spectrum, the frequency varies in the range [0
Fs/2]. For a two-sided spectrum, the frequency varies in the range [-Fs/2 Fs/2]. To convert the x-axis
of the array plot from sample-based to frequency-based, do the following:

•
Click on the Configuration Properties icon . On Main tab, set Sample increment to Fs/
FrameLength.

• For a one-sided spectrum, set X-offset to 0.
• For a two-sided spectrum, set X-offset to -Fs/2.

In this example, the spectrum is one-sided and hence, the Sample increment and X-offset are set to
44100/1024 and 0, respectively. To specify the frequency in kHz, set the Sample increment to
44.1/1024.

Live Processing
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The output of the Spectrum Estimator block contains the spectral data and is available for further
processing. The data can be processed in real-time or it can be stored in the workspace using the To
Workspace block. This example writes the spectral data to the workspace variable Estimate.

See Also

More About
• “Estimate the Power Spectrum in MATLAB” on page 17-15
• “Estimate the Transfer Function of an Unknown System” on page 17-44
• “View the Spectrogram Using Spectrum Analyzer” on page 17-52
• “Spectral Analysis” on page 17-61
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Estimate the Transfer Function of an Unknown System
In this section...
“Estimate the Transfer Function in MATLAB” on page 17-44
“Estimate the Transfer Function in Simulink” on page 17-48

You can estimate the transfer function of an unknown system based on the system's measured input
and output data.

In DSP System Toolbox, you can estimate the transfer function of a system using the
dsp.TransferFunctionEstimator System object in MATLAB and the Discrete Transfer Function
Estimator block in Simulink. The relationship between the input x and output y is modeled by the
linear, time-invariant transfer function Txy. The transfer function is the ratio of the cross power
spectral density of x and y, Pyx, to the power spectral density of x, Pxx:

Txy(f ) =
Pyx(f )
Pxx(f )

The dsp.TransferFunctionEstimator object and Discrete Transfer Function Estimator block use
the Welch’s averaged periodogram method to compute the Pxx and Pxy. For more details on this
method, see “Spectral Analysis” on page 17-61.

Coherence

The coherence, or magnitude-squared coherence, between x and y is defined as:

Cxy(f ) =
Pxy

2

Pxx * Pyy

The coherence function estimates the extent to which you can predict y from x. The value of the
coherence is in the range 0 ≤ Cxy(f) ≤ 1. If Cxy = 0, the input x and output y are unrelated. A Cxy value
greater than 0 and less than 1 indicates one of the following:

• Measurements are noisy.
• The system is nonlinear.
• Output y is a function of x and other inputs.

The coherence of a linear system represents the fractional part of the output signal power that is
produced by the input at that frequency. For a particular frequency, 1 – Cxy is an estimate of the
fractional power of the output that the input does not contribute to.

When you set the OutputCoherence property of dsp.TransferFunctionEstimator to true, the
object computes the output coherence. In the Discrete Transfer Function Estimator block, to compute
the coherence spectrum, select the Output magnitude squared coherence estimate check box.

Estimate the Transfer Function in MATLAB
To estimate the transfer function of a system in MATLAB™, use the
dsp.TransferFunctionEstimator System object™. The object implements the Welch's average
modified periodogram method and uses the measured input and output data for estimation.
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Initialize the System

The system is a cascade of two filter stages: dsp.LowpassFilter and a parallel connection of
dsp.AllpassFilter and dsp.AllpoleFilter.

allpole = dsp.AllpoleFilter;
allpass = dsp.AllpassFilter;
lpfilter = dsp.LowpassFilter;

Specify Signal Source

The input to the system is a sine wave with a frequency of 100 Hz. The sampling frequency is 44.1
kHz.

sine = dsp.SineWave('Frequency',100,'SampleRate',44100,...
    'SamplesPerFrame',1024);

Create Transfer Function Estimator

To estimate the transfer function of the system, create the dsp.TransferFunctionEstimator
System object.

tfe  = dsp.TransferFunctionEstimator('FrequencyRange','onesided',...
    'OutputCoherence', true);

Create Array Plot

Initialize two dsp.ArrayPlot objects: one to display the magnitude response of the system and the
other to display the coherence estimate between the input and the output.

tfeplotter = dsp.ArrayPlot('PlotType','Line',...
    'XLabel','Frequency (Hz)',...
    'YLabel','Magnitude Response (dB)',...
    'YLimits',[-120 20],...
    'XOffset',0,...
    'XLabel','Frequency (Hz)',...
    'Title','System Transfer Function',...
    'SampleIncrement',44100/1024);
coherenceplotter = dsp.ArrayPlot('PlotType','Line',...
    'YLimits',[0 1.2],...
    'YLabel','Coherence',...
    'XOffset',0,...
    'XLabel','Frequency (Hz)',...
    'Title','Coherence Estimate',...
    'SampleIncrement',44100/1024);

By default, the x-axis of the array plot is in samples. To convert this axis into frequency, set the
'SampleIncrement' property of the dsp.ArrayPlot object to Fs/1024. In this example, this value is
44100/1024, or 43.0664. For a two-sided spectrum, the XOffset property of the dsp.ArrayPlot
object must be [-Fs/2]. The frequency varies in the range [-Fs/2 Fs/2]. In this example, the array plot
shows a one-sided spectrum. Hence, set the XOffset to 0. The frequency varies in the range [0 Fs/2].

Estimate the Transfer Function

The transfer function estimator accepts two signals: input to the two-stage filter and output of the
two-stage filter. The input to the filter is a sine wave containing additive white Gaussian noise. The
noise has a mean of zero and a standard deviation of 0.1. The estimator estimates the transfer
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function of the two-stage filter. The output of the estimator is the frequency response of the filter,
which is complex. To extract the magnitude portion of this complex estimate, use the abs function. To
convert the result into dB, apply a conversion factor of 20*log10(magnitude).

for Iter = 1:1000
    input = sine() + .1*randn(1024,1);
    lpfout = lpfilter(input);
    allpoleout = allpole(lpfout);
    allpassout = allpass(lpfout);
    output = allpoleout + allpassout;
    [tfeoutput,outputcoh] = tfe(input,output);
    tfeplotter(20*log10(abs(tfeoutput)));
    coherenceplotter(outputcoh);
end
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The first plot shows the magnitude response of the system. The second plot shows the coherence
estimate between the input and output of the system. Coherence in the plot varies in the range [0 1]
as expected.

Magnitude Response of the Filter Using fvtool

The filter is a cascade of two filter stages - dsp.LowpassFilter and a parallel connection of
dsp.AllpassFilter and dsp.AllpoleFilter. All the filter objects are used in their default state. Using the
filter coefficients, derive the system transfer function and plot the frequency response using freqz.
Below are the coefficients in the [Num] [Den] format:

• All pole filter - [1 0] [1 0.1]
• All pass filter - [0.5 -1/sqrt(2) 1] [1 -1/sqrt(2) 0.5]
• Lowpass filter - Determine the coefficients using the following commands:

lpf = dsp.LowpassFilter;
Coefficients = coeffs(lpf);

Coefficients.Numerator gives the coefficients in an array format. The mathematical derivation of the
overall system transfer function is not shown here. Once you derive the transfer function, run fvtool
and you can see the frequency response below:
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The magnitude response that fvtool shows matches the magnitude response that the
dsp.TransferFunctionEstimator object estimates.

Estimate the Transfer Function in Simulink
To estimate the transfer function of a system in Simulink, use the Discrete Transfer Function
Estimator block. The block implements the Welch's average modified periodogram method and uses
the measured input and output data for estimation.

The system is a cascade of two filter stages: a lowpass filter and a parallel connection of an allpole
filter and allpass filter. The input to the system is a sine wave containing additive white Gaussian
noise. The noise has a mean of zero and a standard deviation of 0.1. The input to the estimator is the
system input and the system output. The output of the estimator is the frequency response of the
system, which is complex. To extract the magnitude portion of this complex estimate, use the Abs
block. To convert the result into dB, the system uses a dB (1 ohm) block.
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Open and Inspect the Model

To open the model, enter ex_transfer_function_estimator in the MATLAB command prompt.

Here are the settings of the blocks in the model.

Block Parameter Changes Purpose of the block
Sine Wave • Sample time to 1/44100

• Samples per frame to 1024
Sinusoid signal with frequency
at 100 Hz

Random Source • Source type to Gaussian
• Variance to 0.01
• Sample time to 1/44100
• Samples per frame to 1024

Random Source block generates
a random noise signal with
properties specified through the
block dialog box

Lowpass Filter No change Lowpass filter
Allpole Filter No change Allpole filter with coefficients [1

0.1]
Discrete Filter • Numerator to [0.5 -1/

sqrt(2) 1]
• Denominator to [1 -1/

sqrt(2) 0.5]

Allpass filter with coefficients
[-1/sqrt(2) 0.5]

Discrete Transfer Function
Estimator

• Frequency range to One-
sided

• Number of spectral
averages to 8

Transfer function estimator
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Block Parameter Changes Purpose of the block
Abs No change Extracts the magnitude

information from the output of
the transfer function estimator

First Array Plot block Click View:

• Select Style and set Plot
type to Line.

• Select Configuration
Properties: From the Main
tab, set Sample increment
to 44100/1024 and X-offset
to 0. In the Display tab,
specify the Title as
Magnitude Response of
the System in dB, X-
label as Frequency (Hz),
and Y-label as Amplitude
(dB)

Shows the magnitude response
of the system

Second Array Plot block Click View:

• Select Style and set Plot
type to Line.

• Select Configuration
Properties: From the Main
tab, set Sample increment
to 44100/1024 and X-offset
to 0. In the Display tab,
specify the Title as
Coherence Estimate, X-
label as Frequency (Hz),
and Y-label as Amplitude

Shows the coherence estimate

By default, the x-axis of the array plot is in samples. To convert this axis into frequency, the Sample
increment parameter is set to Fs/1024. In this example, this value is 44100/1024, or 43.0664. For
a two-sided spectrum, the X-offset parameter must be –Fs/2. The frequency varies in the range [-
Fs/2 Fs/2]. In this example, the array plot shows a one-sided spectrum. Hence, the X-offset is set
to 0. The frequency varies in the range [0 Fs/2].

Run the Model
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The first plot shows the magnitude response of the system. The second plot shows the coherence
estimate between the input and output of the system. Coherence in the plot varies in the range [0
1] as expected.

See Also

More About
• “Spectral Analysis” on page 17-61
• “Estimate the Power Spectrum in MATLAB” on page 17-15
• “Estimate the Power Spectrum in Simulink” on page 17-28
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View the Spectrogram Using Spectrum Analyzer
In this section...
“Colormap” on page 17-53
“Display” on page 17-54
“Resolution Bandwidth (RBW)” on page 17-54
“Time Resolution” on page 17-57
“Convert the Power Between Units” on page 17-57
“Scale Color Limits” on page 17-59

Spectrograms are a two-dimensional representation of the power spectrum of a signal as this signal
sweeps through time. They give a visual understanding of the frequency content of your signal. Each
line of the spectrogram is one periodogram computed using either the filter bank approach or the
Welch’s algorithm of averaging modified periodogram.

To show the concepts of the spectrogram, this example uses the model ex_psd_sa as the starting
point.

Open the model and double-click the Spectrum Analyzer block. In the Spectrum Settings pane,
change View to Spectrogram. The Method is set to Filter bank. Run the model. You can see the
spectrogram output in the spectrum analyzer window. To acquire and store the data for further
processing, create a SpectrumAnalyzerConfiguration object and run the getSpectrumData
function on this object.
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Colormap
Power spectrum is computed as a function of frequency f and is plotted as a horizontal line. Each
point on this line is given a specific color based on the value of the power at that particular frequency.
The color is chosen based on the colormap seen at the top of the display. To change the colormap,
click View > Configuration Properties, and choose one of the options in color map. Make sure
View is set to Spectrogram. By default, color map is set to jet(256).

The two frequencies of the sine wave are distinctly visible at 5 kHz and 10 kHz. Since the spectrum
analyzer uses the filter bank approach, there is no spectral leakage at the peaks. The sine wave is
embedded in Gaussian noise, which has a variance of 0.0001. This value corresponds to a power of
-40 dBm. The color that maps to -40 dBm is assigned to the noise spectrum. The power of the sine
wave is 26.9 dBm at 5 kHz and 10 kHz. The color used in the display at these two frequencies
corresponds to 26.9 dBm on the colormap. For more information on how the power is computed in
dBm, see 'Conversion of power in watts to dBW and dBm'.

To confirm the dBm values, change View to Spectrum. This view shows the power of the signal at
various frequencies.
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You can see that the two peaks in the power display have an amplitude of about 26 dBm and the
white noise is averaging around -40 dBm.

Display
In the spectrogram display, time scrolls from top to bottom, so the most recent data is shown at the
top of the display. As the simulation time increases, the offset time also increases to keep the vertical
axis limits constant while accounting for the incoming data. The Offset value, along with the
simulation time, is displayed at the bottom-right corner of the spectrogram scope.

Resolution Bandwidth (RBW)
Resolution Bandwidth (RBW) is the minimum frequency bandwidth that can be resolved by the
spectrum analyzer. By default, RBW (Hz) is set to Auto. In the auto mode, RBW is the ratio of the
frequency span to 1024. In a two-sided spectrum, this value is Fs/1024, while in a one-sided spectrum,
it is (Fs/2)/1024. In this example, RBW is (44100/2)/1024 or 21.53 Hz.

If the Method is set to Filter bank, using this value of RBW, the number of input samples used to
compute one spectral update is given by Nsamples = Fs/RBW, which is 44100/21.53 or 2048 in this
example.
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If the Method is set to Welch, using this value of RBW, the window length (Nsamples) is computed
iteratively using this relationship:

Nsamples =
1−

Op
100 × NENBW × Fs

RBW

Op is the amount of overlap between the previous and current buffered data segments. NENBW is the
equivalent noise bandwidth of the window.

For more information on the details of the spectral estimation algorithm, see “Spectral Analysis” on
page 17-61.

To distinguish between two frequencies in the display, the distance between the two frequencies must
be at least RBW. In this example, the distance between the two peaks is 5000 Hz, which is greater
than RBW. Hence, you can see the peaks distinctly.

Change the frequency of the second sine wave from 10000 Hz to 5015 Hz. The difference between
the two frequencies is 15 Hz, which is less than RBW.

On zooming, you can see that the peaks at 5000 Hz and 5015 Hz are not distinguishable.
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To increase the frequency resolution, decrease RBW to 1 Hz and run the simulation. On zooming, the
two peaks, which are 15 Hz apart, are now distinguishable
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Time Resolution
Time resolution is the distance between two spectral lines in the vertical axis. By default, Time res
(s) is set to Auto. In this mode, the value of time resolution is 1/RBW s, which is the minimum
attainable resolution. When you increase the frequency resolution, the time resolution decreases. To
maintain a good balance between the frequency resolution and time resolution, change the RBW
(Hz) to Auto. You can also specify the Time res (s) as a numeric value.

Convert the Power Between Units
The spectrum analyzer provides three units to specify the power spectral density: Watts/Hz,
dBm/Hz, and dBW/Hz. Corresponding units of power are Watts, dBm, and dBW. For electrical
engineering applications, you can also view the RMS of your signal in Vrms or dBV. The default
spectrum type is Power in dBm.

Convert the Power in Watts to dBW and dBm

Power in dBW is given by:

PdBW = 10log10(power in watt/1 watt)
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Power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

For a sine wave signal with an amplitude of 1 V, the power of a one-sided spectrum in Watts is given
by:

PWatts = A2/2
PWatts = 1/2

In this example, this power equals 0.5 W. Corresponding power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

PdBm = 10log10(0.5/10−3)

Here, the power equals 26.9897 dBm. To confirm this value with a peak finder, click Tools >
Measurements > Peak Finder.

For a white noise signal, the spectrum is flat for all frequencies. The spectrum analyzer in this
example shows a one-sided spectrum in the range [0 Fs/2]. For a white noise signal with a variance of
1e-4, the power per unit bandwidth (Punitbandwidth) is 1e-4. The total power of white noise in watts over
the entire frequency range is given by:

Pwhitenoise = Punitbandwidth * number of f requency bins,

Pwhitenoise = (10−4) * Fs/2
RBW ,

Pwhitenoise = (10−4) * 22050
21.53

The number of frequency bins is the ratio of total bandwidth to RBW. For a one-sided spectrum, the
total bandwidth is half the sampling rate. RBW in this example is 21.53 Hz. With these values, the
total power of white noise in watts is 0.1024 W. In dBm, the power of white noise can be calculated
using 10*log10(0.1024/10^-3), which equals 20.103 dBm.

Convert Power in Watts to dBFS

If you set the spectral units to dBFS and set the full scale (FullScaleSource) to Auto, power in
dBFS is computed as:

PdBFS = 20 ⋅ log10 Pwatts/Full_Scale

where:

• Pwatts is the power in watts
• For double and float signals, Full_Scale is the maximum value of the input signal.
• For fixed point or integer signals, Full_Scale is the maximum value that can be represented.

If you specify a manual full scale (set FullScaleSource to Property), power in dBFS is given by:

PFS = 20 ⋅ log10 Pwatts/FS

Where FS is the full scaling factor specified in the FullScale property.
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For a sine wave signal with an amplitude of 1 V, the power of a one-sided spectrum in Watts is given
by:

PWatts = A2/2
PWatts = 1/2

In this example, this power equals 0.5 W and the maximum input signal for a sine wave is 1 V. The
corresponding power in dBFS is given by:

PFS = 20 ⋅ log10 1/2/1

Here, the power equals -3.0103. To confirm this value in the spectrum analyzer, run these commands:

Fs = 1000;  % Sampling frequency
sinef = dsp.SineWave('SampleRate',Fs,'SamplesPerFrame',100);
scope = dsp.SpectrumAnalyzer('SampleRate',Fs,...
   'SpectrumUnits','dBFS','PlotAsTwoSidedSpectrum',false)
%%
for ii = 1:100000
xsine = sinef();
scope(xsine)
end

Then, click Tools > Measurements > Peak Finder.

Convert the Power in dBm to RMS in Vrms

Power in dBm is given by:

PdBm = 10log10(power in watt/1 milliwatt)

Voltage in RMS is given by:

Vrms = 10PdBm/20 10−3

From the previous example, PdBm equals 26.9897 dBm. The Vrms is calculated as

Vrms = 1026.9897/20 0.001

which equals 0.7071.

To confirm this value:

1 Change Type to RMS.
2 Open the peak finder by clicking Tools > Measurements > Peak Finder.

Scale Color Limits

When you run the model and do not see the spectrogram colors, click the Scale Color Limits 
button. This option autoscales the colors.

The spectrogram updates in real time. During simulation, if you change any of the tunable
parameters in the model, the changes are effective immediately in the spectrogram.
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See Also

More About
• “Estimate the Power Spectrum in MATLAB” on page 17-15
• “Estimate the Power Spectrum in Simulink” on page 17-28
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Spectral Analysis
In this section...
“Welch’s Algorithm of Averaging Modified Periodograms” on page 17-61
“Filter Bank” on page 17-64

Spectral analysis is the process of estimating the power spectrum (PS) of a signal from its time-
domain representation. Spectral density characterizes the frequency content of a signal or a
stochastic process. Intuitively, the spectrum decomposes the signal or the stochastic process into the
different frequencies, and identifies periodicities. The most commonly used instrument for performing
spectral analysis is the spectrum analyzer.

Spectral analysis is done based on the nonparametric methods and the parametric methods.
Nonparametric methods are based on dividing the time-domain data into segments, applying Fourier
transform on each segment, computing the squared-magnitude of the transform, and summing and
averaging the transform. Nonparametric methods such as modified periodogram, Bartlett, Welch, and
the Blackman-Tukey methods, are a variation of this approach. These methods are based on
measured data and do not require prior knowledge about the data or the model. Parametric methods
are model-based approaches. The model for generating the signal can be constructed with a number
of parameters that can estimated from the observed data. From the model and estimated parameters,
the algorithm computes the power spectrum implied by the model.

The spectrum analyzer in DSP System Toolbox uses the Welch’s nonparametric method of averaging
modified periodogram and the filter bank method to estimate the power spectrum of a streaming
signal in real time. You can launch the spectrum analyzer using the dsp.SpectrumAnalyzer System
object in MATLAB and the Spectrum Analyzer block in Simulink.

Welch’s Algorithm of Averaging Modified Periodograms
To use the Welch method in the spectrum analyzer, set the Method parameter to Welch. The Welch's
technique to reduce the variance of the periodogram breaks the time series into overlapping
segments. This method computes a modified periodogram for each segment and then averages these
estimates to produce the estimate of the power spectrum. Because the process is wide-sense
stationary and Welch's method uses PS estimates of different segments of the time series, the
modified periodograms represent approximately uncorrelated estimates of the true PS. The averaging
reduces the variability.

The segments are multiplied by a window function, such as a Hann window, so that Welch's method
amounts to averaging modified periodograms. Because the segments usually overlap, data values at
the beginning and end of the segment tapered by the window in one segment, occur away from the
ends of adjacent segments. The overlap guards against the loss of information caused by windowing.
In the Spectrum Analyzer block, you can specify the window using the Window parameter.

The algorithm in the Spectrum Analyzer block consists of these steps:

1 The block buffers the input into N point data segments. Each data segment is split up into L
overlapping data segments, each of length M, overlapping by D points. The data segments can be
represented as:

xi(n) = x(n + iD), n = 0, 1, ..., M − 1
i = 0, 1, ..., L− 1
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• If D = M/2, the overlap is 50%.
• If D = 0, the overlap is 0%.

The block uses the RBW or the Window Length setting in the Spectrum Settings pane to
determine the data window length. Then, it partitions the input signal into a number of windowed
data segments.

The spectrum analyzer requires a minimum number of samples (Nsamples) to compute a spectral
estimate. This number of input samples required to compute one spectral update is shown as
Samples/update in the Main options pane. This value is directly related to the resolution
bandwidth, RBW, by the following equation:

Nsamples =
1−

Op
100 × NENBW × Fs

RBW .

• Op, the amount of overlap (%) between the previous and current buffered data segments, is
specified through the Overlap (%) parameter in the Window options pane.

• NENBW, the normalized effective noise bandwidth of the window depends on the windowing
method. This parameter is shown in the Window options pane.

• Fs is the sample rate of the input signal.

When in RBW mode, the window length required to compute one spectral update, Nwindow, is
directly related to the resolution bandwidth and normalized effective noise bandwidth:

Nwindow =
NENBW × Fs

RBW

When in Window length mode, the window length is used as specified.

The number of input samples required to compute one spectral update, Nsamples, is directly
related to the window length and the amount of overlap:

Nsamples = 1−
Op
100 Nwindow

When you increase the overlap percentage, fewer new input samples are needed to compute a
new spectral update. For example, the table shows the number of input samples required to
compute one spectral update when the window length is 100.

Overlap Nsamples
0% 100
50% 50
80% 20

The normalized effective noise bandwidth, NENBW, is a window parameter determined by the
window length, Nwindow, and the type of window used. If w(n) denotes the vector of Nwindow
window coefficients, then NENBW is:
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NENBW = Nwindow ×
∑

n = 1

Nwindow
w2(n)

∑
n = 1

Nwindow
w(n)

2

When in RBW mode, you can set the resolution bandwidth using the value of the RBW parameter
on the Main options pane. You must specify a value so that there are at least two RBW intervals
over the specified frequency span. The ratio of the overall span to RBW must be greater than
two:

span
RBW > 2

By default, the RBW parameter on the Main options pane is set to Auto. In this case, the
Spectrum Analyzer determines the appropriate value so that there are 1024 RBW intervals over
the specified frequency span. Thus, when you set RBW to Auto, RBW is calculated by:
RBWauto = span

1024

When in window length mode, you specify Nwindow and the resulting RBW is

NENBW × Fs
Nwindow

.

2 Apply a window to each of the L overlapping data segments in the time domain. Most window
functions afford more influence to the data at the center of the set than to the data at the edges,
which represents a loss of information. To mitigate that loss, the individual data sets are
commonly overlapped in time. For each windowed segment, compute the periodogram by
computing the discrete Fourier transform. Then compute the squared magnitude of the result,
and divide the result by M.

Pxx
i (f ) = 1

MU ∑
n = 0

M − 1
xi(n)w(n)e− j2πfn

2
, i = 0, 1, ..., L− 1

where U is a normalization factor for the power in the window function and is given by

U = 1
M ∑

n = 0

M − 1
w2(n)

.

You can specify the window using the Window parameter.
3 To determine the Welch power spectrum estimate, the Spectrum Analyzer block averages the

result of the periodograms for the last L data segments. The averaging reduces the variance,
compared to the original N point data segment.

Pxx
W(f ) = 1

L ∑i = 0

L− 1
Pxx

i (f )

L is specified through the Averages parameter in the Trace options pane.
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4 The Spectrum Analyzer block computes the power spectral density using:

Pxx
W(f ) = 1

L * Fs
∑

i = 0

L− 1
Pxx

i (f )

.

Filter Bank
To use the filter bank approach in the spectrum analyzer, set the Method parameter to Filter
bank. In the filter bank approach, the analysis filter bank splits the broadband input signal into
multiple narrow subbands. The spectrum analyzer computes the power in each narrow frequency
band and the computed value is the spectral estimate over the respective frequency band. For signals
with relatively small length, the filter bank approach produces a spectral estimate with a higher
resolution, a more accurate noise floor, and peaks more precise than the Welch method, with low or
no spectral leakage. These advantages come at the expense of increased computation and slower
tracking.

For information on how the filter bank computes the power, see the “Algorithms” section in
dsp.SpectrumEstimator. For more information on the analysis filter bank and how it is
implemented, see the “More About” and the “Algorithm” sections in dsp.Channelizer.

References
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See Also
Objects
dsp.SpectrumAnalyzer

Blocks
Spectrum Analyzer

More About
• “Estimate the Power Spectrum in MATLAB” on page 17-15
• “Estimate the Power Spectrum in Simulink” on page 17-28
• “Estimate the Transfer Function of an Unknown System” on page 17-44
• “View the Spectrogram Using Spectrum Analyzer” on page 17-52
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Streaming Power Spectrum Estimation Using Welch's Method
Compute the power spectrum estimate of a time-domain input signal using the Spectrum Estimator
block. The block uses one of the following methods to compute the power spectrum estimate:

• Welch's method of averaged modified periodograms
• Filter bank method

This example uses the Welch's method of averaged modified periodograms. For an example that uses
the filter bank-based spectrum estimation method, see “High Resolution Spectral Analysis in
MATLAB” on page 4-16. The same example also shows the comparison between the filter bank
estimator and the Welch-based spectral estimator. Generally, filter bank-based spectrum estimation
yields better resolution with less spectral leakage, more accurate peaks and a more accurate noise
floor.

For more details on algorithm of these two methods, see the 'Algorithms' section in the Spectrum
Estimator block.

The Spectrum Estimator block is useful if you need direct access to the estimated spectrum (rather
than just visualize it). The output power spectrum may be used as an input to other blocks in your
model, or may be logged to the workspace for post-processing. To visualize the spectra, use the
Spectrum Analyzer scope block.

Welch's Method of Averaged Modified Periodograms

In the Welch method, the input time-domain data is partitioned into data segments based on the
selected window length and overlap percentage. This stage is implemented using a Buffer block. A
window is applied to each segment, and then an averaged periodogram is computed based on the
windowed sequences. This stage is implemented using a dsp.SpectrumEstimator System object™.
The length of the data segments and the choice of the window determine the estimate's resolution
bandwidth (RBW), which is the smallest positive frequency that can be resolved in the power spectral
estimate.

Specifying Window Length

The dspstreamingwelch model shown below uses a Welch Spectrum Estimator block to estimate
the spectrum of a noisy chirp signal sampled at 44100 Hz. The power spectrum estimate is displayed
using an Array Plot scope. The peak value of the spectrum, as well as the frequency at which the peak
occurs, are detected and displayed on the scope. The estimate's RBW is also displayed. Moreover, a
Spectrum Analyzer scope block is included for comparison and validation purposes.
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The block's frequency resolution method is set to Window length. The window length is set to 1024.
The FFT length, NFFT , is equal to the window length. The data is windowed using a Chebyshev
window with a sidelobe attenuation of 60 dB. The frequency range is one-sided. In this case, the
length of the spectrum estimate is  and is computed over the interval [0
Hz,22050 Hz]. The Sample increment property of the Array Plot scope is accordingly set to

 , where the increment is divided by 1000 to scale the frequency
units to kHz. You can access the scope's Sample increment property by opening its Configuration
properties window.

The resolution bandwidth is given by:

where N is the window length, enbw is a function that computes the window's equivalent noise
bandwidth, SL is the sidelobe attenuation of the selected Chebyshev window and Fs is the sample
rate. In this case, RBW is equal to 65.38 Hz.

When you simulate the model, you can verify that the displayed RBW value is equal to the one shown
on the lower bar of the Spectrum Analyzer scope. Moreover, the two blocks give the same peak
measurements.
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Specifying Non-Zero Overlap

The model in the previous section had zero-overlap. In the dspstreamingwelch_overlap model,
we use a Welch Estimation block with an overlap of 50%. Since other model parameters are identical
to the previous section, the RBW is unchanged and is equal to 65.38 Hz. With a window length of
1024 and an overlap percentage of 50%, 512 input samples are required to form a new data segment.
Since the input data is of length 1024, each new data frame yields two new periodograms, and the
block's output port runs at a rate twice as fast as the input port.

Note that the Welch estimate block does not have zero latency in this case. The first spectrum
estimate output is based on the buffer's initial condition, which is equal to eps. In order to match the
spectrum and measurements of the Spectrum Analyzer scope, we therefore insert a delay block at the
input of the Spectrum Analyzer.

The results of the Spectrum Analyzer and Welch estimate block may be validated by simulating the
model.
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Specifying RBW

In the dspstreamingwelch_rbw model, the Frequency Resolution Method parameter is set to
RBW. RBW source is Auto. In this mode, similar to the Spectrum Analyzer scope block, the resolution
bandwidth is chosen such that there are 1024 RBW intervals over the specified Frequency Span.
Since the span in this case is 22050 HZ, the RBW is 21.53 Hz.

The window length used to buffer the data is iteratively computed to yield the desired RBW. The
window length in this case is equal to 3073. To verify this value, we can compute the RBW that
results from this window length:

Note that a Hann window is used in this model. In this case, the FFT length, NFFT, is odd and equal
to 3073 (the window length). Since the frequency range is one-sided, the spectrum estimate is of
length (NFFT + 1)/2 and is computed over the interval [0,44100/2). The Sample increment property
of the Array Plot scope is set to  KHz.
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Again, the results of the Spectrum Analyzer and Welch estimate block can be validated by simulating
the model.

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling Hoboken, NJ: John Wiley &

Sons, 1996.
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Blocks
Spectrum Estimator | Spectrum Analyzer | Array Plot | Random Source | Chirp
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Fixed-Point Design

Learn about fixed-point data types and how to convert floating-point models to fixed point.

• “Fixed-Point Signal Processing” on page 18-2
• “Fixed-Point Concepts and Terminology” on page 18-4
• “Arithmetic Operations” on page 18-8
• “System Objects in DSP System Toolbox that Support Fixed-Point Design” on page 18-15
• “Simulink Blocks in DSP System Toolbox that Support Fixed-Point Design” on page 18-19
• “System Objects Supported by Fixed-Point Converter App” on page 18-20
• “Convert dsp.FIRFilter Object to Fixed-Point Using the Fixed-Point Converter App”

on page 18-21
• “Specify Fixed-Point Attributes for Blocks” on page 18-28
• “Quantizers” on page 18-43
• “Create an FIR Filter Using Integer Coefficients” on page 18-50
• “Fixed-Point Precision Rules for Avoiding Overflow in FIR Filters” on page 18-62
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Fixed-Point Signal Processing
In this section...
“Fixed-Point Features” on page 18-2
“Benefits of Fixed-Point Hardware” on page 18-2
“Benefits of Fixed-Point Design with System Toolboxes Software” on page 18-2

Note To take full advantage of fixed-point support in System Toolbox software, you must install
Fixed-Point Designer software.

Fixed-Point Features
Many of the blocks in this product have fixed-point support, so you can design signal processing
systems that use fixed-point arithmetic. Fixed-point support in DSP System Toolbox software includes

• Signed two's complement and unsigned fixed-point data types
• Word lengths from 2 to 128 bits in simulation
• Word lengths from 2 to the size of a long on the Simulink Coder C code-generation target
• Overflow handling and rounding methods
• C code generation for deployment on a fixed-point embedded processor, with Simulink Coder code

generation software. The generated code uses all allowed data types supported by the embedded
target, and automatically includes all necessary shift and scaling operations

Benefits of Fixed-Point Hardware
There are both benefits and trade-offs to using fixed-point hardware rather than floating-point
hardware for signal processing development. Many signal processing applications require low-power
and cost-effective circuitry, which makes fixed-point hardware a natural choice. Fixed-point hardware
tends to be simpler and smaller. As a result, these units require less power and cost less to produce
than floating-point circuitry.

Floating-point hardware is usually larger because it demands functionality and ease of development.
Floating-point hardware can accurately represent real-world numbers, and its large dynamic range
reduces the risk of overflow, quantization errors, and the need for scaling. In contrast, the smaller
dynamic range of fixed-point hardware that allows for low-power, inexpensive units brings the
possibility of these problems. Therefore, fixed-point development must minimize the negative effects
of these factors, while exploiting the benefits of fixed-point hardware; cost- and size-effective units,
less power and memory usage, and fast real-time processing.

Benefits of Fixed-Point Design with System Toolboxes Software
Simulating your fixed-point development choices before implementing them in hardware saves time
and money. The built-in fixed-point operations provided by the System Toolboxes software save time
in simulation and allow you to generate code automatically.

This software allows you to easily run multiple simulations with different word length, scaling,
overflow handling, and rounding method choices to see the consequences of various fixed-point
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designs before committing to hardware. The traditional risks of fixed-point development, such as
quantization errors and overflow, can be simulated and mitigated in software before going to
hardware.

Fixed-point C code generation with System Toolbox software and Simulink Coder code generation
software produces code ready for execution on a fixed-point processor. All the choices you make in
simulation in terms of scaling, overflow handling, and rounding methods are automatically optimized
in the generated code, without necessitating time-consuming and costly hand-optimized code.
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Fixed-Point Concepts and Terminology
In this section...
“Fixed-Point Data Types” on page 18-4
“Scaling” on page 18-5
“Precision and Range” on page 18-6

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of
bits (1's and 0's). The way hardware components or software functions interpret this sequence of 1's
and 0's is defined by the data type.

Binary numbers are represented as either floating-point or fixed-point data types. In this section, we
discuss many terms and concepts relating to fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the binary point,
and the signedness of a number which can be signed or unsigned. Signed numbers and data types
can represent both positive and negative values, whereas unsigned numbers and data types can only
represent values that are greater than or equal to zero.

The position of the binary point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or unsigned)
is shown below:

where

• bi is the ith binary digit.
• wl is the number of bits in a binary word, also known as word length.
• bwl–1 is the location of the most significant, or highest, bit (MSB). In signed binary numbers, this

bit is the sign bit which indicates whether the number is positive or negative.
• b0 is the location of the least significant, or lowest, bit (LSB). This bit in the binary word can

represent the smallest value. The weight of the LSB is given by:

weightLSB = 2− f ractionlength

where, fractionlength is the number of bits to the right of the binary point.
• Bits to the left of the binary point are integer bits and/or sign bits, and bits to the right of the

binary point are fractional bits. Number of bits to the left of the binary point is known as the
integer length. The binary point in this example is shown four places to the left of the LSB.
Therefore, the number is said to have four fractional bits, or a fraction length of four.
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Fixed-point data types can be either signed or unsigned.

Signed binary fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude –– Representation of signed fixed-point or floating-point numbers. In the sign/
magnitude representation, one bit of a binary word is always the dedicated sign bit, while the
remaining bits of the word encode the magnitude of the number. Negation using sign/magnitude
representation consists of flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0.

• One's complement
• Two's complement –– Two's complement is the most common representation of signed fixed-point

numbers. See “Two's Complement” on page 18-8 for more information.

Unsigned fixed-point numbers can only represent numbers greater than or equal to zero.

Scaling
In [Slope Bias] representation, fixed-point numbers can be encoded according to the scheme

real‐worldvalue = (slope × integer) + bias

where the slope can be expressed as

slope = slope ad justment × 2exponent

The term slope adjustment is sometimes used as a synonym for fractional slope.

In the trivial case, slope = 1 and bias = 0. Scaling is always trivial for pure integers, such as int8, and
also for the true floating-point types single and double.

The integer is sometimes called the stored integer. This is the raw binary number, in which the binary
point assumed to be at the far right of the word. In System Toolboxes, the negative of the exponent is
often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number with zero
bias, only the slope affects the scaling. A fixed-point number that is only scaled by binary point
position is equivalent to a number in the Fixed-Point Designer [Slope Bias] representation that has a
bias equal to zero and a slope adjustment equal to one. This is referred to as binary point-only scaling
or power-of-two scaling:

real‐world value = 2exponent × integer

or

real‐world value = 2− f ractionlength × integer

In System Toolbox software, you can define a fixed-point data type and scaling for the output or the
parameters of many blocks by specifying the word length and fraction length of the quantity. The
word length and fraction length define the whole of the data type and scaling information for binary-
point only signals.

All System Toolbox blocks that support fixed-point data types support signals with binary-point only
scaling. Many fixed-point blocks that do not perform arithmetic operations but merely rearrange
data, such as Delay and Matrix Transpose, also support signals with [Slope Bias] scaling.
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Precision and Range
You must pay attention to the precision and range of the fixed-point data types and scalings you
choose for the blocks in your simulations, in order to know whether rounding methods will be invoked
or if overflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent. The range of
representable numbers for a two's complement fixed-point number of word length wl, scaling S, and
bias B is illustrated below:

For both signed and unsigned fixed-point numbers of any data type, the number of different bit
patterns is 2wl.

For example, in two's complement, negative numbers must be represented as well as zero, so the
maximum value is 2wl–1. Because there is only one representation for zero, there are an unequal
number of positive and negative numbers. This means there is a representation for -2wl–1 but not for
2wl–1:

The full range is the broadest range for a data type. For floating-point types, the full range is –∞ to ∞.
For integer types, the full range is the range from the smallest to largest integer value (finite) the
type can represent. For example, from -128 to 127 for a signed 8-bit integer.

Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows can occur if the
result of an operation is larger or smaller than the numbers in that range.

System Toolbox software does not allow you to add guard bits to a data type on-the-fly in order to
avoid overflows. Guard bits are extra bits in either a hardware register or software simulation that
are added to the high end of a binary word to ensure that no information is lost in case of overflow.
Any guard bits must be allocated upon model initialization. However, the software does allow you to
either saturate or wrap overflows. Saturation represents positive overflows as the largest positive
number in the range being used, and negative overflows as the largest negative number in the range
being used. Wrapping uses modulo arithmetic to cast an overflow back into the representable range
of the data type. See “Modulo Arithmetic” on page 18-8 for more information.
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Precision

The precision of a fixed-point number is the difference between successive values representable by its
data type and scaling, which is equal to the value of its least significant bit. The value of the least
significant bit, and therefore the precision of the number, is determined by the number of fractional
bits. A fixed-point value can be represented to within half of the precision of its data type and scaling.
The term resolution is sometimes used as a synonym for this definition.

For example, a fixed-point representation with four bits to the right of the binary point has a precision
of 2-4 or 0.0625, which is the value of its least significant bit. Any number within the range of this
data type and scaling can be represented to within (2-4)/2 or 0.03125, which is half the precision. This
is an example of representing a number with finite precision.

Rounding Modes

When you represent numbers with finite precision, not every number in the available range can be
represented exactly. If a number cannot be represented exactly by the specified data type and
scaling, it is rounded to a representable number. Although precision is always lost in the rounding
operation, the cost of the operation and the amount of bias that is introduced depends on the
rounding mode itself. To provide you with greater flexibility in the trade-off between cost and bias,
DSP System Toolbox software currently supports the following rounding modes:

• Ceiling rounds the result of a calculation to the closest representable number in the direction of
positive infinity.

• Convergent rounds the result of a calculation to the closest representable number. In the case of
a tie, Convergent rounds to the nearest even number. This is the least biased rounding mode
provided by the toolbox.

• Floor, which is equivalent to truncation, rounds the result of a calculation to the closest
representable number in the direction of negative infinity. The truncation operation results in
dropping of one or more least significant bits from a number.

• Nearest rounds the result of a calculation to the closest representable number. In the case of a
tie, Nearest rounds to the closest representable number in the direction of positive infinity.

• Round rounds the result of a calculation to the closest representable number. In the case of a tie,
Round rounds positive numbers to the closest representable number in the direction of positive
infinity, and rounds negative numbers to the closest representable number in the direction of
negative infinity.

• Simplest rounds the result of a calculation using the rounding mode (Floor or Zero) that adds
the least amount of extra rounding code to your generated code. For more information, see
“Rounding Mode: Simplest” (Fixed-Point Designer).

• Zero rounds the result of a calculation to the closest representable number in the direction of
zero.

To learn more about each of these rounding modes, see “Rounding” (Fixed-Point Designer).

For a direct comparison of the rounding modes, see “Choosing a Rounding Method” (Fixed-Point
Designer).
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Arithmetic Operations
In this section...
“Modulo Arithmetic” on page 18-8
“Two's Complement” on page 18-8
“Addition and Subtraction” on page 18-9
“Multiplication” on page 18-10
“Casts” on page 18-12

Note These sections will help you understand what data type and scaling choices result in overflows
or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of numbers,
wrapping the results of any calculations that fall outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this system can
only be 1 through 12. Therefore, in the “clock” system, 9 plus 9 equals 6. This can be more easily
visualized as a number circle:

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results that fall outside
this range are wrapped “around the circle” to either 0 or 1.

Two's Complement
Two's complement is a common representation of signed fixed-point numbers. In two's complement,
positive numbers always start with a 0 and negative numbers always start with a 1. If the leading bit
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of a two's complement number is 0, the value is obtained by calculating the standard binary value of
the number. If the leading bit of a two's complement number is 1, the value is obtained by assuming
that the leftmost bit is negative, and then calculating the binary value of the number. For example,

01 = (0 + 20) = 1

11 = ((− 21) + (20)) = (− 2 + 1) = − 1

To compute the negative of a binary number using two's complement,

1 Take the one's complement. That is, all 0's are flipped to 1's and all 1's are flipped to 0's.
2 Add a 1 using binary math.
3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one's complement of the
number, or flip the bits:

11010 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
+1

00110
(6)

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the addends be aligned. The
addition is then performed using binary arithmetic so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1
+0110.110
011001.010

(18.5)
(6.75)
(25.25)

Fixed-point subtraction is equivalent to adding while using the two's complement value for any
negative values. In subtraction, the addends must be sign extended to match each other's length. For
example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

Most fixed-point DSP System Toolbox blocks that perform addition cast the adder inputs to an
accumulator data type before performing the addition. Therefore, no further shifting is necessary
during the addition to line up the binary points. See “Casts” on page 18-12 for more information.
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Multiplication
The multiplication of two's complement fixed-point numbers is directly analogous to regular decimal
multiplication, with the exception that the intermediate results must be sign extended so that their
left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication in the System Toolbox
software. The diagrams illustrate the differences between the data types used for real-real, complex-
real, and complex-complex multiplication. See individual reference pages to determine whether a
particular block accepts complex fixed-point inputs.

In most cases, you can set the data types used during multiplication in the block mask. For details,
see “Casts” on page 18-12.

Note The following diagrams show the use of fixed-point data types in multiplication in System
Toolbox software. They do not represent actual subsystems used by the software to perform
multiplication.

Real-Real Multiplication

The following diagram shows the data types used in the multiplication of two real numbers in System
Toolbox software. The software returns the output of this operation in the product output data type,
as the next figure shows.

Real-Complex Multiplication

The following diagram shows the data types used in the multiplication of a real and a complex fixed-
point number in System Toolbox software. Real-complex and complex-real multiplication are
equivalent. The software returns the output of this operation in the product output data type, as the
next figure shows.
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Complex-Complex Multiplication

The following diagram shows the multiplication of two complex fixed-point numbers in System
Toolbox software. Note that the software returns the output of this operation in the accumulator
output data type, as the next figure shows.

System Toolbox blocks cast to the accumulator data type before performing addition or subtraction
operations. In the preceding diagram, this is equivalent to the C code

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator.
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Casts
Many fixed-point System Toolbox blocks that perform arithmetic operations allow you to specify the
accumulator, intermediate product, and product output data types, as applicable, as well as the
output data type of the block. This section gives an overview of the casts to these data types, so that
you can tell if the data types you select will invoke sign extension, padding with zeros, rounding,
and/or overflow. Sign extension is the addition of bits that have the value of the most significant bit to
the high end of a two's complement number. Sign extension does not change the value of the binary
number. Padding is extending the least significant bit of a binary word with one or more zeros.

Casts to the Accumulator Data Type

For most fixed-point System Toolbox blocks that perform addition or subtraction, the operands are
first cast to an accumulator data type. Most of the time, you can specify the accumulator data type on
the block mask. For details, see the description for Accumulator data type parameter in “Specify
Fixed-Point Attributes for Blocks” on page 18-28. Since the addends are both cast to the same
accumulator data type before they are added together, no extra shift is necessary to insure that their
binary points align. The result of the addition remains in the accumulator data type, with the
possibility of overflow.

Casts to the Intermediate Product or Product Output Data Type

For System Toolbox blocks that perform multiplication, the output of the multiplier is placed into a
product output data type. Blocks that then feed the product output back into the multiplier might first
cast it to an intermediate product data type. Most of the time, you can specify these data types on the
block mask. For details, see the description for Intermediate Product and Product Output data
type parameters in “Specify Fixed-Point Attributes for Blocks” on page 18-28.

Casts to the Output Data Type

Many fixed-point System Toolbox blocks allow you to specify the data type and scaling of the block
output on the mask. Remember that the software does not allow mixed types on the input and output
ports of its blocks. Therefore, if you would like to specify a fixed-point output data type and scaling
for a System Toolbox block that supports fixed-point data types, you must feed the input port of that
block with a fixed-point signal. The final cast made by a fixed-point System Toolbox block is to the
output data type of the block.

Note that although you cannot mix fixed-point and floating-point signals on the input and output ports
of blocks, you can have fixed-point signals with different word and fraction lengths on the ports of
blocks that support fixed-point signals.

Casting Examples

It is important to keep in mind the ramifications of each cast when selecting these intermediate data
types, as well as any other intermediate fixed-point data types that are allowed by a particular block.
Depending upon the data types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.

Cast from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a four-bit data type with two fractional bits, to
an eight-bit data type with seven fractional bits:
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As the diagram shows, the source bits are shifted up so that the binary point matches the destination
binary point position. The highest source bit does not fit, so overflow might occur and the result can
saturate or wrap. The empty bits at the low end of the destination data type are padded with either
0's or 1's:

• If overflow does not occur, the empty bits are padded with 0's.
• If wrapping occurs, the empty bits are padded with 0's.
• If saturation occurs,

• The empty bits of a positive number are padded with 1's.
• The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow might still
occur. This can happen when the integer length of the source data type (in this case two) is longer
than the integer length of the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if the destination data
type and scaling has fewer fractional bits than the source.

Cast from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an eight-bit data type with seven fractional
bits, to a four-bit data type with two fractional bits:

 Arithmetic Operations

18-13



As the diagram shows, the source bits are shifted down so that the binary point matches the
destination binary point position. There is no value for the highest bit from the source, so the result is
sign extended to fill the integer portion of the destination data type. The bottom five bits of the
source do not fit into the fraction length of the destination. Therefore, precision can be lost as the
result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the integer bits
are maintained. Conversely, full precision can be maintained even if you cast to a shorter data type,
as long as the fraction length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost from the high end of the
result and overflow might occur.

The worst case occurs when both the integer length and the fraction length of the destination data
type are shorter than those of the source data type and scaling. In that case, both overflow and a loss
of precision can occur.
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System Objects in DSP System Toolbox that Support Fixed-
Point Design

In this section...
“Get Information About Fixed-Point System Objects” on page 18-15
“Set System Object Fixed-Point Properties” on page 18-17
“Full Precision for Fixed-Point System Objects” on page 18-18

Get Information About Fixed-Point System Objects
System objects that support fixed-point data processing have fixed-point properties. When you display
the properties of a System object, click show all properties at the end of the property list to
display the fixed-point properties for that object. You can also display the fixed-point properties for a
particular object by typing dsp.<ObjectName>.helpFixedPoint at the MATLAB command line.
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DSP System Toolbox System Objects That Support Fixed Point

Object Description
Sources
dsp.SignalSource Import a variable from the MATLAB workspace
dsp.SineWave Generate discrete sine wave
Sinks
dsp.ArrayPlot Display vectors or arrays
dsp.AudioFileWriter Write audio samples to audio file
dsp.SignalSink Log MATLAB simulation data
spectrumAnalyzer Display frequency spectrum of time-domain signals
timescope Display time-domain signals
Adaptive Filters
dsp.LMSFilter Compute output, error, and weights using LMS adaptive

algorithm
Filter Designs
dsp.CICCompensationDecimator Compensate for CIC filter using a FIR decimator
dsp.CICCompensationInterpolator Compensate for CIC filter using a FIR interpolator
dsp.Differentiator Direct form FIR full band differentiator filter
dsp.FIRHalfbandDecimator Halfband decimator
dsp.FIRHalfbandInterpolator Halfband interpolator
dsp.HighpassFilter FIR or IIR highpass filter
dsp.LowpassFilter FIR or IIR lowpass filter
Filter Implementations
dsp.AllpoleFilter IIR Filter with no zeros
dsp.BiquadFilter Model biquadratic IIR (SOS) filters
dsp.FIRFilter Static or time-varying FIR filter
dsp.IIRFilter Infinite Impulse Response (IIR) filter
Multirate Filters
dsp.CICDecimator Decimate inputs using a Cascaded Integrator-Comb (CIC)

filter
dsp.CICInterpolator Interpolate inputs using a Cascaded Integrator-Comb

(CIC) filter
dsp.FIRDecimator Filter and downsample input signals
dsp.FIRInterpolator Upsample and filter input signals
dsp.FIRRateConverter Upsample, filter, and downsample input signals
dsp.SubbandAnalysisFilter Decompose signal into high-frequency and low-frequency

subbands
dsp.SubbandSynthesisFilter Reconstruct a signal from high-frequency and low-

frequency subbands
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Object Description
Transforms
dsp.FFT Compute fast Fourier transform (FFT) of input
dsp.IFFT Compute inverse fast Fourier transform (IFFT) of input
Signal Operations
dsp.DCBlocker Remove DC component
dsp.Delay Delay input by specified number of samples or frames
dsp.DigitalDownConverter Translate digital signal from Intermediate Frequency (IF)

band to baseband and decimate it
dsp.DigitalUpConverter Interpolate digital signal and translate it from baseband to

Intermediate Frequency (IF) band
dsp.FarrowRateConverter Polynomial sample rate converter with arbitrary

conversion factor
dsp.NCO Generate real or complex sinusoidal signals
dsp.VariableFractionalDelay Delay input by time-varying fractional number of sample

periods
dsp.VariableIntegerDelay Delay input by time-varying integer number of sample

periods
dsp.ZeroCrossingDetector Zero crossing detector

Set System Object Fixed-Point Properties
Several properties affect the fixed-point data processing used by a System object. Objects perform
fixed-point processing and use the current fixed-point property settings when they receive fixed-point
input.

You change the values of fixed-point properties in the same way as you change any System object
property value. See “Configure Components”. You also use the Fixed-Point Designer numerictype
object to specify the desired data type as fixed-point, the signedness, and the word- and fraction-
lengths. System objects support these values of DataTypeMode: Boolean, Double, Single, and
Fixed-point: binary point scaling.

In the same way as for blocks, the data type properties of many System objects can set the
appropriate word lengths and scalings automatically by using full precision. System objects assume
that the target specified on the Configuration Parameters Hardware Implementation target is ASIC/
FPGA.

If you have not set the property that activates a dependent property and you attempt to change that
dependent property, a warning message displays. For example, for the dsp.FFT object, before you
set CustomOutputDataType to numerictype(1,32,30), set OutputDataType to 'Custom'.

Note System objects do not support fixed-point word lengths greater than 128 bits.

For any System object provided in the Toolbox, the fimath settings for any fimath attached to a fi
input or a fi property are ignored. Outputs from a System object never have an attached fimath.
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Full Precision for Fixed-Point System Objects
FullPrecisionOverride is a convenience property that, when you set to true, automatically sets
the appropriate properties for an object to use full-precision to process fixed-point input. For System
objects, full precision, fixed-point operation refers to growing just enough additional bits to compute
the ideal full precision result. This operation has no minimum or maximum range overflow nor any
precision loss due to rounding or underflow. It is also independent of any hardware-specific settings.
The data types chosen are based only on known data type ranges and not on actual numeric values.
Full precision for System objects does not optimize coefficient values.

When you set the FullPrecisionOverride property to true, the other fixed-point properties it
controls no longer apply and any of their non-default values are ignored. These properties are also
hidden. To specify individual fixed-point properties, first set FullPrecisionOverride to false.

See Also

More About
• “Simulink Blocks in DSP System Toolbox that Support Fixed-Point Design” on page 18-19
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Simulink Blocks in DSP System Toolbox that Support Fixed-
Point Design

You can view a list of blocks that support fixed-point design in documentation by filtering the blocks
reference list. Click Blocks right below the blue bar at the top of the Help window, then select the
Fixed-Point Conversion check box at the bottom of the left column under Extended Capability.
The blocks are listed in their respective categories. You can use the table of contents in the left
column to navigate between the categories. Refer to the Extended Capabilities > Fixed-Point
Conversion section of each block page for any notes and limitations.

To obtain this filtered list for DSP System Toolbox, click Blocks that Support Fixed-Point Design.

Alternatively, you can find this information in the Simulink block data type support table for the DSP
System Toolbox. To access this table, type this command in the MATLAB Command Window.

showsignalblockdatatypetable

See Also

More About
• “System Objects in DSP System Toolbox that Support Fixed-Point Design” on page 18-15
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System Objects Supported by Fixed-Point Converter App
Use the Fixed-Point Converter app to automatically propose and apply data types for commonly used
system objects. The proposed data types are based on simulation data from the System object.

Automated conversion is available for these DSP System Toolbox System Objects:

• dsp.BiquadFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter (Direct Form and Direct Form Transposed only)
• dsp.FIRRateConverter
• dsp.VariableFractionalDelay

The Fixed-Point Converter app can display simulation minimum and maximum values, whole number
information, and histogram data.

• You cannot propose data types for these System objects based on static range data.
• You must configure the System object to use 'Custom' fixed-point settings.
• The app applies the proposed data types only if the input signal is floating point, not fixed-point.

The app treats scaled doubles as fixed-point. The scaled doubles workflow for System objects is
the same as that for regular variables.

• The app ignores the Default word length setting in the Settings menu. The app also ignores
specified rounding and overflow modes. Data-type proposals are based on the settings of the
System object.

See Also

Related Examples
• “Convert dsp.FIRFilter Object to Fixed-Point Using the Fixed-Point Converter App” on page 18-

21
• “Floating-Point to Fixed-Point Conversion of IIR Filters” on page 4-348
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Convert dsp.FIRFilter Object to Fixed-Point Using the Fixed-
Point Converter App

Convert a dsp.FIRFilter System object, which filters a high-frequency sinusoid signal, to fixed-
point using the Fixed-Point Converter app. This example requires Fixed-Point Designer and DSP
System Toolbox licenses.

Create DSP Filter Function and Test Bench
Create a myFIRFilter function from a dsp.FIRFilter System object.

By default, System objects are configured to use full-precision fixed-point arithmetic. To gather range
data and get data type proposals from the Fixed-Point Converter app, configure the System object to
use ‘Custom’ settings.

Save the function to a local writable folder.

function output = myFIRFilter(input, num)
    
    persistent lowpassFIR;
    if isempty(lowpassFIR)
        lowpassFIR  = dsp.FIRFilter('NumeratorSource', 'Input port', ...
            'FullPrecisionOverride', false, ...
            'ProductDataType', 'Full precision', ... % default
            'AccumulatorDataType', 'Custom', ...
            'CustomAccumulatorDataType', numerictype(1,16,4), ...
            'OutputDataType', 'Custom', ...
            'CustomOutputDataType', numerictype(1,8,2));
    end
    output = lowpassFIR(input, num);
    
end

Create a test bench, myFIRFilter_tb, for the filter. The test bench generates a signal that gathers
range information for conversion. Save the test bench.

% Test bench for myFIRFilter
% Remove high-frequency sinusoid using an FIR filter.

% Initialize
f1 = 1000;
f2 = 3000;
Fs = 8000;
Fcutoff = 2000;

% Generate input
SR = dsp.SineWave('Frequency',[f1,f2],'SampleRate',Fs,...
    'SamplesPerFrame',1024);

% Filter coefficients
num = fir1(130,Fcutoff/(Fs/2));

% Visualize input and output spectra
plot = spectrumAnalyzer('SampleRate',Fs,...
    'PlotAsTwoSidedSpectrum',false,...
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    'ShowLegend',true,'YLimits',[-120 30],...
    'Title','Input Signal (Channel 1) Output Signal (Channel 2)');

% Stream
for k = 1:100
    input = sum(SR(),2); % Add the two sinusoids together
    filteredOutput = myFIRFilter(input, num); % Filter
    plot([input,filteredOutput]); % Visualize
end

Convert the Function to Fixed-Point
1 Open the Fixed-Point Converter app.

• MATLAB Toolstrip: On the Apps tab, under Code Generation, click the app icon.
• MATLAB command prompt: Enter

fixedPointConverter
2 To add the entry-point function myFIRFilter to the project, browse to the file myFIRFilter.m,

and then click Open.

By default, the app saves information and settings for this project in the current folder in a file
named myFirFilter.prj.

3 Click Next to go to the Define Input Types step.

The app screens myFIRFilter.m for code violations and readiness issues. The app does not find
issues in myFIRFilter.m.
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4 On the Define Input Types page, to add myFIRFilter_tb as a test file, browse to
myFIRFilter_tb.m, and then click Autodefine Input Types.

The app determines from the test file that the type of input is double(1024 x 1) and the type
of num is double(1 x 131).

5 Click Next to go to the Convert to Fixed Point step.
6 On the Convert to Fixed Point page, click Analyze to collect range information.
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The Variables tab displays the collected range information and type proposals. Manually edit the
data type proposals as needed.
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7 Click Convert to apply the proposed data types to the function.

The Fixed-Point Converter app applies the proposed data types and generates a fixed-point
function, myFIRFilter_fixpt.
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%#codegen
function output = myFIRFilter_fixpt(input, num) 
    fm = get_fimath();

    persistent lowpassFIR;
    if isempty(lowpassFIR)
        lowpassFIR  = dsp.FIRFilter('NumeratorSource', 'Input port', ...
            'FullPrecisionOverride', false, ...
            'ProductDataType', 'Full precision', ... % default
            'AccumulatorDataType', 'Custom', ...
            'CustomAccumulatorDataType', numerictype(1, 16, 14), ...
            'OutputDataType', 'Custom', ...
            'CustomOutputDataType', numerictype(1, 8, 6));
    end
    output = fi(lowpassFIR(input, num), 1, 16, 14, fm);
end

function fm = get_fimath()
    fm = fimath('RoundingMethod', 'Floor',...
         'OverflowAction', 'Wrap',...
         'ProductMode','FullPrecision',...
         'MaxProductWordLength', 128,...
         'SumMode','FullPrecision',...
         'MaxSumWordLength', 128);
end
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8 Click Next to see the project summary details and links to the fixed-point MATLAB code and
conversion report.

See Also

More About
• “System Objects Supported by Fixed-Point Converter App” on page 18-20
• “Floating-Point to Fixed-Point Conversion of IIR Filters” on page 4-348
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Specify Fixed-Point Attributes for Blocks
In this section...
“Fixed-Point Block Parameters” on page 18-28
“Specify System-Level Settings” on page 18-30
“Inherit via Internal Rule” on page 18-30
“Specify Data Types for Fixed-Point Blocks” on page 18-37

Fixed-Point Block Parameters
Toolbox blocks that have fixed-point support usually allow you to specify fixed-point characteristics
through block parameters. By specifying data type and scaling information for these fixed-point
parameters, you can simulate your target hardware more closely.

Note Floating-point inheritance takes precedence over the settings discussed in this section. When
the block has floating-point input, all block data types match the input.

You can find most fixed-point parameters on the Data Types pane of toolbox blocks. The following
figure shows a typical Data Types pane.

All toolbox blocks with fixed-point capabilities share a set of common parameters, but each block can
have a different subset of these fixed-point parameters. The following table provides an overview of
the most common fixed-point block parameters.
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Fixed-Point Data Type
Parameter

Description

Rounding Mode Specifies the rounding mode for the block to use when the specified
data type and scaling cannot exactly represent the result of a fixed-point
calculation.

See “Rounding Modes” on page 18-7 for more information on the
available options.

Saturate on integer
overflow

When you select this parameter, the block saturates the result of its
fixed-point operation. When you clear this parameter, the block wraps
the result of its fixed-point operation.

For details on saturate and wrap, see “Overflow Handling” on page 18-6
for fixed-point operations.

Intermediate Product Specifies the data type and scaling of the intermediate product for fixed-
point blocks. Blocks that feed multiplication results back to the input of
the multiplier use the intermediate product data type.

See the reference page of a specific block to learn about the
intermediate product data type for that block.

Product Output Specifies the data type and scaling of the product output for fixed-point
blocks that must compute multiplication results.

See the reference page of a specific block to learn about the product
output data type for that block. For or complex-complex multiplication,
the multiplication result is in the accumulator data type. See
“Multiplication Data Types” on page 18-10 for more information on
complex fixed-point multiplication in toolbox software.

Accumulator Specifies the data type and scaling of the accumulator (sum) for fixed-
point blocks that must hold summation results for further calculation.
Most such blocks cast to the accumulator data type before performing
the add operations (summation).

See the reference page of a specific block for details on the accumulator
data type of that block.

Output Specifies the output data type and scaling for blocks.

Using the Data Type Assistant

The Data Type Assistant is an interactive graphical tool available on the Data Types pane of some
fixed-point toolbox blocks.

To learn more about using the Data Type Assistant to help you specify block data type parameters,
see “Specify Data Types Using Data Type Assistant” (Simulink).

Checking Signal Ranges

Some fixed-point toolbox blocks have Minimum and Maximum parameters on the Data Types pane.
When a fixed-point data type has these parameters, you can use them to specify appropriate minimum
and maximum values for range checking purposes.
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To learn how to specify signal ranges and enable signal range checking, see “Specify Signal Ranges”
(Simulink).

Specify System-Level Settings
You can monitor and control fixed-point settings for toolbox blocks at a system or subsystem level
with the Fixed-Point Tool. For more information, see Fixed-Point Tool.

Logging

The Fixed-Point Tool logs overflows, saturations, and simulation minimums and maximums for fixed-
point toolbox blocks. The Fixed-Point Tool does not log overflows and saturations when the Data
overflow line in the Diagnostics > Data Integrity pane of the Configuration Parameters dialog
box is set to None.

Autoscaling

You can use the Fixed-Point Tool autoscaling feature to set the scaling for toolbox fixed-point data
types.

Data type override

toolbox blocks obey the Use local settings, Double, Single, and Off modes of the Data type
override parameter in the Fixed-Point Tool. The Scaled double mode is also supported for
toolboxes source and byte-shuffling blocks, and for some arithmetic blocks such as Difference and
Normalization.

Scaled double is a double data type that retains fixed-point scaling information. Using the data type
override, you can convert your fixed-point data types to scaled doubles. You can then simulate to
determine the ideal floating-point behavior of your system. After you gather that information, you can
turn data type override off to return to fixed-point data types, and your quantities still have their
original scaling information because it was held in the scaled double data types.

Inherit via Internal Rule
Selecting appropriate word lengths and scalings for the fixed-point parameters in your model can be
challenging. To aid you, an Inherit via internal rule choice is often available for fixed-point
block data type parameters, such as the Accumulator and Product output signals. The following
sections describe how the word and fraction lengths are selected for you when you choose Inherit
via internal rule for a fixed-point block data type parameter in toolbox software:

• “Internal Rule for Accumulator Data Types” on page 18-31
• “Internal Rule for Product Data Types” on page 18-31
• “Internal Rule for Output Data Types” on page 18-31
• “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 18-31
• “Internal Rule Examples” on page 18-32

Note In the equations in the following sections, WL = word length and FL = fraction length.
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Internal Rule for Accumulator Data Types

The internal rule for accumulator data types first calculates the ideal, full-precision result. Where N is
the number of addends:

WLidealaccumulator = WLinputtoaccumulator + floor(log2(N − 1)) + 1

FLidealaccumulator = FLinputtoaccumulator

For example, consider summing all the elements of a vector of length 6 and data type sfix10_En8. The
ideal, full-precision result has a word length of 13 and a fraction length of 8.

The accumulator can be real or complex. The preceding equations are used for both the real and
imaginary parts of the accumulator. For any calculation, after the full-precision result is calculated,
the final word and fraction lengths set by the internal rule are affected by your particular hardware.
See “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 18-31 for more
information.

Internal Rule for Product Data Types

The internal rule for product data types first calculates the ideal, full-precision result:

WLidealproduct = WLinput1 + WLinput2

FLidealproduct = FLinput1 + FLinput2

For example, multiplying together the elements of a real vector of length 2 and data type sfix10_En8.
The ideal, full-precision result has a word length of 20 and a fraction length of 16.

For real-complex multiplication, the ideal word length and fraction length is used for both the
complex and real portion of the result. For complex-complex multiplication, the ideal word length and
fraction length is used for the partial products, and the internal rule for accumulator data types
described above is used for the final sums. For any calculation, after the full-precision result is
calculated, the final word and fraction lengths set by the internal rule are affected by your particular
hardware. See “The Effect of the Hardware Implementation Pane on the Internal Rule” on page 18-
31 for more information.

Internal Rule for Output Data Types

A few toolbox blocks have an Inherit via internal rule choice available for the block output.
The internal rule used in these cases is block-specific, and the equations are listed in the block
reference page.

As with accumulator and product data types, the final output word and fraction lengths set by the
internal rule are affected by your particular hardware, as described in “The Effect of the Hardware
Implementation Pane on the Internal Rule” on page 18-31.

The Effect of the Hardware Implementation Pane on the Internal Rule

The internal rule selects word lengths and fraction lengths that are appropriate for your hardware. To
get the best results using the internal rule, you must specify the type of hardware you are using on
the Hardware Implementation pane of the Configuration Parameters dialog box. To open this
dialog box, click Modeling > Model Settings in the Simulink toolstrip.
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ASIC/FPGA

On an ASIC/FPGA target, the ideal, full-precision word length and fraction length calculated by the
internal rule are used. If the calculated ideal word length is larger than the largest allowed word
length, you receive an error.

Other targets

For all targets other than ASIC/FPGA, the ideal, full-precision word length calculated by the internal
rule is rounded up to the next available word length of the target. The calculated ideal fraction length
is used, keeping the least-significant bits.

If the calculated ideal word length for a product data type is larger than the largest word length on
the target, you receive an error. If the calculated ideal word length for an accumulator or output data
type is larger than the largest word length on the target, the largest target word length is used.

The largest word length allowed for Simulink and toolbox software on any target is 128 bits.

Internal Rule Examples

The following sections show examples of how the internal rule interacts with the Hardware
Implementation pane to calculate accumulator data types on page 18-32 and product data types
on page 18-35.

Accumulator Data Types

Consider the following model ex_internalRule_accumExp.

18 Fixed-Point Design

18-32

matlab:ex_internalRule_accumExp


In the Difference blocks, the Accumulator parameter is set to Inherit: Inherit via internal
rule, and the Output parameter is set to Inherit: Same as accumulator. Therefore, you can
see the accumulator data type calculated by the internal rule on the output signal in the model.

In the preceding model, the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box is set to ASIC/FPGA. Therefore, the accumulator data type used
by the internal rule is the ideal, full-precision result.

Calculate the full-precision word length for each of the Difference blocks in the model:

WLidealaccumulator = WLinputtoaccumulator + floor(log2(numberofaccumulations)) + 1
WLidealaccumulator = 9 + floor(log2(1)) + 1
WLidealaccumulator = 9 + 0 + 1 = 10

WLidealaccumulator1 = WLinputtoaccumulator1 + floor(log2(numberofaccumulations)) + 1
WLidealaccumulator1 = 16 + floor(log2(1)) + 1
WLidealaccumulator1 = 16 + 0 + 1 = 17

WLidealaccumulator2 = WLinputtoaccumulator2 + floor(log2(numberofaccumulations)) + 1
WLidealaccumulator2 = 127 + floor(log2(1)) + 1
WLidealaccumulator2 = 127 + 0 + 1 = 128

Calculate the full-precision fraction length, which is the same for each Matrix Sum block in this
example:

FLidealaccumulator = FLinputtoaccumulator
FLidealaccumulator = 4
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Now change the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box to 32–bit Embedded Processor, by changing the parameters
as shown in the following figure.

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word lengths available. Therefore,
the ideal word lengths of 10, 17, and 128 bits calculated by the internal rule cannot be used. Instead,
the internal rule uses the next largest available word length in each case You can see this if you rerun
the model, as shown in the following figure.
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Product Data Types

Consider the following model ex_internalRule_prodExp.

In the Array-Vector Multiply blocks, the Product Output parameter is set to Inherit: Inherit
via internal rule, and the Output parameter is set to Inherit: Same as product output.
Therefore, you can see the product output data type calculated by the internal rule on the output
signal in the model. The setting of the Accumulator parameter does not matter because this
example uses real values.

For the preceding model, the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box is set to ASIC/FPGA. Therefore, the product data type used by
the internal rule is the ideal, full-precision result.

Calculate the full-precision word length for each of the Array-Vector Multiply blocks in the model:
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WLidealproduct = WLinputa + WLinputb
WLidealproduct = 7 + 5 = 12

WLidealproduct1 = WLinputa + WLinputb
WLidealproduct1 = 16 + 15 = 31

Calculate the full-precision fraction length, which is the same for each Array-Vector Multiply block in
this example:

FLidealaccumulator = FLinputtoaccumulator
FLidealaccumulator = 4

Now change the Device type parameter in the Hardware Implementation pane of the
Configuration Parameters dialog box to 32–bit Embedded Processor, as shown in the following
figure.

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word lengths available. Therefore,
the ideal word lengths of 12 and 31 bits calculated by the internal rule cannot be used. Instead, the
internal rule uses the next largest available word length in each case. You can see this if you rerun
the model, as shown in the following figure.
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Specify Data Types for Fixed-Point Blocks
The following sections show you how to use the Fixed-Point Tool to select appropriate data types for
fixed-point blocks in the ex_fixedpoint_tut model:

• “Prepare the Model” on page 18-37
• “Use Data Type Override to Find a Floating-Point Benchmark” on page 18-41
• “Use the Fixed-Point Tool to Propose Fraction Lengths” on page 18-41
• “Examine the Results and Accept the Proposed Scaling” on page 18-42

Prepare the Model

1 Open the model by typing ex_fixedpoint_tut at the MATLAB command line.

This model uses the Cumulative Sum block to sum the input coming from the Fixed-Point Sources
subsystem. The Fixed-Point Sources subsystem outputs two signals with different data types:
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• The Signed source has a word length of 16 bits and a fraction length of 15 bits.
• The Unsigned source has a word length of 16 bits and a fraction length of 16 bits.

2 Run the model to check for overflow. MATLAB displays the following warnings at the command
line:

Warning: Overflow occurred. This originated from
'ex_fixedpoint_tut/Signed Cumulative Sum'. 
Warning: Overflow occurred. This originated from
'ex_fixedpoint_tut/Unsigned Cumulative Sum'. 

According to these warnings, overflow occurs in both Cumulative Sum blocks.
3 To investigate the overflows in this model, use the Fixed-Point Tool. You can open the Fixed-Point

Tool by selecting Tools > Fixed-Point > Fixed-Point Tool from the model menu. Turn on
logging for all blocks in your model by setting the Fixed-point instrumentation mode
parameter to Minimums, maximums and overflows.

4 Now that you have turned on logging, rerun the model by clicking the Simulation button.
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5 The results of the simulation appear in a table in the central Contents pane of the Fixed-Point
Tool. Review the following columns:

• Name — Provides the name of each signal in the following format: Subsystem Name/Block
Name: Signal Name.

• SimDT — The simulation data type of each logged signal.
• SpecifiedDT — The data type specified on the block dialog for each signal.
• SimMin — The smallest representable value achieved during simulation for each logged

signal.
• SimMax — The largest representable value achieved during simulation for each logged

signal.
• OverflowWraps — The number of overflows that wrap during simulation.
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You can also see that the SimMin and SimMax values for the Accumulator data types range
from 0 to .9997. The logged results indicate that 8,192 overflows wrapped during simulation in
the Accumulator data type of the Signed Cumulative Sum block. Similarly, the Accumulator data
type of the Unsigned Cumulative Sum block had 16,383 overflows wrap during simulation.

To get more information about each of these data types, highlight them in the Contents pane,

and click the Show details for selected result button ( )
6 Assume a target hardware that supports 32-bit integers, and set the Accumulator word length in

both Cumulative Sum blocks to 32. To do so, perform the following steps:

1 Right-click the Signed Cumulative Sum: Accumulator row in the Fixed-Point Tool pane,
and select Highlight Block In Model.

2 Double-click the block in the model, and select the Data Types pane of the dialog box.
3 Open the Data Type Assistant for Accumulator by clicking the Assistant button

( ) in the Accumulator data type row.
4 Set the Mode to Fixed Point. To see the representable range of the current specified data

type, click the Fixed-point details link. The tool displays the representable maximum and
representable minimum values for the current data type.
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5 Change the Word length to 32, and click the Refresh details button in the Fixed-point
details section to see the updated representable range. When you change the value of the
Word length parameter, the Data Type edit box automatically updates.

6 Click OK on the block dialog box to save your changes and close the window.
7 Set the word length of the Accumulator data type of the Unsigned Cumulative Sum block to

32 bits. You can do so in one of two ways:

• Type the data type fixdt([],32,0) directly into Data Type edit box for the
Accumulator data type parameter.

• Perform the same steps you used to set the word length of the Accumulator data type of
the Signed Cumulative Sum block to 32 bits.

7 To verify your changes in word length and check for overflow, rerun your model. To do so, click
the Simulate button in the Fixed-Point Tool.

The Contents pane of the Fixed-Point Tool updates, and you can see that no overflows occurred
in the most recent simulation. However, you can also see that the SimMin and SimMax values
range from 0 to 0. This underflow happens because the fraction length of the Accumulator data
type is too small. The SpecifiedDT cannot represent the precision of the data values. The
following sections discuss how to find a floating-point benchmark and use the Fixed-Point Tool to
propose fraction lengths.

Use Data Type Override to Find a Floating-Point Benchmark

The Data type override feature of the Fixed-Point tool allows you to override the data types
specified in your model with floating-point types. Running your model in Double override mode gives
you a reference range to help you select appropriate fraction lengths for your fixed-point data types.
To do so, perform the following steps:

1 Open the Fixed-Point Tool and set Data type override to Double.
2 Run your model by clicking the Run simulation and store active results button.
3 Examine the results in the Contents pane of the Fixed-Point Tool. Because you ran the model in

Double override mode, you get an accurate, idealized representation of the simulation
minimums and maximums. These values appear in the SimMin and SimMax parameters.

4 Now that you have an accurate reference representation of the simulation minimum and
maximum values, you can more easily choose appropriate fraction lengths. Before making these
choices, save your active results to reference so you can use them as your floating-point
benchmark. To do so, select Results > Move Active Results To Reference from the Fixed-Point
Tool menu. The status displayed in the Run column changes from Active to Reference for all
signals in your model.

Use the Fixed-Point Tool to Propose Fraction Lengths

Now that you have your Double override results saved as a floating-point reference, you are ready to
propose fraction lengths.

1 To propose fraction lengths for your data types, you must have a set of Active results available
in the Fixed-Point Tool. To produce an active set of results, simply rerun your model. The tool
now displays both the Active results and the Reference results for each signal.

2 Select the Use simulation min/max if design min/max is not available check box. You did
not specify any design minimums or maximums for the data types in this model. Thus, the tool
uses the logged information to compute and propose fraction lengths. For information on
specifying design minimums and maximums, see “Specify Signal Ranges” (Simulink).
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3
Click the Propose fraction lengths button ( ). The tool populates the proposed data types
in the ProposedDT column of the Contents pane. The corresponding proposed minimums and
maximums are displayed in the ProposedMin and ProposedMax columns.

Examine the Results and Accept the Proposed Scaling

Before accepting the fraction lengths proposed by the Fixed-Point Tool, it is important to look at the
details of that data type. Doing so allows you to see how much of your data the suggested data type
can represent. To examine the suggested data types and accept the proposed scaling, perform the
following steps:

1 In the Contents pane of the Fixed-Point Tool, you can see the proposed fraction lengths for the
data types in your model.

• The proposed fraction length for the Accumulator data type of both the Signed and Unsigned
Cumulative Sum blocks is 17 bits.

• To get more details about the proposed scaling for a particular data type, highlight the data
type in the Contents pane of the Fixed-Point Tool.

• Open the Autoscale Information window for the highlighted data type by clicking the Show

autoscale information for the selected result button ( ).
2 When the Autoscale Information window opens, check the Value and Percent Proposed

Representable columns for the Simulation Minimum and Simulation Maximum parameters.
You can see that the proposed data type can represent 100% of the range of simulation data.

3 To accept the proposed data types, select the check box in the Accept column for each data type
whose proposed scaling you want to keep. Then, click the Apply accepted fraction lengths

button ( ). The tool updates the specified data types on the block dialog boxes and the
SpecifiedDT column in the Contents pane.

4 To verify the newly accepted scaling, set the Data type override parameter back to Use local
settings, and run the model. Looking at Contents pane of the Fixed-Point Tool, you can see the
following details:

• The SimMin and SimMax values of the Active run match the SimMin and SimMax values
from the floating-point Reference run.

• There are no longer any overflows.
• The SimDT does not match the SpecifiedDT for the Accumulator data type of either

Cumulative Sum block. This difference occurs because the Cumulative Sum block always
inherits its Signedness from the input signal and only allows you to specify a Signedness of
Auto. Therefore, the SpecifiedDT for both Accumulator data types is fixdt([],32,17).
However, because the Signed Cumulative Sum block has a signed input signal, the SimDT for
the Accumulator parameter of that block is also signed (fixdt(1,32,17)). Similarly, the
SimDT for the Accumulator parameter of the Unsigned Cumulative Sum block inherits its
Signedness from its input signal and thus is unsigned (fixdt(0,32,17)).
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Quantizers
In this section...
“Scalar Quantizers” on page 18-43
“Vector Quantizers” on page 18-46

Scalar Quantizers
• “Analysis and Synthesis of Speech” on page 18-43
• “Identify Your Residual Signal and Reflection Coefficients” on page 18-44
• “Add a Scalar Quantizer” on page 18-45

Analysis and Synthesis of Speech

A speech signal is usually represented in digital format, which is a sequence of binary bits. For
storage and transmission applications, it is desirable to compress a signal by representing it with as
few bits as possible, while maintaining its perceptual quality. Quantization is the process of
representing a signal with a reduced level of precision. If you decrease the number of bits allocated
for the quantization of your speech signal, the signal is distorted and the speech quality degrades.

In narrowband digital speech compression, speech signals are sampled at a rate of 8000 samples per
second. Each sample is typically represented by 8 bits. This 8-bit representation corresponds to a bit
rate of 64 kbits per second. Further compression is possible at the cost of quality. Most of the current
low bit rate speech coders are based on the principle of linear predictive speech coding. This topic
shows you how to use the Scalar Quantizer Encoder and Scalar Quantizer Decoder blocks to
implement a simple speech coder.

1 Type ex_sq_example1 at the MATLAB command line to open the example model.

This model pre-emphasizes the input speech signal by applying an FIR filter. Then, it calculates
the reflection coefficients of each frame using the Levinson-Durbin algorithm. The model uses
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these reflection coefficients to create the linear prediction analysis filter (lattice-structure). Next,
the model calculates the residual signal by filtering each frame of the pre-emphasized speech
samples using the reflection coefficients. The residual signal, which is the output of the analysis
stage, usually has a lower energy than the input signal. The blocks in the synthesis stage of the
model filter the residual signal using the reflection coefficients and apply an all-pole de-emphasis
filter. The de-emphasis filter is the inverse of the pre-emphasis filter. The result is the full
recovery of the original signal.

2 Run this model.
3 Double-click the Original Signal and Processed Signal blocks and listen to both the original and

the processed signal.

There is no significant difference between the two because no quantization was performed.

To better approximate a real-world speech analysis and synthesis system, quantize the residual signal
and reflection coefficients before they are transmitted.

Identify Your Residual Signal and Reflection Coefficients

In the previous topic, “Analysis and Synthesis of Speech” on page 18-43, you learned the theory
behind the LPC Analysis and Synthesis of Speech example model. In this topic, you define the
residual signal and the reflection coefficients in your MATLAB workspace as the variables E and K,
respectively. Later, you use these values to create your scalar quantizers:

1 Open the example model by typing ex_sq_example2 at the MATLAB command line.
2 Save the model file as ex_sq_example2 in your working folder.
3 From the Simulink Sinks library, click-and-drag two To Workspace blocks into your model.
4 Connect the output of the Levinson-Durbin block to one of the To Workspace blocks.
5 Double-click this To Workspace block and set the Variable name parameter to K. Click OK.
6 Connect the output of the Time-Varying Analysis Filter block to the other To Workspace block.
7 Double-click this To Workspace block and set the Variable name parameter to E. Click OK.

Your model should now look similar to this figure.
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8 Run your model.

The residual signal, E, and your reflection coefficients, K, are defined in the MATLAB workspace.

Add a Scalar Quantizer

In this topic, you add scalar quantizer encoders and decoders to quantize the residual signal, E, and
the reflection coefficients, K:

1 If the model you created in “Identify Your Residual Signal and Reflection Coefficients” on page
18-44 is not open on your desktop, you can open an equivalent model by typing ex_sq_example2
at the MATLAB command prompt.

2 Run this model to define the variables E and K in the MATLAB workspace.
3 From the Quantizers library, click-and-drag a Scalar Quantizer Encoder and Scalar Quantizer

Decoder blocks to the model for each signal you want to quantize. Quantize the residual signal,
E, and the reflection coefficients, K

4 Save the model as ex_sq_example3. Your model should look similar to the following figure.

5 Run your model.
6 Double-click the Original Signal and Processed Signal blocks, and listen to both signals.

Again, there is no perceptible difference between the two. You can therefore conclude that
quantizing your residual and reflection coefficients did not affect the ability of your system to
accurately reproduce the input signal.

You have now quantized the residual and reflection coefficients. The bit rate of a quantization system
is calculated as (bits per frame)*(frame rate).

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) + (12 reflection
coefficient samples/frame)*(7 bits/sample)]*(100 frames/second), or 64.4 kbits per second. This is
higher than most modern speech coders, which typically have a bit rate of 8 to 24 kbits per second. If
you decrease the number of bits allocated for the quantization of the reflection coefficients or the
residual signal, the overall bit rate would decrease. However, the speech quality would also degrade.

For information about decreasing the bit rate without affecting speech quality, see “Vector
Quantizers” on page 18-46.
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Vector Quantizers
• “Build Your Vector Quantizer Model” on page 18-46
• “Configure and Run Your Model” on page 18-47

Build Your Vector Quantizer Model

In the previous section, you quantized your residual signal and reflection coefficients. The bit rate of
your scalar quantization system was 64.4 kbits per second. This bit rate is higher than most modern
speech coders. To accommodate a greater number of users in each channel, you need to lower this bit
rate while maintaining the quality of your speech signal. You can use vector quantizers, which exploit
the correlations between each sample of a signal, to accomplish this task.

In this topic, you modify your scalar quantization model so that you are using a split vector quantizer
to quantize your reflection coefficients:

1 Open ex_vq_example1 at the MATLAB command prompt. The example model ex_vq_example1
adds a new LSF Vector Quantization subsystem to the ex_sq_example3 model. This subsystem
is preconfigured to work as a vector quantizer. You can use this subsystem to encode and decode
your reflection coefficients using the split vector quantization method.

2 Delete the SQ Encoder – Reflection Coefficients and SQ Decoder – Reflection Coefficients blocks.
3 From the Simulink Sinks library, click-and-drag a Terminator block into your model.
4 From the DSP System Toolbox Estimation > Linear Prediction library, click-and-drag a LSF/LSP

to LPC Conversion block and two LPC to/from RC blocks into your model.
5 Connect the blocks as shown in the following figure. You do not need to connect Terminator

blocks to the P ports of the LPC to/from RC blocks. These ports disappear once you set block
parameters.

You have modified your model to include a subsystem capable of vector quantization. In the next
topic, you reset your model parameters to quantize your reflection coefficients using the split vector
quantization method.
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Configure and Run Your Model

In the previous topic, you configured your scalar quantization model for vector quantization by
adding the LSF Vector Quantization subsystem. In this topic, you set your block parameters and
quantize your reflection coefficients using the split vector quantization method.

1 If the model you created in “Build Your Vector Quantizer Model” on page 18-46 is not open on
your desktop, you can open an equivalent model by typing ex_vq_example2 at the MATLAB
command prompt.

2 Double-click the LSF Vector Quantization subsystem, and then double-click the LSF Split VQ
subsystem.

The subsystem opens, and you see the three Vector Quantizer Encoder blocks used to implement
the split vector quantization method.

This subsystem divides each vector of 10 line spectral frequencies (LSFs), which represent your
reflection coefficients, into three LSF subvectors. Each of these subvectors is sent to a separate
vector quantizer. This method is called split vector quantization.

3 Double-click the VQ of LSF: 1st subvector block.

The Block Parameters: VQ of LSF: 1st subvector dialog box opens.
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The variable CB_lsf1to3_10bit is the codebook for the subvector that contains the first three
elements of the LSF vector. It is a 3-by-1024 matrix, where 3 is the number of elements in each
codeword and 1024 is the number of codewords in the codebook. Because 210 = 1024, it takes 10
bits to quantize this first subvector. Similarly, a 10-bit vector quantizer is applied to the second
and third subvectors, which contain elements 4 to 6 and 7 to 10 of the LSF vector, respectively.
Therefore, it takes 30 bits to quantize all three subvectors.

Note If you used the vector quantization method to quantize your reflection coefficients, you
would need 230 or 1.0737e9 codebook values to achieve the same degree of accuracy as the split
vector quantization method.

4 In your model file, double-click the Autocorrelation block and set the Maximum non-negative
lag (less than input length) parameter to 10. Click OK.

This parameter controls the number of linear polynomial coefficients (LPCs) that are input to the
split vector quantization method.

5 Double-click the LPC to/from RC block that is connected to the input of the LSF Vector
Quantization subsystem. Clear the Output normalized prediction error power check box.
Click OK.
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6 Double-click the LSF/LSP to LPC Conversion block and set the Input parameter to LSF in
range (0 to pi). Click OK.

7 Double-click the LPC to/from RC block that is connected to the output of the LSF/LSP to LPC
Conversion block. Set the Type of conversion parameter to LPC to RC, and clear the Output
normalized prediction error power check box. Click OK.

8 Run your model.

9 Double-click the Original Signal and Processed Signal blocks to listen to both the original and the
processed signal.

There is no perceptible difference between the two. Quantizing your reflection coefficients using
a split vector quantization method produced good quality speech without much distortion.

You have now used the split vector quantization method to quantize your reflection coefficients. The
vector quantizers in the LSF Vector Quantization subsystem use 30 bits to quantize a frame
containing 80 reflection coefficients. The bit rate of a quantization system is calculated as (bits per
frame)*(frame rate).

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) + (30 bits/frame)]*(100
frames/second), or 59 kbits per second. This is less than 64.4 kbits per second, the bit rate of the
scalar quantization system. However, the quality of the speech signal did not degrade. If you want to
further reduce the bit rate of your system, you can use the vector quantization method to quantize
the residual signal.
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Create an FIR Filter Using Integer Coefficients
In this section...
“Define the Filter Coefficients” on page 18-50
“Build the FIR Filter” on page 18-50
“Set the Filter Parameters to Work with Integers” on page 18-51
“Create a Test Signal for the Filter” on page 18-52
“Filter the Test Signal” on page 18-52
“Truncate the Output WordLength” on page 18-54
“Scale the Output” on page 18-56
“Configure Filter Parameters to Work with Integers Using the set2int Method” on page 18-59

This section provides an example of how you can create a filter with integer coefficients. In this
example, a raised-cosine filter with floating-point coefficients is created, and the filter coefficients are
then converted to integers.

Define the Filter Coefficients
To illustrate the concepts of using integers with fixed-point filters, this example will use a raised-
cosine filter:

b = rcosdesign(.25, 12.5, 8, 'sqrt');

The coefficients of b are normalized so that the passband gain is equal to 1, and are all smaller than
1. In order to make them integers, they will need to be scaled. If you wanted to scale them to use 18
bits for each coefficient, the range of possible values for the coefficients becomes:

[− 2−17, 217− 1] = = [− 131072, 131071]

Because the largest coefficient of b is positive, it will need to be scaled as close as possible to 131071
(without overflowing) in order to minimize quantization error. You can determine the exponent of the
scale factor by executing:

B = 18; % Number of bits
L = floor(log2((2^(B-1)-1)/max(b)));  % Round towards zero to avoid overflow
bsc = b*2^L;

Alternatively, you can use the fixed-point numbers autoscaling tool as follows:

bq = fi(b, true, B);  % signed = true, B = 18 bits
L = bq.FractionLength;

It is a coincidence that B and L are both 18 in this case, because of the value of the largest coefficient
of b. If, for example, the maximum value of b were 0.124, L would be 20 while B (the number of bits)
would remain 18.

Build the FIR Filter
First create the filter using the direct form, tapped delay line structure:

h = dfilt.dffir(bsc);
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In order to set the required parameters, the arithmetic must be set to fixed-point:

h.Arithmetic = 'fixed';
h.CoeffWordLength = 18;

You can check that the coefficients of h are all integers:

all(h.Numerator == round(h.Numerator))

ans = 

    1

Now you can examine the magnitude response of the filter using fvtool:

fvtool(h, 'Color', 'white')

This shows a large gain of 117 dB in the passband, which is due to the large values of the coefficients
— this will cause the output of the filter to be much larger than the input. A method of addressing this
will be discussed in the following sections.

Set the Filter Parameters to Work with Integers
You will need to set the input parameters of your filter to appropriate values for working with
integers. For example, if the input to the filter is from a A/D converter with 12 bit resolution, you
should set the input as follows:

 Create an FIR Filter Using Integer Coefficients

18-51



h.InputWordLength = 12;
h.InputFracLength = 0;

The info method returns a summary of the filter settings.

info(h)

Discrete-Time FIR Filter (real)              
-------------------------------              
Filter Structure  : Direct-Form FIR          
Filter Length     : 101     
Stable            : Yes     
Linear Phase      : Yes (Type 1)             
Arithmetic        : fixed   
Numerator         : s18,0 -> [-131072 131072)
Input             : s12,0 -> [-2048 2048)    
Filter Internals  : Full Precision           
  Output          : s31,0 -> [-1073741824 1073741824)  (auto determined)
  Product         : s29,0 -> [-268435456 268435456)  (auto determined)  
  Accumulator     : s31,0 -> [-1073741824 1073741824)  (auto determined)
  Round Mode      : No rounding              
  Overflow Mode   : No overflow   

In this case, all the fractional lengths are now set to zero, meaning that the filter h is set up to handle
integers.

Create a Test Signal for the Filter
You can generate an input signal for the filter by quantizing to 12 bits using the autoscaling feature,
or you can follow the same procedure that was used for the coefficients, discussed previously. In this
example, create a signal with two sinusoids:

n = 0:999;
f1 = 0.1*pi;  % Normalized frequency of first sinusoid
f2 = 0.8*pi;  % Normalized frequency of second sinusoid
x = 0.9*sin(0.1*pi*n) + 0.9*sin(0.8*pi*n);
xq = fi(x, true, 12);  % signed = true, B = 12
xsc = fi(xq.int, true, 12, 0);

Filter the Test Signal
To filter the input signal generated above, enter the following:

ysc = filter(h, xsc);

Here ysc is a full precision output, meaning that no bits have been discarded in the computation.
This makes ysc the best possible output you can achieve given the 12–bit input and the 18–bit
coefficients. This can be verified by filtering using double-precision floating-point and comparing the
results of the two filtering operations:

hd = double(h);
xd = double(xsc);
yd = filter(hd, xd);
norm(yd-double(ysc))

ans =

     0
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Now you can examine the output compared to the input. This example is plotting only the last few
samples to minimize the effect of transients:

idx = 800:950;
xscext = double(xsc(idx)');
gd = grpdelay(h, [f1 f2]);
yidx = idx + gd(1);
yscext = double(ysc(yidx)');
stem(n(idx)', [xscext, yscext]);
axis([800 950 -2.5e8 2.5e8]);
legend('input', 'output');
set(gcf, 'color', 'white');

It is difficult to compare the two signals in this figure because of the large difference in scales. This is
due to the large gain of the filter, so you will need to compensate for the filter gain:

stem(n(idx)', [2^18*xscext, yscext]);
axis([800 950 -5e8 5e8]);
legend('scaled input', 'output');
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You can see how the signals compare much more easily once the scaling has been done, as seen in
the above figure.

Truncate the Output WordLength
If you examine the output wordlength,

ysc.WordLength

ans =

    31

you will notice that the number of bits in the output is considerably greater than in the input.
Because such growth in the number of bits representing the data may not be desirable, you may need
to truncate the wordlength of the output. The best way to do this is to discard the least significant
bits, in order to minimize error. However, if you know there are unused high order bits, you should
discard those bits as well.

To determine if there are unused most significant bits (MSBs), you can look at where the growth in
WordLength arises in the computation. In this case, the bit growth occurs to accommodate the results
of adding products of the input (12 bits) and the coefficients (18 bits). Each of these products is 29
bits long (you can verify this using info(h)). The bit growth due to the accumulation of the product
depends on the filter length and the coefficient values- however, this is a worst-case determination in
the sense that no assumption on the input signal is made besides, and as a result there may be
unused MSBs. You will have to be careful though, as MSBs that are deemed unused incorrectly will
cause overflows.

Suppose you want to keep 16 bits for the output. In this case, there is no bit-growth due to the
additions, so the output bit setting will be 16 for the wordlength and –14 for the fraction length.
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Since the filtering has already been done, you can discard some bits from ysc:

yout = fi(ysc, true, 16, -14);

Alternatively, you can set the filter output bit lengths directly (this is useful if you plan on filtering
many signals):

specifyall(h);
h.OutputWordLength = 16;
h.OutputFracLength = -14;
yout2 = filter(h, xsc);

You can verify that the results are the same either way:

norm(double(yout) - double(yout2))

ans =

     0

However, if you compare this to the full precision output, you will notice that there is rounding error
due to the discarded bits:

norm(double(yout)-double(ysc))

ans =

    1.446323386867543e+005

In this case the differences are hard to spot when plotting the data, as seen below:

stem(n(yidx), [double(yout(yidx)'), double(ysc(yidx)')]);
axis([850 950 -2.5e8 2.5e8]);
legend('Scaled Input', 'Output');
set(gcf, 'color', 'white');

 Create an FIR Filter Using Integer Coefficients

18-55



Scale the Output
Because the filter in this example has such a large gain, the output is at a different scale than the
input. This scaling is purely theoretical however, and you can scale the data however you like. In this
case, you have 16 bits for the output, but you can attach whatever scaling you choose. It would be
natural to reinterpret the output to have a weight of 2^0 (or L = 0) for the LSB. This is equivalent to
scaling the output signal down by a factor of 2^(-14). However, there is no computation or rounding
error involved. You can do this by executing the following:

yri = fi(yout.int, true, 16, 0);
stem(n(idx)', [xscext, double(yri(yidx)')]);
axis([800 950 -1.5e4 1.5e4]);
legend('input', 'rescaled output');

This plot shows that the output is still larger than the input. If you had done the filtering in double-
precision floating-point, this would not be the case— because here more bits are being used for the
output than for the input, so the MSBs are weighted differently. You can see this another way by
looking at the magnitude response of the scaled filter:

[H,w] = freqz(h);
plot(w/pi, 20*log10(2^(-14)*abs(H)));
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This plot shows that the passband gain is still above 0 dB.

To put the input and output on the same scale, the MSBs must be weighted equally. The input MSB
has a weight of 2^11, whereas the scaled output MSB has a weight of 2^(29–14) = 2^15. You need
to give the output MSB a weight of 2^11 as follows:

yf = fi(zeros(size(yri)), true, 16, 4);
yf.bin = yri.bin;
stem(n(idx)', [xscext, double(yf(yidx)')]);
legend('input', 'rescaled output');
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This operation is equivalent to scaling the filter gain down by 2^(-18).

[H,w] = freqz(h);
plot(w/pi, 20*log10(2^(-18)*abs(H)));

The above plot shows a 0 dB gain in the passband, as desired.
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With this final version of the output, yf is no longer an integer. However this is only due to the
interpretation- the integers represented by the bits in yf are identical to the ones represented by the
bits in yri. You can verify this by comparing them:

max(abs(yf.int - yri.int))

ans =

      0

Configure Filter Parameters to Work with Integers Using the set2int
Method
Set the Filter Parameters to Work with Integers

The set2int method provides a convenient way of setting filter parameters to work with integers.
The method works by scaling the coefficients to integer numbers, and setting the coefficients and
input fraction length to zero. This makes it possible for you to use floating-point coefficients directly.

h = dfilt.dffir(b);
h.Arithmetic = 'fixed';

The coefficients are represented with 18 bits and the input signal is represented with 12 bits:

g = set2int(h, 18, 12);
g_dB = 20*log10(g)

g_dB =

    1.083707984390332e+002

The set2int method returns the gain of the filter by scaling the coefficients to integers, so the gain
is always a power of 2. You can verify that the gain we get here is consistent with the gain of the filter
previously. Now you can also check that the filter h is set up properly to work with integers:

info(h)
Discrete-Time FIR Filter (real)              
-------------------------------              
Filter Structure  : Direct-Form FIR          
Filter Length     : 101     
Stable            : Yes     
Linear Phase      : Yes (Type 1)             
Arithmetic        : fixed   
Numerator         : s18,0 -> [-131072 131072)
Input             : s12,0 -> [-2048 2048)    
Filter Internals  : Full Precision           
  Output     : s31,0 -> [-1073741824 1073741824) (auto determined)
  Product    : s29,0 -> [-268435456 268435456) (auto determined)  
  Accumulator: s31,0 -> [-1073741824 1073741824) (auto determined)
  Round Mode      : No rounding              
  Overflow Mode   : No overflow        

Here you can see that all fractional lengths are now set to zero, so this filter is set up properly for
working with integers.

Reinterpret the Output

You can compare the output to the double-precision floating-point reference output, and verify that
the computation done by the filter h is done in full precision.
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yint = filter(h, xsc);
norm(yd - double(yint))

ans =

     0

You can then truncate the output to only 16 bits:

yout = fi(yint, true, 16);
stem(n(yidx), [xscext, double(yout(yidx)')]);
axis([850 950 -2.5e8 2.5e8]);
legend('input', 'output');

Once again, the plot shows that the input and output are at different scales. In order to scale the
output so that the signals can be compared more easily in a plot, you will need to weigh the MSBs
appropriately. You can compute the new fraction length using the gain of the filter when the
coefficients were integer numbers:

WL = yout.WordLength;
FL = yout.FractionLength + log2(g);
yf2 = fi(zeros(size(yout)), true, WL, FL);
yf2.bin = yout.bin;

stem(n(idx)', [xscext, double(yf2(yidx)')]);
axis([800 950 -2e3 2e3]);
legend('input', 'rescaled output');
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This final plot shows the filtered data re-scaled to match the input scale.
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Fixed-Point Precision Rules for Avoiding Overflow in FIR Filters
In this section...
“Output Limits for FIR Filters” on page 18-62
“Fixed-Point Precision Rules” on page 18-64
“Polyphase Interpolators and Decimators” on page 18-65

Fixed-point FIR filters are commonly implemented on digital signal processors, FPGAs, and ASICs. A
fixed-point filter uses fixed-point arithmetic and is represented by an equation with fixed-point
coefficients. If the accumulator and output of the FIR filter do not have sufficient bits to represent
their data, overflow occurs and distorts the signal. Use these two rules to determine FIR filter
precision settings automatically. The aim is to minimize resource utilization (memory/storage and
processing elements) while avoiding overflow. Because the rules are optimized based on the input
precision, coefficient precision, and the coefficient values, the FIR filter must have nontunable
coefficients.

The precision rules define the minimum and the maximum values of the FIR filter output. To
determine these values, perform min/max analysis on the FIR filter coefficients.

Output Limits for FIR Filters
FIR filter is defined by:

y[n] = ∑
k = 0

N − 1
hkx[n− k]

• x[n] is the input signal.
• y[n] is the output signal.
• hk is the kth filter coefficient.
• N is the length of the filter.

Output Limits for FIR Filters with Real Input and Real Coefficients

Let the minimum value of the input signal be Xmin, where Xmin ≤ 0, and the maximum value be Xmax,
where Xmax ≥ 0. The minimum output occurs when you multiply the positive coefficients by Xmin and
the negative coefficients by Xmax. Similarly, the maximum output occurs when you multiply the
positive coefficients by Xmax and the negative coefficients by Xmin.

If the sum of all the positive coefficients is

G+ = ∑
k = 0, hk > 0

N − 1
hk

and the sum of all the negative coefficients is denoted as

G− = ∑
k = 0, hk < 0

N − 1
hk

then you can express the minimum output of the filter as
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Ymin = G+Xmin + G−Xmax

and the maximum output of the filter as

Ymax = G+Xmax + G−Xmin

Therefore, the output of the filter lies in the interval [Ymin, Ymax].

Complex Filter Convolution Equations

You can define a complex filter (complex inputs and complex coefficients) in terms of the real and
imaginary parts of its signals and coefficients:

Re(y[n]) = ∑
k = 0

N − 1
Re(hk)Re(x[n− k])− ∑

k = 0

N − 1
Im(hk)Im(x[n− k])

Im(y[n]) = ∑
k = 0

N − 1
Re(hk)Im(x[n− k]) + ∑

k = 0

N − 1
Im(hk)Re(x[n− k])

The complex filter is decomposed into four real filters as depicted in the signal flow diagram. Each
signal is annotated with an interval denoting its range.

Output Limits for FIR Filters with Complex Input and Complex Coefficients

You can extend the real filter min/max analysis to complex filters. Assume that both the real and
imaginary parts of the input signal lie in the interval [Xmin, Xmax].

The complex filter contains two instances of the filter Re(hk). Both filters have the same input range
and therefore the same output range in the interval [Vre

min, Vre
max]. Similarly, the complex filter

contains two instances of the filter Im(hk). Both filters have the same output range in the interval
[Vim

min, Vim
max].

Based on the min/max analysis of real filters, you can express Vre
min, Vre

max, Vim
min, and Vim

max as:

Vmin
re = Gre

+ Xmin + Gre
− Xmax

Vmax
re = Gre

+ Xmax + Gre
− Xmin

Vmin
im = Gim

+ Xmin + Gim
− Xmax

Vmax
im = Gim

+ Xmax + Gim
− Xmin
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• G+
re is the sum of the positive real parts of hk, given by

Gre
+ = ∑

k = 0, Re(hk) > 0

N − 1
Re(hk)

• G-
re is the sum of the negative real parts of hk, given by

Gre
− = ∑

k = 0, Re(hk) < 0

N − 1
Re(hk)

• G+
im is the sum of the positive imaginary parts of hk, given by

Gim
+ = ∑

k = 0, Im(hk) > 0

N − 1
Im(hk)

• G-
im is the sum of the negative imaginary parts of hk, given by

Gim
− = ∑

k = 0, Im(hk) < 0

N − 1
Im(hk)

The minimum and maximum values of the real and imaginary parts of the output are:

Ymin
re = Vmin

re − Vmax
im

Ymax
re = Vmax

re − Vmin
im

Ymin
im = Vmin

re + Vmin
im

Ymax
im = Vmax

re + Vmax
im

The worst-case minimum and maximum on either the real or imaginary part of the output is given by

Ymin = min(Ymin
re , Ymin

im )

Ymax = max(Ymax
re , Ymax

im )

Fixed-Point Precision Rules
The fixed-point precision rules define the output word length and fraction length of the filter in terms
of the accumulator word length and fraction length.
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Full-Precision Accumulator Rule

Assume that the input is a signed or unsigned fixed-point signal with word length Wx and fraction
length Fx. Also assume that the coefficients are signed or unsigned fixed-point values with fraction
length Fh. You can now define full precision as the fixed-point settings that minimize the word length
of the accumulator while avoiding overflow or any loss of precision.

• The accumulator fraction length is equal to the product fraction length, which is the sum of the
input and coefficient fraction lengths.

Fa = Fx + Fh

• If Ymin = 0, then the accumulator is unsigned with word length

Wa = log2(Ymax2
Fa + 1)

If Ymin < 0, then the accumulator is signed with word length

Wa = log2(max(− Ymin2Fa, Ymax2
Fa + 1)) + 1

The ceil operator rounds to the nearest integer towards +∞.

Output Same Word Length as Input Rule

This rule sets the output word length to be the same as the input word length. Then, it adjusts the
fraction length to avoid overflow. Wq is the output word length and Fq is the output fraction length.

Truncate the accumulator to make the output word length same as the input word length.

Wq = Wx

.

Set the output fraction length Fq to

Fq = Fa− (Wa−Wx)

.

Polyphase Interpolators and Decimators
You can extend these rules to polyphase FIR interpolators and decimators.

FIR Interpolators

Treat each polyphase branch of the FIR interpolator as a separate FIR filter. The output data type of
the FIR interpolator is the worst-case data type of all the polyphase branches.

FIR Decimators

For decimators, the polyphase branches add up at the output. Hence, the output data type is
computed as if it were a single FIR filter with all the coefficients of all the polyphase branches.

 Fixed-Point Precision Rules for Avoiding Overflow in FIR Filters

18-65



See Also

More About
• “Fixed-Point Concepts and Terminology” on page 18-4
• “System Objects Supported by Fixed-Point Converter App” on page 18-20
• “Floating-Point to Fixed-Point Conversion of IIR Filters” on page 4-348
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C Code Generation

Learn how to generate code for signal processing applications.

• “Functions and System Objects in DSP System Toolbox that Support C Code Generation”
on page 19-2

• “Simulink Blocks in DSP System Toolbox that Support C Code Generation” on page 19-4
• “Understanding C Code Generation in DSP System Toolbox” on page 19-6
• “Generate C Code from MATLAB Code” on page 19-10
• “Relocate Code Generated from MATLAB Code to Another Development Environment”

on page 19-17
• “Generate C Code from Simulink Model” on page 19-19
• “Relocate Code Generated from a Simulink Model to Another Development Environment”

on page 19-24
• “How To Run a Generated Executable Outside MATLAB” on page 19-27
• “Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler”

on page 19-30
• “How Is dspunfold Different from parfor?” on page 19-41
• “Workflow for Generating a Multithreaded MEX File using dspunfold” on page 19-43
• “Why Does the Analyzer Choose the Wrong State Length?” on page 19-47
• “Why Does the Analyzer Choose a Zero State Length?” on page 19-49
• “Array Plot with Android Devices” on page 19-50
• “System objects in DSP System Toolbox that Support SIMD Code Generation” on page 19-54
• “Generate High Performance SIMD Code on Intel from MATLAB Algorithms in DSP System

Toolbox” on page 19-56
• “Simulink Blocks in DSP System Toolbox that Support SIMD Code Generation” on page 19-58
• “Generate High Performance SIMD Code on Intel from Simulink Blocks in DSP System Toolbox”

on page 19-63
• “In-Place Memory Optimization” on page 19-66
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Functions and System Objects in DSP System Toolbox that
Support C Code Generation

If you have a MATLAB Coder license, you can generate C and C++ code from MATLAB code that
contains DSP System Toolbox functions and System objects. For an example, see “Generate C Code
from MATLAB Code” on page 19-10. For usage rules and limitations while generating code from
System objects, see “System Objects in MATLAB Code Generation” (MATLAB Coder).

You can view functions and System objects that are supported for C/C++ code generation in
documentation by filtering the functions reference list. Click Functions right below the blue bar at
the top of the Help window, then select the C/C++ Code Generation check box at the bottom of the
left column under Extended Capability. The functions and objects are listed in their respective
categories. You can use the table of contents in the left column to navigate between the categories.
Refer to the Extended Capabilities > C/C++ Code Generation section of each function page for
any usage notes and limitations.

To obtain this filtered list for the DSP System Toolbox, click Functions that Support C/C++ Code
Generation.
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See Also

More About
• “Simulink Blocks in DSP System Toolbox that Support C Code Generation” on page 19-4
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Simulink Blocks in DSP System Toolbox that Support C Code
Generation

If you have a Simulink Coder license, you can generate C and C++ code from certain Simulink blocks
in DSP System Toolbox. For an example, see “Generate C Code from Simulink Model” on page 19-
19.

You can view blocks that are supported for C/C++ code generation in documentation by filtering the
blocks reference list. Click Blocks right below the blue bar at the top of the Help window, then select
the C/C++ Code Generation check box at the bottom of the left column under Extended
Capability. The blocks are listed in their respective categories. You can use the table of contents in
the left column to navigate between the categories. Refer to the Extended Capabilities > C/C++
Code Generation section of each block page for any usage notes and limitations.

To obtain this filtered list for the DSP System Toolbox, click Blocks that Support C/C++ Code
Generation.
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See Also

More About
• “Functions and System Objects in DSP System Toolbox that Support C Code Generation” on

page 19-2
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Understanding C Code Generation in DSP System Toolbox
In this section...
“Generate C and C++ code from MATLAB code” on page 19-6
“Generate C and C++ Code from a Simulink Model” on page 19-6
“Shared Library Dependencies” on page 19-7
“Generate C Code for ARM Cortex-M and ARM Cortex-A Processors” on page 19-8
“Generate Code for Mobile Devices” on page 19-8

Generate C and C++ code from signal processing algorithms in DSP System Toolbox using the
MATLAB Coder and Simulink Coder products. You can integrate the generated code into your
projects as source code, static libraries, dynamic libraries, or even as standalone executables. You
can also generate code optimized for ARM® Cortex®-M and ARM Cortex-A processors using the
Embedded Coder product.

Generate C and C++ code from MATLAB code
Using the MATLAB Coder, you can generate highly optimized ANSI C and C++ code from functions
and System objects in DSP System Toolbox. For a list of functions and System objects that support
code generation, see “Functions and System Objects in DSP System Toolbox that Support C Code
Generation” on page 19-2. You can use either the MATLAB Coder app or the codegen function to
generate code according to the build type you choose. When the build type is one of the following:

• Source Code –– Generate C source code to integrate with an external project.
• MEX Code –– Generate a MEX function to run inside MATLAB using the default configuration

parameters.
• Static library (.lib) –– Generate a binary library for static linking with another project.
• Dynamic library (.dll) –– Generate a binary library for dynamic linking with an external project.
• Executable –– Generate a standalone program (requires a separate main file written in C or C++).

If you use build scripts to specify input parameter types and code generation options, use the
codegen function.

For an example that illustrates the code generation workflow using the codegen function, see
“Generate C Code from MATLAB Code” on page 19-10. For detailed information on each of the code
generation steps, see “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder) and
“Generate C Code at the Command Line” (MATLAB Coder).

In order to improve the execution speed and memory usage of generated code, MATLAB Coder has
several optimization options. For more details, see “MATLAB Coder Optimizations in Generated
Code” (MATLAB Coder).

Generate C and C++ Code from a Simulink Model
Using the Simulink Coder, you can generate highly optimized ANSI C and C++ code from Simulink
blocks in DSP System Toolbox. For a list of blocks that support code generation, see “Simulink Blocks
in DSP System Toolbox that Support C Code Generation” on page 19-4. Alternatively, you can find this
data in the Simulink block data type support table for DSP System Toolbox. To access this table, type
the following command in the MATLAB command prompt:
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showsignalblockdatatypetable

The blocks with 'X' under 'Code Generation Support' column support code generation.

You can generate code from your Simulink model, build an executable, and even run the executable
within MATLAB. For an example, see “Generate C Code from Simulink Model” on page 19-19.

For detailed information on each of the code generation steps, see “Generate C Code for a Model”
(Simulink Coder).

Generated ANSI C Code Optimizations

The generated C code is often suitable for embedded applications and includes the following
optimizations:

• Function reuse (run-time libraries) — Reuse of common algorithmic functions via calls to
shared utility functions. Shared utility functions are highly optimized ANSI/ISO C functions that
implement core algorithms such as FFT and convolution.

• Parameter reuse (Simulink Coder run-time parameters) — Multiple instances of a block that
have the same value for a specific parameter point to the same variable in the generated code.
This process reduces memory requirements.

• Blocks have parameters that affect code optimization — Some blocks, such as the Sine Wave
block, have parameters that enable you to optimize the simulation for memory or for speed. These
optimizations also apply to code generation.

• Other optimizations — Use of contiguous input and output arrays, reusable inputs, overwritable
arrays, and inlined algorithms provide smaller generated C code that is more efficient at run time.

Shared Library Dependencies
In most cases, the C/C++ code you generate from DSP System Toolbox objects and blocks is portable.
After you generate the code, using the pack-and-go utility, you can package and relocate the code to
another development environment that does not have MATLAB and Simulink installed. For examples,
see “Relocate Code Generated from MATLAB Code to Another Development Environment” on page
19-17 and “Relocate Code Generated from a Simulink Model to Another Development Environment”
on page 19-24.

There are a few DSP System Toolbox features that generate code with limited portability. The
executables generated from these features rely on prebuilt dynamic library files (.dll files) included
with MATLAB. You must include these .dll files when you run the corresponding executables on the
external environment. For a list of such objects and blocks and for information on how to run those
executables outside MATLAB, see “How To Run a Generated Executable Outside MATLAB” on page
19-27.

Both Simulink Coder and MATLAB Coder provide functions to help you set up and manage the build
information for your models. For example, one of the functions that Simulink Coder provides,
getNonBuildFiles, allows you to identify the shared libraries required by the blocks in your model.
If your model contains any blocks that use precompiled shared libraries, you can install those
libraries on the target system. The folder that you install the shared libraries in must be on the
system path. The target system does not need to have MATLAB installed, but it does need to be
supported by MATLAB. For additional information, see “Build Process Customization” (Simulink
Coder). The function getNonBuildFiles can also apply to MATLAB algorithms. For more
information, see “Build Process Customization” (MATLAB Coder).
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Generate C Code for ARM Cortex-M and ARM Cortex-A Processors
The DSP System Toolbox supports optimized C code generation for popular algorithms like FIR
filtering and FFT on ARM Cortex-M and ARM Cortex-A processors. To generate this optimized code,
you must install the Embedded Coder Support Package for ARM Cortex-M Processors or Embedded
Coder Support Package for ARM Cortex-A Processors. In addition, you must have the following
products: DSP System Toolbox, MATLAB Coder, Embedded Coder, Simulink and Simulink Coder for
Simulink based workflows.

Using these Embedded Coder support packages, you can generate C code that can link with the
CMSIS library or calls the Ne10 library functions. This generated code can be compiled to provide
optimized executables that run on ARM Cortex-M or ARM Cortex-A processors.

You can also port the generated ARM Cortex-M CRL code from MATLAB to KEIL μVision IDE and IAR
Embedded Workbench. For details, see Port the Generated ARM Cortex-M CRL Code from MATLAB to
KEIL μVision IDE and Port the Generated ARM Cortex-M CRL Code from MATLAB to IAR Embedded
Workbench.

To download the Embedded Coder support packages for the ARM Cortex processors, see https://
www.mathworks.com/hardware-support.html.

For more information on the support packages and instructions for downloading them, see
“Embedded Coder Support Package for ARM Cortex-M Processors” and “Embedded Coder Support
Package for ARM Cortex-A Processors”.

Generate Code for Mobile Devices
Using Simulink Support Package for Apple iOS Devices, you can create and run Simulink models on
the iPhone, iPod Touch, and iPad. You can also monitor and tune the algorithms running on the Apple
devices. For an example, see Array Plot with Apple iOS Devices (Simulink Support Package for Apple
iOS Devices).

Using Simulink Support Package for Android™ Devices, you can create and run Simulink models on
supported Android devices. For an example, see “Array Plot with Android Devices” on page 19-50.

See Also
Functions
codegen | getNonBuildFiles

More About
• “Generate C Code from MATLAB Code” on page 19-10
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
• “Generate C Code at the Command Line” (MATLAB Coder)
• “Generate C Code from Simulink Model” on page 19-19
• “Generate C Code for a Model” (Simulink Coder)
• “Relocate Code Generated from MATLAB Code to Another Development Environment” on page

19-17
• “Relocate Code Generated from a Simulink Model to Another Development Environment” on

page 19-24
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• “Relocate or Share Generated Code” (Simulink Coder)
• “Build Process Customization” (Simulink Coder)
• “Build Process Customization” (MATLAB Coder)
• Array Plot with Apple iOS Devices (Simulink Support Package for Apple iOS Devices)
• “Array Plot with Android Devices” on page 19-50

External Websites
• Supported and Compatible Compilers
• Port the Generated ARM Cortex-M CRL Code from MATLAB to KEIL μVision IDE
• Port the Generated ARM Cortex-M CRL Code from MATLAB to IAR Embedded Workbench
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Generate C Code from MATLAB Code
MATLAB Coder generates highly optimized ANSI C and C++ code from functions and System objects
in DSP System Toolbox . You can deploy this code in a wide variety of applications.

This example generates C code from the “Construct a Sinusoidal Signal Using High Energy FFT
Coefficients” example and builds an executable from the generated code.

Here is the MATLAB code for this example:
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...  
'PhaseOffset',10,'SampleRate',44100,'Frequency',1000);
ft = dsp.FFT('FFTImplementation','FFTW');
ift = dsp.IFFT('FFTImplementation','FFTW','ConjugateSymmetricInput',true);
rng(1);
numIter = 1000;
for Iter = 1:numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    FFTCoeff = ft(Input);
    FFTCoeffMagSq = abs(FFTCoeff).^2;
    
    EnergyFreqDomain = (1/L)*sum(FFTCoeffMagSq);
    [FFTCoeffSorted, ind] = sort(((1/L)*FFTCoeffMagSq),1,'descend');
    
    CumFFTCoeffs = cumsum(FFTCoeffSorted);
    EnergyPercent = (CumFFTCoeffs/EnergyFreqDomain)*100;
    Vec = find(EnergyPercent > 99.99);
    FFTCoeffsModified = zeros(L,1);
    FFTCoeffsModified(ind(1:Vec(1))) = FFTCoeff(ind(1:Vec(1)));
    ReconstrSignal = ift(FFTCoeffsModified);
end
max(abs(Input-ReconstrSignal))
plot(Input,'*');
hold on;
plot(ReconstrSignal,'o');
hold off;

You can run the generated executable inside the MATLAB environment. In addition, you can package
and relocate the code to another development environment that does not have MATLAB installed. You
can generate code using the MATLAB Coder app or the codegen function. This example shows you
the workflow using the codegen function. For more information on the app workflow, see “Generate
C Code by Using the MATLAB Coder App” (MATLAB Coder).

Set Up the Compiler
The first step is to set up a supported C compiler. MATLAB Coder automatically locates and uses a
supported installed compiler. You can change the default compiler using mex -setup. For more
details, see “Change Default Compiler”. For a current list of supported compilers, see Supported and
Compatible Compilers.

Break Out the Computational Part of the Algorithm into a MATLAB
Function
To generate C code, the entry point must be a function. You do not have to generate code for the
entire MATLAB application. If you have specific portions that are computationally intensive, generate
code from these portions in order to speed up your algorithm. The harness or the driver that calls this
MATLAB function does not need to generate code. The harness runs in MATLAB and can contain
visualization and other verification tools that are not actually part of the system under test. For
example, in the “Construct a Sinusoidal Signal Using High Energy FFT Coefficients” example, the
plot functions plot the input signal and the reconstructed signal. plot is not supported for code
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generation and must stay in the harness. To generate code from the harness that contains the
visualization tools, rewrite the harness as a function and declare the visualization functions as
extrinsic functions using coder.extrinsic. To run the generated code that contains the extrinsic
functions, you must have MATLAB installed on your machine.

The MATLAB code in the for loop that reconstructs the original signal using high-energy FFT
coefficients is the computationally intensive portion of this algorithm. Speed up the for loop by
moving this computational part into a function of its own,
GenerateSignalWithHighEnergyFFTCoeffs.m.
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
    'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input);
end
max(abs(Input-ReconstrSignal))
figure(1);
plot(Input)
hold on;
plot(ReconstrSignal,'*')
hold off

function [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input)

ft = dsp.FFT('FFTImplementation','FFTW');
ift = dsp.IFFT('FFTImplementation','FFTW','ConjugateSymmetricInput',true);

FFTCoeff = ft(Input);
FFTCoeffMagSq = abs(FFTCoeff).^2;
L = size(Input,1);
EnergyF = (1/L)*sum(FFTCoeffMagSq);
[FFTCoeffSorted, ind] = sort(((1/L)*FFTCoeffMagSq),1,'descend');

CumFFTCoeffs = cumsum(FFTCoeffSorted);
EnergyPercent = (CumFFTCoeffs/EnergyF)*100;
Vec = find(EnergyPercent > 99.99);
FFTCoeffsModified = zeros(L,1);
FFTCoeffsModified(ind(1:Vec(1))) = FFTCoeff(ind(1:Vec(1)));
numCoeff = Vec(1);
ReconstrSignal = ift(FFTCoeffsModified);
end

Make Code Suitable for Code Generation
Before you generate code, you must prepare your MATLAB code for code generation.

Check Issues at Design Time

The first step is to eliminate unsupported constructs and check for any code generation issues. For a
list of DSP System Toolbox features supported by MATLAB Coder, see Functions and System Objects
Supported for C Code Generation. For a list of supported language constructs, see “MATLAB
Language Features Supported for C/C++ Code Generation” (MATLAB Coder).

The code analyzer detects coding issues at design time as you enter the code. To enable the code
analyzer, you must add the %#codegen pragma to your MATLAB file.
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The code generation readiness tool screens MATLAB code for features that are not supported for
code generation. One of the ways to access this tool is by right-clicking on the MATLAB file in its
current folder. Running the code generation tool on
GenerateSignalWithHighEnergyFFTCoeffs.m finds no issues.

Check Issues at Code Generation Time

Before you generate C code, ensure that the MATLAB code successfully generates a MEX function.
The codegen command used to generate the MEX function detects any errors that prevent the code
for being suitable for code generation.

Run codegen on GenerateSignalWithHighEnergyFFTCoeffs.m function.

codegen -args {Input} GenerateSignalWithHighEnergyFFTCoeffs 

The following message appears in the MATLAB command prompt:
??? The left-hand side has been constrained to be non-complex, but the right-hand side 
is complex. To correct this problem, make the right-hand side real using the function 
REAL, or change the initial assignment to the left-hand side variable to be a complex 
value using the COMPLEX function.

Error in ==> GenerateSignalWithHighEnergy Line: 24 Column: 1
Code generation failed: View Error Report
Error using codegen
 
 

This message is referring to the variable FFTCoeffsModified. The coder is expecting this variable
to be initialized as a complex variable. To resolve this issue, initialize the FFTCoeffsModified
variable as complex.

FFTCoeffsModified = zeros(L,1)+0i;

Rerun the codegen function and you can see that a MEX file is generated successfully in the current
folder with a .mex extension.
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codegen -args {Input} GenerateSignalWithHighEnergyFFTCoeffs 

Check Issues at Run Time

Run the generated MEX function to see if there are any run-time issues reported. To do so, replace
[ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input);

with
[ReconstrSignalMex,numCoeffMex] = GenerateSignalWithHighEnergyFFTCoeffs_mex(Input);

inside the harness.

The harness now looks like:
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
    'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    [ReconstrSignalMex,numCoeffMex] = GenerateSignalWithHighEnergyFFTCoeffs_mex(Input,L);
end
max(abs(Input-ReconstrSignalMex))
figure(1);
plot(Input)
hold on;
plot(ReconstrSignalMex,'*')
hold off

The code runs successfully, indicating that there are no run-time errors.

Compare the MEX Function with the Simulation
Notice that the harness runs much faster with the MEX function compared to the regular function.
The reason for generating the MEX function is not only to detect code generation and run-time
issues, but also to speed up specific parts of your algorithm. For an example, see “Signal Processing
Algorithm Acceleration in MATLAB” on page 1-53.

You must also check that the numeric output results from the MEX and the regular function match.
Compare the reconstructed signal generated by the
GenerateSignalWithHighEnergyFFTCoeffs.m function and its MEX counterpart
GenerateSignalWithHighEnergyFFTCoeffs_mex.

max(abs(ReconstrSignal-ReconstrSignalMex))

ans =

     2.2204e-16

The results match very closely, confirming that the code generation is successful.

Generate a Standalone Executable
If your goal is to run the generated code inside the MATLAB environment, your build target can just
be a MEX function. If deployment of code to another application is the goal, then generate a
standalone executable from the entire application. To do so, the harness must be a function that calls
the subfunction GenerateSignalWithHighEnergyFFTCoeffs. Rewrite the harness as a function.
function reconstructSignalTestbench()
L = 1020;
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Sineobject = dsp.SineWave('SamplesPerFrame',L,...
    'SampleRate',44100,'Frequency',1000);
rng(1);
numIter = 1000;
for Iter = 1:numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    [ReconstrSignal,numCoeff] = GenerateSignalWithHighEnergyFFTCoeffs(Input,L);
end

Log all 1000 frames of the input and reconstructed signal and the number of FFT coefficients used to
reconstruct each frame of the signal. Write all this data to a binary file named data.bin using the
dsp.BinaryFileWriter System object. This example logs the number of coefficients, which are
scalar values, as the first element of each frame of the input signal and the reconstructed signal. The
data to be written has a frame size of M = L + 1 and has a format that looks like this figure.

N is the number of FFT coefficients that represent 99.99% of the signal energy of the current input
frame. The meta data of the binary file specifies this information. Release the binary file writer and
close the binary file at the end.

The updated harness function, reconstructSignalTestbench, is shown here:
function reconstructSignalTestbench()
L = 1020;
Sineobject = dsp.SineWave('SamplesPerFrame',L,...
    'SampleRate',44100,'Frequency',1000);
header = struct('FirstElemInBothCols','Number of Coefficients',...
    'FirstColumn','Input','SecondColumn','ReconstructedSignal');
bfw = dsp.BinaryFileWriter('data.bin','HeaderStructure',header);
numIter = 1000;

M = L+1;
ReSignalAll = zeros(M*numIter,1);
InputAll = zeros(M*numIter,1);
rng(1);

for Iter = 1 : numIter
    Sinewave1 = Sineobject();
    Input = Sinewave1 + 0.01*randn(size(Sinewave1));
    [ReconstrSignal,numCoeffs] = GenerateSignalWithHighEnergyFFTCoeffs(Input);
    InputAll(((Iter-1)*M)+1:Iter*M) = [numCoeffs;Input];
    ReSignalAll(((Iter-1)*M)+1:Iter*M) = [numCoeffs;ReconstrSignal];
end

bfw([InputAll ReSignalAll]);   
release(bfw);

The next step in generating a C executable is to create a coder.config object for an executable and
provide a main.c function to this object.

cfg =  coder.config('exe');
cfg.CustomSource = 'reconstructSignalTestbench_Main.c';

Here is how the reconstructSignalTestbench_Main.c function looks for this example.
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/*
** reconstructSignalTestbench_main.c
*
* Copyright 2017 The MathWorks, Inc.
*/
#include <stdio.h>
#include <stdlib.h>

#include "reconstructSignalTestbench_initialize.h"
#include "reconstructSignalTestbench.h"
#include "reconstructSignalTestbench_terminate.h"

int main()
{
    reconstructSignalTestbench_initialize();
    reconstructSignalTestbench();    
    reconstructSignalTestbench_terminate();
    
    return 0;
}

For additional details on creating the main function, see “Generating Standalone C/C++ Executables
from MATLAB Code” (MATLAB Coder).

Set the CustomInclude property of the configuration object to specify the location of the main file.
In this example, the location is the current folder.

cfg.CustomInclude = ['"',pwd,'"'];

Generate the C executable by running the following command in the MATLAB command prompt:
codegen -config cfg -report reconstructSignalTestbench

MATLAB Coder compiles and links the main function with the C code that it generates from the
reconstructSignalTestbench.m.

If you are using Windows, you can see that reconstructSignalTestbench.exe is generated in
the current folder. If you are using Linux, the generated executable does not have the .exe
extension.

Read and Verify the Binary File Data
Running the executable creates a binary file, data.bin, in the current directory and writes the input,
reconstructed signal, and the number of FFT coefficients used to reconstruct the signal.

!reconstructSignalTestbench

You can read this data from the binary file using the dsp.BinaryFileReader object. To verify that
the data is written correctly, read data from the binary file in MATLAB and compare the output with
variables InputAll and ReSignalAll.

The header prototype must have a structure similar to the header structure written to the file. Read
the data as two channels.
M = 1021;
numIter = 1000;
headerPro = struct('FirstElemInBothCols','Number of Coefficients',...
    'FirstColumn','Input','SecondColumn','ReconstructedSignal');
bfr = dsp.BinaryFileReader('data.bin','HeaderStructure',...
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headerPro,'SamplesPerFrame',M*numIter,'NumChannels',2);
Data = bfr();

Compare the first channel with InputAll and the second channel with ReSignalAll.

isequal(InputAll,Data(:,1))

ans =

  logical

   1

isequal(ReSignalAll,Data(:,2))

ans =

  logical

   1

The results match exactly, indicating a successful write operation.

Relocate Code to Another Development Environment
Once you generate code from your MATLAB algorithm, you can relocate the code to another
development environment, such as a system or an integrated development environment (IDE) that
does not include MATLAB. You can package the files into a compressed file using the packNGo
function at the command line or the Package option in the MATLAB Coder app. For an example that
illustrates both the workflows, see “Package Code for Other Development Environments” (MATLAB
Coder). For more information on the packNGo option, see packNGo in “RTW.BuildInfo Methods”
(MATLAB Coder). You can relocate and unpack the compressed zip file using a standard zip utility.
For an example on how to package the executable generated in this example, see “Relocate Code
Generated from MATLAB Code to Another Development Environment” on page 19-17.

See Also
Functions
codegen

More About
• “Relocate Code Generated from MATLAB Code to Another Development Environment” on page

19-17
• “Generate C Code from Simulink Model” on page 19-19
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
• “Generate C Code at the Command Line” (MATLAB Coder)
• “Code Generation Workflow” (MATLAB Coder)

External Websites
• Supported and Compatible Compilers
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Relocate Code Generated from MATLAB Code to Another
Development Environment

Once you generate code from your MATLAB algorithm, you can relocate the code to another
development environment, such as a system or an integrated development environment (IDE) that
does not include MATLAB. You can package the files into a compressed file using the packNGo
function at the command line or the Package option in the MATLAB Coder app. Once you create the
zip file, you can relocate and unpack the compressed zip file using a standard zip utility.

Package the Code
This example shows how to package the executable generated from the “Generate C Code from
MATLAB Code” on page 19-10 example using the packNGo function. You can also generate and
package a static library file or a dynamic library file. You cannot package a C-MEX file since a MEX
file requires MATLAB to run. For more information on packNGo, see packNGo in “RTW.BuildInfo
Methods” (MATLAB Coder).

The files needed to generate the executable are reconstructSignalTestbench.m,
GenerateSignalWithHighEnergyFFTCoeffs.m, and the
reconstructSignalTestbench_Main.c files from the “Generate C Code from MATLAB Code” on
page 19-10 example. Copy all these files into the current working folder. To generate the executable,
run the following commands in the MATLAB command prompt:

cfg =  coder.config('exe');
cfg.CustomSource = 'reconstructSignalTestbench_Main.c';
cfg.CustomInclude = ['"',pwd,'"'];
codegen -config cfg -report reconstructSignalTestbench

If you are using Windows, you can see that reconstructSignalTestbench.exe is generated in
the current folder. If you are using a Linux machine, the generated executable is
reconstructSignalTestbench. The codegen function generates the dependency source code and
the buildinfo.mat file in the codegen\exe\reconstructSignalTestbench folder.

Load the buildInfo object.

load('codegen\exe\reconstructSignalTestbench\buildinfo.mat')

Package the code in a .zip file using the packNGo function.
packNGo(buildInfo,'fileName','reconstructSignalWithHighEnergyFFTCoeffs.zip');

The packNGo function creates a zip file, reconstructSignalWithHighEnergyFFTCoeffs.zip in
the current working folder. In this example, you specify only the file name. Optionally, you can specify
additional packaging options. See “Specify packNGo Options” (MATLAB Coder).

This .zip file contains the C code, header files, .dll files, and the executable that needs to run on
the external environment. Relocate the .zip file to the destination development environment and
unpack the file to run the executable.

Prebuilt Dynamic Library Files (.dll)
If you compare the contents of the codegen\exe\reconstructSignalTestbench folder and the
reconstructSignalWithHighEnergyFFTCoeffs.zip folder, you can see that there are
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additional .dll files that appear in the zip folder. These .dll files are prebuilt dynamic library files
that are shipped with MATLAB. Executables generated from certain System objects require these
prebuilt .dll files. The “Generate C Code from MATLAB Code” on page 19-10 example uses
dsp.FFT and dsp.IFFT System objects whose 'FFTImplementation' is set to 'FFTW'. In the
FFTW mode, the executables generated from these objects depend on the prebuilt .dll files. To
package code that runs on an environment with no MATLAB installed, MATLAB Coder packages
these .dll files in the zip folder. For a list of all the System objects in DSP System Toolbox that
require prebuilt .dll files, see “How To Run a Generated Executable Outside MATLAB” on page 19-
27.

To identify the prebuilt .dll files your executable requires, run the following command in the
MATLAB command prompt.

files = getNonBuildFiles(buildInfo,'true','true');

For more details, see getNonBuildFiles in “Build Process Customization” (MATLAB Coder).

For an example showing the Package option workflow to relocate code using the MATLAB Coder
app, see “Package Code for Other Development Environments” (MATLAB Coder).

See Also

More About
• “Generate C Code from MATLAB Code” on page 19-10
• “Relocate Code Generated from a Simulink Model to Another Development Environment” on

page 19-24
• “RTW.BuildInfo Methods” (MATLAB Coder)
• “Package Code for Other Development Environments” (MATLAB Coder)
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Generate C Code from Simulink Model
Simulink Coder generates standalone C and C++ code from Simulink models for deployment in a
wide variety of applications. For a list of DSP System Toolbox features supported by Simulink Coder,
see Blocks Supported for C Code Generation.

This example generates C code from the ex_codegen_dsp model and builds an executable from the
generated code. You can run the executable inside the MATLAB environment. In addition, you can
package and relocate the code to another development environment that does not have the MATLAB
and Simulink products installed.

Open the Model
The ex_codegen_dsp model implements a simple adaptive filter to remove noise from a signal while
simultaneously identifying a filter that characterizes the noise frequency content. To open this model,
enter the following command in MATLAB command prompt:

open_system('ex_codegen_dsp')

You can alternatively create the model using the DSP System template. For more information, see
“Configure the Simulink Environment for Signal Processing Models”.
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Configure Model for Code Generation
Prepare the model for code generation by specifying code generation settings in the Configuration
Parameters dialog box. Choose the appropriate solver and code generation target, and check the
model configuration for execution efficiency. For more details on each of these steps, see “Generate C
Code for a Model” (Simulink Coder).

Simulate the Model
Simulate the model. The Time Scope shows the input and filtered signal characteristics.

The Array Plot shows the last 32 filter weights for which the LMS filter has effectively adapted and
filtered out the noise from the signal.
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These coefficients can also be accessed using the following command:

filter_wts(:,:,1201)

Generate Code from the Model
Before you generate code from the model, you must first ensure that you have write permission in
your current folder.

To generate code, you must make the following changes:

1 In the Modeling tab of the model toolstrip, click Model Settings. The Configuration
Parameters dialog opens. Navigate to the Code Generation tab, select the Generate code
only parameter, and click Apply.

2 In the Apps tab of the model toolstrip, click the drop-down arrow. Under Code Generation, click
Simulink Coder. The C Code tab appears in the model window. In the C Code tab, click the

Generate Code icon ( ).

After the model finishes generating code, the Code Generation Report appears, allowing you to
inspect the generated code. Note that the build process creates a new subfolder called
ex_codegen_dsp_grt_rtw in your current MATLAB working folder. This subfolder contains all the
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files created by the code generation process, including those that contain the generated C source
code. For more information on viewing the generated code, see “Generate C Code for a Model”
(Simulink Coder).

Build and Run the Generated Code
Set Up the C/C++ Compiler

To build an executable, you must set up a supported C compiler. For a list of compilers supported in
the current release, see Supported and Compatible Compilers.

To set up your compiler, run the following command in the MATLAB command prompt:

mex –setup

Build the Generated Code

After your compiler is setup, you can build and run the compiled code. The ex_codegen_dsp model is
currently configured to generate code only. To build the generated code, you must first make the
following changes:

1 In the Modeling tab of the model toolstrip, click Model Settings. The Configuration
Parameters dialog opens. Navigate to the Code Generation tab, clear the Generate code only
parameter, and click Apply.

2
In the C Code tab of the model toolstrip, click the Build icon ( ).

The code generator builds the executable and generates the Code Generation Report. The code
generator places the executable in the working folder. On Windows, the executable is
ex_codegen_dsp.exe. On Linux, the executable is ex_codegen_dsp.

Run the Generated Code

To run the generated code, enter the following command in the MATLAB command prompt:

!ex_codegen_dsp

Running the generated code creates a MAT-file that contains the same variables as those generated
by simulating the model. The variables in the MAT-file are named with a prefix of rt_. After you run
the generated code, you can load the variables from the MAT-file by typing the following command at
the MATLAB prompt:

load ex_codegen_dsp.mat

You can now compare the variables from the generated code with the variables from the model
simulation. To access the last set of coefficients from the generated code, enter the following in the
MATLAB prompt:

rt_filter_wts(:,:,1201)

Note that the coefficients in filter_wts(:,:,1201) and rt_filter_wts(:,:,1201) match.

For more details on building and running the executable, see “Generate C Code for a Model”
(Simulink Coder).
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Relocate Code to Another Development Environment

Once you generate code from your Simulink model, you can relocate the code to another development
environment using the pack-and-go utility. Use this utility when the development environment does
not have the MATLAB and Simulink products.

The pack-and-go utility uses the tools for customizing the build process after code generation and a
packNGo function to find and package files for building an executable image. The files are packaged
in a compressed file that you can relocate and unpack using a standard zip utility.

You can package the code by either using the user interface or by using the command-line interface.
The command-line interface provides more control over the details of code packaging. For more
information on each of these methods, see “Relocate or Share Generated Code” (Simulink Coder).

For an example on how to package the C code and executable generated from this example, see
“Relocate Code Generated from a Simulink Model to Another Development Environment” on page 19-
24.

See Also

More About
• “Generate C Code for a Model” (Simulink Coder)
• “Relocate Code Generated from a Simulink Model to Another Development Environment” on

page 19-24
• “Relocate or Share Generated Code” (Simulink Coder)
• “Generate C Code from MATLAB Code” on page 19-10
• “How To Run a Generated Executable Outside MATLAB” on page 19-27

External Websites
• Supported and Compatible Compilers
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Relocate Code Generated from a Simulink Model to Another
Development Environment

Once you generate code from your Simulink model, you can relocate the code to another development
environment using the pack-and-go utility. Use this utility when the development environment does
not have the MATLAB and Simulink products.

The pack-and-go utility uses the tools for customizing the build process after code generation and a
packNGo function to find and package files for building an executable image. The files are packaged
in a compressed file that you can relocate and unpack using a standard zip utility.

You can package the code using either the user interface or the command-line interface. The
command-line interface provides more control over the details of code packaging. For more
information on each of these methods, see “Relocate or Share Generated Code” (Simulink Coder).

Package the Code
This example shows how to package the executable generated from the ex_codegen_dsp model in
the “Generate C Code from Simulink Model” on page 19-19 example using the user interface. You can
also generate and package a static library file or a dynamic library file.

Open the model by running the following command in the MATLAB command prompt.

open_system('ex_codegen_dsp')

To package and relocate code for your model using the user interface:

1 In the Modeling tab, click Model Settings. The Configuration Parameters dialog opens.
Navigate to the Code Generation tab.

2 To package the executable along with the source code, clear Generate code only check box and
select the option Package code and artifacts (Simulink Coder). This option configures the build
process to run the packNGo function after code generation to package generated code and
artifacts for relocation.

3 In the Zip file name (Simulink Coder) field, enter the name of the zip file in which to package
generated code and artifacts for relocation. In this example, the name of the zip file is
lmsAdaptFilt.zip. You can specify the file name with or without the .zip extension. If you
specify no extension or an extension other than .zip, the zip utility adds the.zip extension. If
you do not specify a value, the build process uses the name model.zip, where model is the
name of the top model for which code is being generated.
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4
Click Apply. In the C Code tab of the model toolstrip, click the Build Model icon ( ). If the
C Code tab is not open, in the Apps gallery of the model toolstrip, click Simulink Coder. The C

Code tab appears. When you click on the Build Model icon ( ), the code generator builds
the executable, generates the Code Generation Report and places the executable in the
current working folder. Note that the build process creates a new subfolder called
ex_codegen_dsp_grt_rtw in your current MATLAB working folder. This subfolder contains the
generated source code files. In addition, you can also see lmsAdaptFilt.zip file in the current
directory. The zip files contains the ex_codegen_dsp_grt_rtw folder, the executable, and other
additional dependency source files required to run the executable without Simulink and MATLAB
installed.

5 Relocate the zip file to the destination development environment and unpack the file to run the
executable.
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Prebuilt Dynamic Library Files (.dll)
If your model contains any blocks mentioned in “How To Run a Generated Executable Outside
MATLAB” on page 19-27, the executable generated from the model requires certain prebuilt
dynamic library (.dll) files. These .dll files are shipped with MATLAB. To package code that runs
on an environment without MATLAB and Simulink installed, the Simulink Coder packages these .dll
files into the zip folder.

See Also

More About
• “Generate C Code from Simulink Model” on page 19-19
• “Relocate or Share Generated Code” (Simulink Coder)
• “Relocate Code Generated from MATLAB Code to Another Development Environment” on page

19-17
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How To Run a Generated Executable Outside MATLAB
You can generate a standalone executable from the System objects and blocks in DSP System Toolbox
which support code generation. This executable can run outside the MATLAB and Simulink
environments.

To generate an executable from the System objects, you must have the MATLAB Coder installed. To
generate an executable from the Simulink blocks, you must have the Simulink Coder installed in
addition to the MATLAB Coder.

The executables generated from the following objects and blocks rely on prebuilt dynamic library files
(.dll files) included with MATLAB.

System Objects

• audioDeviceWriter
• dsp.AudioFileReader
• dsp.AudioFileWriter
• dsp.FFT

• When FFTImplementation is set to 'FFTW'.
• When FFTImplementation is set to 'Auto', FFTLengthSource is set to 'Property', and

FFTLength is not a power of two.
• dsp.IFFT

• When FFTImplementation is set to 'FFTW'.
• When FFTImplementation is set to 'Auto', FFTLengthSource is set to 'Property', and

FFTLength is not a power of two.
• dsp.UDPReceiver
• dsp.UDPSender

Objects

• dsp.ISTFT (when the FFT length determined by the number of input rows is not a power of 2)

Blocks

• Audio Device Writer
• Burg Method (when the FFT length is not a power of two)
• From Multimedia File
• To Multimedia File
• FFT

• When FFT implementation is set to FFTW.
• When you clear the Inherit FFT length from input dimensions check box, and set FFT

length to a value that is not a power of two.
• IFFT

• When FFT implementation is set to FFTW.
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• When you clear the Inherit FFT length from input dimensions check box, and set FFT
length to a value that is not a power of two.

• Inverse Short-Time FFT (when the input length is not a power of two)
• Magnitude FFT

• When FFT implementation is set to FFTW.
• When you clear the Inherit FFT length from input dimensions check box, and set FFT

length to a value that is not a power of two.
• Periodogram

• When FFT implementation is set to FFTW.
• When you clear the Inherit FFT length from input dimensions check box, and set FFT

length to a value that is not a power of two.
• Short-Time FFT (when the FFT length is not a power of two)
• UDP Receive
• UDP Send

Running the Executable

To run the corresponding executable outside the MATLAB and Simulink environments, for example
Windows command prompt on a Windows machine, you must include these prebuilt .dll files. The
method of including the .dll files depends on whether MATLAB or MATLAB compiler runtime (MCR)
is installed on the external machine. The MATLAB compiler runtime (MCR), also known as MATLAB
Runtime, is a standalone set of shared libraries, MATLAB code, and other files that enables the
execution of MATLAB files on computers without an installed version of MATLAB. For more details on
MCR, see “About the MATLAB Runtime” (MATLAB Compiler).

MATLAB or MCR is not installed on the machine you are running the executable

To run the executable generated from the above System objects and blocks on a machine that does
not have MATLAB or MCR installed, use the packNGo function. The packNGo function packages all
the relevant files including the prebuilt .dll files in a compressed zip file so that you can relocate,
unpack, and rebuild your project in another development environment where MATLAB or MCR is not
installed.

You can use the packNGo function at the command line or the Package option in the MATLAB Coder
app. The files are packaged in a compressed file that you can relocate and unpack using a standard
zip utility. For more details on how to pack the code generated from MATLAB code, see “Relocate
Code Generated from MATLAB Code to Another Development Environment” on page 19-17. For more
details on how to pack the code generated from Simulink blocks, see “Relocate Code Generated from
a Simulink Model to Another Development Environment” on page 19-24.

MATLAB or MCR is installed on the machine you are running the executable

To include the prebuilt .dll files on a machine with MATLAB or MCR installed, set your system
environment by running the commands below. These commands assume that the computer has
MATLAB installed. If you run the standalone executable on a machine with only MCR, and no
MATLAB installed, replace $MATLABROOT/bin/.... with the path to the MCR.
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Platform Command
Mac setenv DYLD_LIBRARY_PATH "$

{DYLD_LIBRARY_PATH}:$MATLABROOT/bin/
maci64" (csh/tcsh)

export DYLD_LIBRARY_PATH=
$DYLD_LIBRARY_PATH:$MATLABROOT/bin/
maci64 (Bash)

For more information, see Append library path to
"DYLD_LIBRARY_PATH" in MAC.

Linux setenv LD_LIBRARY_PATH $
{LD_LIBRARY_PATH}:$MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH=%PATH%;%MATLABROOT%\bin\win64

See Also

More About
• “Understanding C Code Generation in DSP System Toolbox” on page 19-6
• “MATLAB Programming for Code Generation” (MATLAB Coder)
• “Relocate Code Generated from MATLAB Code to Another Development Environment” on page

19-17
• “Relocate Code Generated from a Simulink Model to Another Development Environment” on

page 19-24
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Use Generated Code to Accelerate an Application Deployed
with MATLAB Compiler

This example shows how to use generated code to accelerate an application that you deploy with
MATLAB® Compiler™. The example accelerates an algorithm by using MATLAB® Coder™ to
generate a MEX version of the algorithm. It uses MATLAB Compiler to deploy a standalone
application that calls the MEX function. The deployed application uses the MATLAB® Runtime which
enables royalty-free deployment to someone who does not have MATLAB.

This workflow is useful when:

• You want to deploy an application to a platform that the MATLAB Runtime supports.
• The application includes a computationally intensive algorithm that is suitable for code

generation.
• The generated MEX for the algorithm is faster than the original MATLAB algorithm.
• You do not need to deploy readable C/C++ source code for the application.

The example application uses a DSP algorithm that requires the DSP System Toolbox™.

Create the MATLAB Application

For acceleration, it is a best practice to separate the computationally intensive algorithm from the
code that calls it.

In this example, myRLSFilterSystemIDSim implements the algorithm. myRLSFilterSystemIDApp
provides a user interface that calls myRLSFilterSystemIDSim.

myRLSFilterSystemIDSim simulates system identification by using recursive least-squares (RLS)
adaptive filtering. The algorithm uses dsp.VariableBandwidthFIRFilter to model the
unidentified system and dsp.RLSFilter to identify the FIR filter.

myRLSFilterSystemIDApp provides a user interface that you use to dynamically tune simulation
parameters. It runs the simulation for a specified number of time steps or until you stop the
simulation. It plots the results of the simulation on scopes.

For details about this application, see “System Identification Using RLS Adaptive Filtering” on page
4-281 in the DSP System Toolbox documentation.

In a writable folder, create myRLSFilterSystemIDSim and myRLSFilterSystemIDApp.
Alternatively, to access these files, click Open Script.

myRLSFilterSystemIDSim

function [tfe,err,cutoffFreq,ff] = ...
    myRLSFilterSystemIDSim(tuningUIStruct)
% myRLSFilterSystemIDSim implements the algorithm used in
% myRLSFilterSystemIDApp.
% This function instantiates, initializes, and steps through the System
% objects used in the algorithm.
%
% You can tune the cutoff frequency of the desired system and the
% forgetting factor of the RLS filter through the GUI that appears when
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% myRLSFilterSystemIDApp is executed.

%   Copyright 2013-2017 The MathWorks, Inc.

%#codegen

% Instantiate and initialize System objects. The objects are declared
% persistent so that they are not recreated every time the function is
% called inside the simulation loop.
persistent rlsFilt sine unknownSys transferFunctionEstimator
if isempty(rlsFilt)
    % FIR filter models the unidentified system
    unknownSys = dsp.VariableBandwidthFIRFilter('SampleRate',1e4,...
        'FilterOrder',30,...
        'CutoffFrequency',.48 * 1e4/2);
    % RLS filter is used to identify the FIR filter
    rlsFilt = dsp.RLSFilter('ForgettingFactor',.99,...
        'Length',28);
    % Sine wave used to generate input signal
    sine = dsp.SineWave('SamplesPerFrame',1024,...
        'SampleRate',1e4,...
        'Frequency',50);
    % Transfer function estimator used to estimate frequency responses of
    % FIR and RLS filters.
    transferFunctionEstimator = dsp.TransferFunctionEstimator(...
        'FrequencyRange','centered',...
        'SpectralAverages',10,...
        'FFTLengthSource','Property',...
        'FFTLength',1024,...
        'Window','Kaiser');
end

if tuningUIStruct.Reset
    % reset System objects
    reset(rlsFilt);
    reset(unknownSys);
    reset(transferFunctionEstimator);
    reset(sine);
end

% Tune FIR cutoff frequency and RLS forgetting factor
if  tuningUIStruct.ValuesChanged
    param = tuningUIStruct.TuningValues;
    unknownSys.CutoffFrequency  = param(1);
    rlsFilt.ForgettingFactor = param(2);
end
    
% Generate input signal - sine wave plus Gaussian noise
inputSignal = sine() +  .1 * randn(1024,1);

% Filter input though FIR filter
desiredOutput = unknownSys(inputSignal);

% Pass original and desired signals through the RLS Filter
[rlsOutput , err] = rlsFilt(inputSignal,desiredOutput);

% Prepare system input and output for transfer function estimator
inChans = repmat(inputSignal,1,2);
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outChans = [desiredOutput,rlsOutput];

% Estimate transfer function
tfe = transferFunctionEstimator(inChans,outChans);

% Save the cutoff frequency and forgetting factor
cutoffFreq = unknownSys.CutoffFrequency;
ff = rlsFilt.ForgettingFactor;

end

myRLSFilterSystemIDApp

function scopeHandles = myRLSFilterSystemIDApp(numTSteps)
% myRLSFilterSystemIDApp initialize and execute RLS Filter
% system identification example. Then, display results using
% scopes. The function returns the handles to the scope and UI objects.
%
% Input:
%   numTSteps - number of time steps
% Outputs:
%   scopeHandles    - Handle to the visualization scopes

% Copyright 2013-2017 The MathWorks, Inc.

if nargin == 0
    numTSteps = Inf; % Run until user stops simulation.
end

% Create scopes
tfescope = dsp.ArrayPlot('PlotType','Line',...
    'Position',[8 696 520 420],...
    'YLimits',[-80 30],...
    'SampleIncrement',1e4/1024,...
    'YLabel','Amplitude (dB)',...
    'XLabel','Frequency (Hz)',...
    'Title','Desired and Estimated Transfer Functions',...
    'ShowLegend',true,...
    'XOffset',-5000);

msescope = timescope('SampleRate',1e4,...
    'Position',[8 184 520 420],...
    'TimeSpanSource','property','TimeSpan',0.01,...
    'YLimits',[-300 10],'ShowGrid',true,...
    'YLabel','Mean-Square Error (dB)',...
    'Title','RLSFilter Learning Curve');

screen = get(0,'ScreenSize');
outerSize = min((screen(4)-40)/2, 512);
tfescope.Position = [8, screen(4)-outerSize+8, outerSize+8,...
    outerSize-92];
msescope.Position = [8, screen(4)-2*outerSize+8, outerSize+8, ...
    outerSize-92];

% Create UI to tune FIR filter cutoff frequency and RLS filter
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%  forgetting factor
Fs = 1e4;
param = struct([]);
param(1).Name = 'Cutoff Frequency (Hz)';
param(1).InitialValue = 0.48 * Fs/2;
param(1).Limits = Fs/2 * [1e-5, .9999];
param(2).Name = 'RLS Forgetting Factor';
param(2).InitialValue = 0.99;
param(2).Limits = [.3, 1];
hUI = HelperCreateParamTuningUI(param, 'RLS FIR Demo');
set(hUI,'Position',[outerSize+32, screen(4)-2*outerSize+8, ...
    outerSize+8, outerSize-92]);

% Execute algorithm
while(numTSteps>=0)
    
    S = HelperUnpackUIData(hUI);

    drawnow limitrate;   % needed to process UI callbacks
    
    [tfe,err] = myRLSFilterSystemIDSim(S);
    
    if S.Stop     % If "Stop Simulation" button is pressed
        break;
    end
    if S.Pause
        continue;
    end
    
    % Plot transfer functions
    tfescope(20*log10(abs(tfe)));
    % Plot learning curve
    msescope(10*log10(sum(err.^2)));
    numTSteps = numTSteps - 1;
end

if ishghandle(hUI)  % If parameter tuning UI is open, then close it.
    delete(hUI);
    drawnow;
    clear hUI
end

scopeHandles.tfescope = tfescope;
scopeHandles.msescope = msescope;
end

Test the MATLAB Application

Run the system identification application for 100 time steps. The application runs the simulation for
100 time steps or until you click Stop Simulation. It plots the results on scopes.

scope1 = myRLSFilterSystemIDApp(100);
release(scope1.tfescope);
release(scope1.msescope);
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Prepare Algorithm for Acceleration

When you use MATLAB Coder to accelerate a MATLAB algorithm, the code must be suitable for code
generation.

1. Make sure that myRLSFilterSystemIDSim.m includes the %#codegen directive after the
function signature.

This directive indicates that you intend to generate code for the function. In the MATLAB Editor, it
enables the code analyzer to detect code generation issues.

2. Screen the algorithm for unsupported functions or constructs.

coder.screener('myRLSFilterSystemIDSim');

The code generation readiness tool does not find code generation issues in this algorithm.

Accelerate the Algorithm

To accelerate the algorithm, this example use the MATLAB Coder codegen command. Alternatively,
you can use the MATLAB Coder app. For code generation, you must specify the type, size, and
complexity of the input arguments. The function myRLSFilterSystemIDSim takes a structure that
stores tuning information. Define an example tuning structure and pass it to codegen by using the -
args option.

ParamStruct.TuningValues = [2400 0.99];
ParamStruct.ValuesChanged = false;
ParamStruct.Reset = false;
ParamStruct.Pause = false;
ParamStruct.Stop  = false;
codegen myRLSFilterSystemIDSim -args {ParamStruct};

Code generation successful.

codegen creates the MEX function myRLSFilterSystemIDSim_mex in the current folder.

Compare MEX Function and MATLAB Function Performance

1. Time 100 executions of myRLSFilterSystemIDSim.

clear myRLSFilterSystemIDSim
disp('Running the MATLAB function ...')
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tic
nTimeSteps = 100;
for ind = 1:nTimeSteps
     myRLSFilterSystemIDSim(ParamStruct);
end
tMATLAB = toc;

Running the MATLAB function ...

2. Time 100 executions of myRLSFilterSystemIDSim_mex.

clear myRLSFilterSystemIDSim
disp('Running the MEX function ...')
tic
for ind = 1:nTimeSteps
    myRLSFilterSystemIDSim_mex(ParamStruct);
end
tMEX = toc;

disp('RESULTS:')
disp(['Time for original MATLAB function: ', num2str(tMATLAB),...
     ' seconds']);
disp(['Time for MEX function: ', num2str(tMEX), ' seconds']);
disp(['The MEX function is ', num2str(tMATLAB/tMEX),...
    ' times faster than the original MATLAB function.']);

Running the MEX function ...
RESULTS:
Time for original MATLAB function: 2.0567 seconds
Time for MEX function: 0.22156 seconds
The MEX function is 9.2827 times faster than the original MATLAB function.

Optimize the MEX code

You can sometimes generate faster MEX by using a different C/C++ compiler or by using certain
options or optimizations. See “Accelerate MATLAB Algorithms” (MATLAB Coder).

For this example, the MEX is sufficiently fast without further optimization.

Modify the Application to Call the MEX Function

Modify myRLSFilterSystemIDApp so that it calls myRLSFilterSystemIDSim_mex instead of
myRLSFilterSystemIDSim.

Save the modified function in myRLSFilterSystemIDApp_acc.m.

Test the Application with the Accelerated Algorithm

clear myRLSFilterSystemIDSim_mex;
scope2 = myRLSFilterSystemIDApp_acc(100);
release(scope2.tfescope);
release(scope2.msescope);
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The behavior of the application that calls the MEX function is the same as the behavior of the
application that calls the original MATLAB function. However, the plots update more quickly because
the simulation is faster.

Create the Standalone Application

1. To open the Application Compiler App, on the Apps tab, under Application Deployment, click the
app icon.

2. Specify that the main file is myRLSFilterSystemIDApp_acc.

The app determines the required files for this application. The app can find the MATLAB files and
MEX-files that an application uses. You must add other types of files, such as MAT-files or images, as
required files.

3. In the Packaging Options section of the toolstrip, make sure that the Runtime downloaded
from web check box is selected.

This option creates an application installer that downloads and installs the MATLAB Runtime with the
deployed MATLAB application.

4. Click Package and save the project.

5. In the Package window, make sure that the Open output folder when process completes check
box is selected.
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When the packaging is complete, the output folder opens.

Install the Application

1. Open the for_redistribution folder.

2. Run MyAppInstaller_web.

3. If you connect to the internet by using a proxy server, enter the server settings.

4. Advance through the pages of the installation wizard.

• On the Installation Options page, use the default installation folder.
• On the Required Software page, use the default installation folder.
• On the License agreement page, read the license agreement and accept the license.
• On the Confirmation page, click Install.

If the MATLAB Runtime is not already installed, the installer installs it.

5. Click Finish.

Run the Application

1. Open a terminal window.

2. Navigate to the folder where the application is installed.

• For Windows®, navigate to C:\Program Files\myRLSFilterSystemIDApp_acc.
• For macOS, navigate to /Applications/myRLSFilterSystemIDApp_acc.
• For Linux, navigate to /usr/myRLSFilterSystemIDApp_acc.

3. Run the application by using the appropriate command for your platform.

• For Windows, use application\myRLSFilterSystemIDApp_acc.
• For macOS, use myRLSFilterSystemIDApp_acc.app/Contents/MacOS/

myRLSFilterSystemIDApp_acc.
• For Linux, use /myRLSFilterSystemIDApp_acc.
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Starting the application takes approximately the same amount of time as starting MATLAB.

See Also

More About
• “System Identification Using RLS Adaptive Filtering” on page 4-281
• “Workflow for Accelerating MATLAB Algorithms” (MATLAB Coder)
• “Accelerate MATLAB Algorithms” (MATLAB Coder)
• “Create Standalone Application from MATLAB” (MATLAB Compiler)
• “About the MATLAB Runtime” (MATLAB Compiler)

External Websites
• MATLAB Compiler Support for MATLAB and toolboxes.
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How Is dspunfold Different from parfor?
In this section...
“DSP Algorithms Involve States” on page 19-41
“dspunfold Introduces Latency” on page 19-41
“parfor Requires Significant Restructuring in Code” on page 19-41
“parfor Used with dspunfold” on page 19-41

The dspunfold and parfor functions accelerate MATLAB algorithms through parallelization. Each
function has its own advantages and disadvantages.

When you use parfor inside the entry-point MATLAB function, and call codegen on this function,
the generated MEX file is multithreaded. For more information, see “Algorithm Acceleration Using
Parallel for-Loops (parfor)” (MATLAB Coder). However, parfor is not ideal for DSP algorithms. The
reason being that DSP algorithms involve states.

DSP Algorithms Involve States
Most algorithms in DSP System Toolbox contain states and stream data. States in MATLAB are
modeled using persistent variables. Because parfor does not support persistent variables, you
cannot model states using parfor loops. See “Global or Persistent Declarations in parfor-Loop”
(MATLAB Coder). In addition, you cannot have any data dependency across parfor loops. Hence,
you cannot maintain state information across these loops. See “When Not to Use parfor-Loops”
(MATLAB Coder). dspunfold overcomes these limitations by supporting persistent variables.

dspunfold Introduces Latency
If your application does not tolerate latency, use parfor instead. parfor does not introduce latency.
Latency is the number of input frames processed before generating the first output frame.

parfor Requires Significant Restructuring in Code
parfor requires you to restructure your algorithm to have a loop-like structure that is iteration
independent. Due to the semantic limitations of parfor, replacing a for-loop with a parfor-loop
often requires significant code refactoring. dspunfold does not require you to restructure your
code.

parfor Used with dspunfold
When you call dspunfold on an entry-point MATLAB function that contains parfor, parfor multi-
threading is disabled. dspunfold calls codegen with the –O option set to disable:openmp. With
this option set, parfor loops are treated as for- loops. The multi-threading behavior of the
generated MEX file is due entirely to dspunfold.

See Also
Functions
dspunfold | parfor
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More About
• “Generate Code with Parallel for-Loops (parfor)” (MATLAB Coder)
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” (MATLAB Coder)
• “MATLAB Algorithm Acceleration” (MATLAB Coder)
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Workflow for Generating a Multithreaded MEX File using
dspunfold

1 Run the entry-point MATLAB function with the inputs that you want to test. Make sure that the
function has no runtime errors. Call codegen on the function and make sure that it generates a
MEX file successfully.

2 Generate the multithreaded MEX file using dspunfold. Specify a state length using the -s
option. The state length must be at least the same length as the algorithm in the MATLAB
function. By default, -s is set to 0, indicating that the algorithm is stateless.

3 Run the generated analyzer function. Use the pass flag to verify that the output results of the
multithreaded MEX file and the single-threaded MEX file match. Also, check if the speedup and
latency displayed by the analyzer function are satisfactory.

4 If the output results do not match, increase the state length and generate the multithreaded MEX
file again. Alternatively, use the automatic state length detection (specified using -s auto) to
determine the minimum state length that matches the outputs.

5 If the output results match but the speedup and latency are not satisfactory, increase the
repetition factor using -r or increase the number of threads using -t. In addition, you can adjust
the state length. Adjust the dspunfold options and generate new multithreaded MEX files until
you are satisfied with the results..

For best practices for generating the multithreaded MEX file using dspunfold, see the 'Tips' section
of dspunfold.

Workflow Example
Run the Entry Point MATLAB Function

Create the entry-point MATLAB function.

function [y,mse] = AdaptiveFilter(x,noise)

persistent rlsf1 ffilt noise_var
if isempty (rlsf1)
    rlsf1 = dsp.RLSFilter(32, 'ForgettingFactor', 0.98);
    ffilt = dsp.FIRFilter('Numerator',fir1(32, .25)); % Unknown System
    noise_var = 1e-4;
end

d = ffilt(x) + noise_var * noise; % desired signal
[y,e] = rlsf1(x, d);

mse = 10*log10(sum(e.^2));
end

The function models an RLS filter that filters the input signal x, using d as the desired signal. The
function returns the filtered output in y and the filter error in e.

Run AdaptiveFilter with the inputs that you want to test. Verify that the function runs without
errors.

AdaptiveFilter(randn(1000,1), randn(1000,1));

Call codegen on AdaptiveFilter and generate a MEX file.
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codegen AdaptiveFilter -args {randn(1000,1), randn(1000,1)}

Generate a Multithreaded MEX File Using dspunfold

Set the state length to 32 samples and the repetition factor to 1. Provide a state length that is greater
than or equal to the algorithm in the MATLAB function. When at least one entry of frameinputs is
set to true, state length is considered in samples.
dspunfold AdaptiveFilter -args {randn(1000,1), randn(1000,1)} -s 32 -f true

Analyzing input MATLAB function AdaptiveFilter
Creating single-threaded MEX file AdaptiveFilter_st.mexw64
Creating multi-threaded MEX file AdaptiveFilter_mt.mexw64
Creating analyzer file AdaptiveFilter_analyzer

Run the Generated Analyzer Function

The analyzer considers the actual values of the input. To increase the analyzer effectiveness, provide
at least two different frames along the first dimension of the inputs.

AdaptiveFilter_analyzer(randn(1000*4,1),randn(1000*4,1))

Analyzing multi-threaded MEX file AdaptiveFilter_mt.mexw64  ... 
Latency = 8 frames
Speedup = 3.5x
Warning: The output results of the multi-threaded MEX file AdaptiveFilter_mt.mexw64 do not match 
the output results of the single-threaded MEX file AdaptiveFilter_st.mexw64. Check that you 
provided the correct state length value to the dspunfold function when you generated the 
multi-threaded MEX file AdaptiveFilter_mt.mexw64. For best practices and possible solutions to
this problem, see the 'Tips' section in the dspunfold function reference page. 
> In coder.internal.warning (line 8)
  In AdaptiveFilter_analyzer 

ans = 

    Latency: 8
    Speedup: 3.4686
       Pass: 0

Increase the State Length

The analyzer did not pass the verification. The warning message displayed indicates that a wrong
state length value is provided to the dspunfold function. Increase the state length to 1000 samples
and repeat the process from the previous section.
dspunfold AdaptiveFilter -args {randn(1000,1),randn(1000,1)} -s 1000 -f true

Analyzing input MATLAB function AdaptiveFilter
Creating single-threaded MEX file AdaptiveFilter_st.mexw64
Creating multi-threaded MEX file AdaptiveFilter_mt.mexw64
Creating analyzer file AdaptiveFilter_analyzer

Run the generated analyzer.

AdaptiveFilter_analyzer(randn(1000*4,1),randn(1000*4,1))

Analyzing multi-threaded MEX file AdaptiveFilter_mt.mexw64  ... 
Latency = 8 frames
Speedup = 1.8x

ans = 

    Latency: 8
    Speedup: 1.7778
       Pass: 1
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The analyzer passed verification. It is recommended that you provide different numerics to the
analyzer function and make sure that the analyzer function passes.

Improve Speedup and Adjust Latency

If you want to increase speedup and your system can afford a larger latency, increase the repetition
factor to 2.
dspunfold AdaptiveFilter -args {randn(1000,1),randn(1000,1)} -s 1000 -r 2 -f true

Analyzing input MATLAB function AdaptiveFilter
Creating single-threaded MEX file AdaptiveFilter_st.mexw64
Creating multi-threaded MEX file AdaptiveFilter_mt.mexw64
Creating analyzer file AdaptiveFilter_analyzer

Run the analyzer.

 AdaptiveFilter_analyzer(randn(1000*4,1), randn(1000*4,1))

Analyzing multi-threaded MEX file AdaptiveFilter_mt.mexw64  ... 
Latency = 16 frames
Speedup = 2.4x

ans = 

    Latency: 16
    Speedup: 2.3674
       Pass: 1

Repeat the process until you achieve satisfactory speedup and latency.

Use Automatic State Length Detection

Choose a state length that is greater than or equal to the state length of your algorithm. If it is not
easy to determine the state length for your algorithm analytically, use the automatic state length
detection tool. Invoke automatic state length detection by setting -s to auto. The tool detects the
minimum state length with which the analyzer passes the verification.
dspunfold AdaptiveFilter -args {randn(1000,1),randn(1000,1)} -s auto -f true

Analyzing input MATLAB function AdaptiveFilter
Creating single-threaded MEX file AdaptiveFilter_st.mexw64
Searching for minimal state length (this might take a while)
Checking stateless ... Insufficient
Checking 1000 ... Sufficient
Checking 500 ... Insufficient
Checking 750 ... Insufficient
Checking 875 ... Sufficient
Checking 812 ... Insufficient
Checking 843 ... Sufficient
Checking 827 ... Insufficient
Checking 835 ... Insufficient
Checking 839 ... Sufficient
Checking 837 ... Sufficient
Checking 836 ... Sufficient
Minimal state length is 836
Creating multi-threaded MEX file AdaptiveFilter_mt.mexw64
Creating analyzer file AdaptiveFilter_analyzer

Minimal state length is 836 samples.
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Run the generated analyzer.

AdaptiveFilter_analyzer(randn(1000*4,1), randn(1000*4,1))

Analyzing multi-threaded MEX file AdaptiveFilter_mt.mexw64  ... 
Latency = 8 frames
Speedup = 1.9x

ans = 

    Latency: 8
    Speedup: 1.9137
       Pass: 1

The analyzer passed the verification.

See Also
Functions
dspunfold

More About
• “Why Does the Analyzer Choose the Wrong State Length?” on page 19-47
• “Why Does the Analyzer Choose a Zero State Length?” on page 19-49
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Why Does the Analyzer Choose the Wrong State Length?
In this section...
“Reason for Verification Failure” on page 19-48
“Recommendation” on page 19-48

If the state length of the algorithm depends on the inputs to the algorithm, make sure that you use
inputs that choose the same state length when generating the MEX file and running the analyzer.
Otherwise, the analyzer fails the verification.

The algorithm in the function FIR_Mean has no states when mean(input) > 0, and has states
otherwise.

function [ Output ] = FIR_Mean( input )

persistent Filter
if isempty(Filter)
   Filter = dsp.FIRFilter('Numerator', fir1(12,0.4));
end
 

 if (mean(input) > 0)
     % stateless
     Output = mean(input);
 else
     % this path contains states
    yFilt = Filter(input);
   Output = mean(yFilt);
 end
 end

When you invoke the automatic state length detection on this function, the analyzer detects a state
length of 14 samples.

dspunfold FIR_Mean -args {randn(10,1)} -s auto -f true

Analyzing input MATLAB function FIR_Mean
Creating single-threaded MEX file FIR_Mean_st.mexw64
Searching for minimal state length (this might take a while)
Checking stateless ... Insufficient
Checking 10 ... Insufficient
Checking Infinite ... Sufficient
Checking 20 ... Sufficient
Checking 15 ... Sufficient
Checking 12 ... Insufficient
Checking 13 ... Insufficient
Checking 14 ... Sufficient
Minimal state length is 14
Creating multi-threaded MEX file FIR_Mean_mt.mexw64
Creating analyzer file FIR_Mean_analyzer

Run the analyzer function. Use an input with four different frames. Check if the output results match.

FIR_Mean_analyzer(randn(10*4,1))

Analyzing multi-threaded MEX file FIR_Mean_mt.mexw64  ... 
Latency = 8 frames
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Speedup = 0.5x
Warning: The output results of the multi-threaded MEX file FIR_Mean_mt.mexw64 do not match 
the output results of the single-threaded MEX file FIR_Mean_st.mexw64. Check that you 
provided the correct state length value to the dspunfold function when you generated the 
multi-threaded MEX file FIR_Mean_mt.mexw64. For best practices and possible solutions to 
this problem, see the 'Tips' section in the dspunfold function reference page. 
> In coder.internal.warning (line 8)
  In FIR_Mean_analyzer 

ans = 

    Latency: 8
    Speedup: 0.5040
       Pass: 0

Pass = 0, and the function throws a warning message indicating a possible reason for the
verification failure.

Reason for Verification Failure
The state length of the algorithm depends on the input. When mean(input) > 0, the algorithm is
stateless. Otherwise, the algorithm contains states. When generating the MEX file, the input
arguments choose the code path with states. When the analyzer is called, the multi-frame input
chooses the code path without states. Hence, the state length is different in both the cases leading to
the verification failure.

Recommendation
The recommendation is to use inputs which choose the same state length when generating the MEX
file and running the analyzer.

For best practices, see the 'Tips' section of dspunfold.

See Also

More About
• “Workflow for Generating a Multithreaded MEX File using dspunfold” on page 19-43
• “Why Does the Analyzer Choose a Zero State Length?” on page 19-49
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Why Does the Analyzer Choose a Zero State Length?
When the output of the algorithm does not change for any input given to the algorithm, the analyzer
considers the algorithm stateless, even if it contains states. Make sure the inputs to the algorithm
have an immediate effect on the output of the algorithm.

The function Input_Output uses an FIR filter that contains states.

function [output] = Input_Output(input)

persistent Filter
if isempty(Filter)
   Filter = dsp.FIRFilter('Numerator', (1:12));
end

y = Filter(input);

output = any(y(:)>0);

end

When you call automatic state length detection on this function, the analyzer detects a minimal state
length of 0.

dspunfold Input_Output -args {randn(10,1)} -s auto -f true

Analyzing input MATLAB function Input_Output
Creating single-threaded MEX file Input_Output_st.mexw64
Searching for minimal state length (this might take a while)
Checking stateless ... Sufficient
Minimal state length is 0
Creating multi-threaded MEX file Input_Output_mt.mexw64
Creating analyzer file Input_Output_analyzer

The analyzer detects a zero state length because the output of the function is the same irrespective of
the value of the input. When the analyzer tests the algorithm with zero state length, the outputs of
the multithreaded MEX and single-threaded MEX match. Therefore, the analyzer considers the
algorithm stateless and sets the minimal state length to zero.

Recommendation
To prevent the analyzer from choosing the wrong state length, rewrite your algorithm so that inputs
have an immediate effect on the output. Also, choose inputs which stress the code path with maximal
state length.

For best practices, see the 'Tips' section of dspunfold.

See Also

More About
• “Workflow for Generating a Multithreaded MEX File using dspunfold” on page 19-43
• “Why Does the Analyzer Choose the Wrong State Length?” on page 19-47
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Array Plot with Android Devices
This example shows how to create an Android™ app to plot vector or array data on an Android device
using the Array Plot block of DSP System Toolbox™ through a Simulink® model. To implement this
workflow, you must install the Simulink Support Package for Android Devices.

Introduction

Android devices provide a user interface to visualize signals or display data on device screen. By
using Array Plot block, you can display signals generated during simulation in real-time.

By displaying the Array Plot on an Android device screen, you can:

• Visualize vector or array data in real-time directly on your Android device screen.
• View signals without a connection to your development computer.
• Customize the Array Plot style to suit your app.

This example provides two Simulink models:

• dspstreamingwelch: This model displays the power spectrum estimate of a streaming time-
domain input via Welch's method of averaged modified periodograms. This model runs on the
development computer. For more information on this model, see “Streaming Power Spectrum
Estimation Using Welch's Method” on page 17-65.

• androidarrayplot: Showcases how the power spectrum estimate is displayed on the Android
device using an Array Plot.

Prerequisites

• Download and Install Simulink Support Package for Android Devices
• “Getting Started with Android Devices” (Simulink Support Package for Android Devices) example

Required Products

• DSP System Toolbox
• Simulink Support Package for Android Devices
• Simulink

Required Hardware

• Android device
• USB cable to connect the device to your development computer

Task 1 - Display Signals on the Development Computer

The Spectrum Estimator block in dspstreamingwelch model estimates the spectrum of a noisy chirp
signal, sampled at 44100 Hz. The Array Plot block displays the power spectrum estimate.

1. Open the dspstreamingwelch model on your development computer.

2. Double-click the Array Plot block to open the Array Plot window.

3. In the Simulink model, select the Simulation tab and click Run to see the output of the streaming
power spectrum estimate.

19 C Code Generation

19-50

matlab:dspstreamingwelch
matlab:androidarrayplot
matlab:dspstreamingwelch


Task 2 - Display Signals on Your Android Device

Display the power spectrum estimate on your Android device

1. To open the androidarrayplot model, run this command at the MATLAB® Command Window.

open_system('androidarrayplot')

2. Note how the Simulink Display block has been replaced with a Data Display block from the
Android Support Package. This allows you to view the resolution bandwidth (RBW) on your Android
Device.

3. On the Modeling tab of the toolstrip, select Model Settings.
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4. Select the Hardware Implementation pane and from the Hardware board parameter list, and
confirm it is set to Android Device.

5. Click Device options and ensure that the device matches your device setting. Click OK.

6. On the Hardware tab of the Simulink model, in the Mode section, select Run on board and then
click Build, Deploy & Start to run the Simulink model on your device. In the current working
directory, a folder named "androidarrayplot_ert_rtw" contains all the model's generated project files.

The app displays the power spectrum estimate on your device.

Task 3 - Customize Array Plot Style on Your Android Device

Using the model from Task 2, configure the appearance and style of the Array Plot displayed on your
Android device.

1. Open the androidarrayplot model.

2. Double-click the Array Plot block to open the Scope window.

3. In the Scope menu, click View > Style to open the Style dialog.

3. Set the Figure color to gray.

4. Modify the Axes colors. Set the Axes background color to white. Set the Ticks, labels, and
grid colors to gray.

5. Set Plot type to Stem.
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6. Click OK.

7. To see the style changes reflected in the app, you must remove the previous project. In the
MATLAB Command Window, run:

rmdir('androidarrayplot_ert_rtw', 's');

8. To update these style changes on the Android device, you must re-build and download the changes
by clicking on the Build, Deploy & Start button of the Simulink model.

The Array Plot in the app reflects the new line and axes properties from the Style dialog box of the
Array Plot block.

Other Things to Try

• Modify the model to display signals from Android Device sensors.
• Change the scope style to suit your app.

See Also
Blocks
Spectrum Estimator | Array Plot | Spectrum Analyzer | Random Source | Chirp

Related Examples
• “Streaming Power Spectrum Estimation Using Welch's Method” on page 17-65
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System objects in DSP System Toolbox that Support SIMD Code
Generation

When certain conditions are met, you can generate SIMD code using Intel AVX2 technology from
certain MATLAB System objects in DSP System Toolbox. For information on how to generate SIMD
code from MATLAB algorithms, see “Generate High Performance SIMD Code on Intel from MATLAB
Algorithms in DSP System Toolbox” on page 19-56.

The following table contains a list of System objects in DSP System Toolbox that support SIMD code
generation. The table also details the conditions under which the support is available.

MATLAB System objects Conditions
dsp.AnalyticSignal • Input signal is real-valued.

• Input signal has a data type of single or
double.

dsp.ComplexBandpassDecimator • Input signal is complex-valued.
• Input signal has a data type of single or

double.
dsp.DCBlocker • Input signal has a data type of single or

double.
dsp.Differentiator • Input signal has a data type of single or

double.
dsp.DigitalDownConverter • Input signal has a data type of single or

double.
dsp.DigitalUpConverter • Input signal has a data type of single or

double.
dsp.FIRFilter • Filter structure is set to 'Direct form' or

'Direct form transposed'.
• Input signal is real-valued with real filter
coefficients.

• When the filter structure is set to 'Direct
form', the input signal can also be complex-
valued with real or complex filter coefficients.

• Input signal has a data type of single or
double.

dsp.FIRDecimator • Filter structure is set to 'Direct form'.
• Input signal is real-valued with real filter
coefficients.

• Input signal is complex-valued with real or
complex filter coefficients.

• Input signal has a data type of single or
double.

dsp.FIRHalfbandInterpolator • Input signal has a data type of single or
double.
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MATLAB System objects Conditions
dsp.FIRInterpolator • Input signal is real-valued with real filter

coefficients.
• Input signal is complex-valued with real or

complex filter coefficients.
• Input signal has a data type of single or

double.
dsp.HighpassFilter • FilterType is set to 'FIR'.

• Input signal has a data type of single or
double.

dsp.LMSFilter • Method is set to 'LMS' or 'Normalized
LMS'.

• WeightsOutput is set to 'None' or 'Last'.
• Input signal is real-valued.
• Input signal has a data type of single or

double.
dsp.LowpassFilter • FilterType is set to 'FIR'.

• Input signal has a data type of single or
double.

dsp.SampleRateConverter • For upsampling, the ratio of output sample
rate to input sample rate must be an integer.

• For downsampling, the ratio of input sample
rate to output sample rate must be an integer.

• Input signal has a data type of single or
double.

dsp.VariableBandwidthFIRFilter • Input signal has a data type of single or
double.

See Also

More About
• “Simulink Blocks in DSP System Toolbox that Support SIMD Code Generation” on page 19-58
• “Generate High Performance SIMD Code on Intel from MATLAB Algorithms in DSP System

Toolbox” on page 19-56
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Generate High Performance SIMD Code on Intel from MATLAB
Algorithms in DSP System Toolbox

To generate SIMD code from MATLAB System objects, create a coder.config object, set the
CodeReplacementLibrary property to 'DSP Intel AVX2-FMA (Windows)', 'DSP Intel
AVX2-FMA (Linux)', or 'DSP Intel AVX2-FMA (Mac)', and use the object with the codegen
command.

This workflow requires you to install MATLAB Coder and Embedded Coder on your machine.

Consider this MATLAB function that filters a random multichannel signal using the dsp.FIRFilter
System object.

function y = firsingle()

persistent fir
if isempty(fir)
    b = fir1(250,.4);
    fir = dsp.FIRFilter(b);    
end

frameSize = 512;
numChannels = 8;
numFrames = 1e3;

for k = 1:numFrames
    x = randn(frameSize,numChannels,'single');
    y = fir(x);
end

Generate plain C code executable of this function using the codegen command.

cfg = coder.config('exe');
% provides starter main.c
cfg.GenerateExampleMain = 'GenerateCodeAndCompile'; 
switch computer('arch')
case 'glnxa64'
    codegen firsingle -config cfg -report -o firsingle_std    
case 'win64'
    codegen firsingle -config cfg -report -o firsingle_std.exe
case 'maci64'
    codegen firsingle -config cfg -report -o firsingle_std
end

Measure the time it takes to run the generated executable.

tic; 
system('firsingle_std'); 
tplain = toc

tplain =

   1.1700

Generate AVX2 C code executable by setting the CodeReplacementLibrary parameter to either
'DSP Intel AVX2-FMA (Windows)', 'DSP Intel AVX2-FMA (Linux)', or 'DSP Intel
AVX2-FMA (Mac)', and calling the codegen command on the coder.config object.
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cfg = coder.config('exe');
switch computer('arch')
case 'glnxa64'
    cfg.CodeReplacementLibrary = 'DSP Intel AVX2-FMA (Linux)';
case 'win64' 
    cfg.CodeReplacementLibrary = 'DSP Intel AVX2-FMA (Windows)';
case 'maci64'
    cfg.CodeReplacementLibrary = 'DSP Intel AVX2-FMA (Mac)';
end
cfg.GenerateExampleMain = 'GenerateCodeAndCompile'; % provides starter main.c
switch computer('arch')
case 'glnxa64'
    codegen firsingle -config cfg -report -o firsingle_avx2    
case 'win64'
    codegen firsingle -config cfg -report -o firsingle_avx2.exe
case 'maci64'
    codegen firsingle -config cfg -report -o firsingle_avx2
end

Measure the time it takes to run the generated executable.

tic; 
system('firsingle_avx2');
tavx2 = toc

tavx2 =

   0.2611

The generated SIMD code is around 4.5x faster compared to the plain C code on a Windows 10
machine.

tplain/tavx2

 ans = 
4.4815

You can also generate a static library and a dynamic library by specifying the build type as 'lib' and
'dll', respectively.

cfg = coder.config('lib');
cfg.CodeReplacementLibrary = 'DSP Intel AVX2-FMA (Windows)';
codegen MATLABfunctionName -config cfg  

cfg = coder.config('dll');
cfg.CodeReplacementLibrary = 'DSP Intel AVX2-FMA (Windows)';
codegen MATLABfunctionName -config cfg

MATLABfunctionName is the MATLAB function that calls the System object you are trying to
generate SIMD code from. For a list of System objects that support SIMD code generation, see
“System objects in DSP System Toolbox that Support SIMD Code Generation” on page 19-54.

See Also

More About
• “System objects in DSP System Toolbox that Support SIMD Code Generation” on page 19-54
• “Generate High Performance SIMD Code on Intel from Simulink Blocks in DSP System Toolbox”

on page 19-63
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Simulink Blocks in DSP System Toolbox that Support SIMD
Code Generation

When certain conditions are met, you can generate SIMD code using Intel AVX2 technology from
certain Simulink blocks in DSP System Toolbox. For information on how to generate SIMD code from
Simulink blocks, see “Generate High Performance SIMD Code on Intel from Simulink Blocks in DSP
System Toolbox” on page 19-63.

The following table contains a list of Simulink blocks in DSP System Toolbox that support SIMD code
generation. The table also details the conditions under which the support is available.

Simulink blocks Conditions
Arbitrary Response Filter • Filter type is set to Single-rate,

Decimator, or Interpolator.
• For Filter type that is set to Single-rate,

Structure is set to Direct-form FIR or
Direct-form FIR transposed.

• For Filter type that is set to Decimator,
Structure is set to Direct-form FIR
polyphase decimator and Rate options is
set to Enforce single-rate processing.

• For Filter type that is set to Interpolator,
Rate options is set to Enforce single-
rate processing.

• Input processing is set to Columns as
channels (frame based).

• Input signal has a data type of single or
double.

Analytic Signal • Input processing is set to Columns as
channels (frame based).

• Input signal has to be real-valued.
• Input signal has a data type of single or

double.
Bandpass Filter • Impulse response is set to FIR.

• Filter type is set to Single-rate.
• Structure is set to Direct-form FIR or

Direct-form FIR transposed.
• Use basic elements to enable filter

customization parameter is not selected.
• Input processing is set to Columns as

channels (frame based).
• Input signal has a data type of single or

double.
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Simulink blocks Conditions
Bandstop Filter • Impulse response is set to FIR.

• Filter type is set to Single-rate.
• Structure is set to Direct-form FIR or

Direct-form FIR transposed.
• Use basic elements to enable filter

customization parameter is not selected.
• Input processing is set to Columns as

channels (frame based).
• Input signal has a data type of single or

double.
Complex Bandpass Decimator • Input signal is complex-valued.

• Input signal has a data type of single or
double.

DC Blocker • Input signal has a data type of single or
double.

Differentiator Filter • Input signal has a data type of single or
double.

Digital Filter Design • Input processing is set to Columns as
channels (frame based).

• Filter Structure (in Import Filter from
Workspace pane) is set to Direct-Form
FIR. You can generate SIMD code even when
the filter is a Direct-Form FIR
Transposed filter. To create a Direct-Form
FIR Transposed filter, select Edit >
Convert Structure, and click Direct-Form
FIR Transposed.

• Input signal has a data type of single or
double.

Discrete FIR Filter • Filter structure is set to Direct form or
Direct form transposed.

• Input processing is set to Columns as
channels (frame based).

• Input signal is real-valued with real filter
coefficients.

• When Filter structure is set to Direct
form, the input signal can also be complex-
valued with real or complex filter coefficients.

• Input signal has a data type of single or
double.
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Simulink blocks Conditions
FIR Decimation • Filter structure is set to Direct form.

• Input processing is set to Columns as
channels (frame based).

• Rate options is set to Enforce single-
rate processing.

• Input signal is real-valued with real filter
coefficients.

• Input signal is complex-valued with real or
complex filter coefficients.

• Input signal has a data type of single or
double.

FIR Halfband Interpolator • Input signal has a data type of single or
double.

FIR Interpolation • Input processing is set to Columns as
channels (frame based).

• Rate options is set to Enforce single-
rate processing.

• Input signal is real-valued with real filter
coefficients.

• Input signal is complex-valued with real or
complex filter coefficients.

• Input signal has a data type of single or
double.

Highpass Filter • Filter type is set to FIR.
• Input signal has a data type of single or

double.
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Simulink blocks Conditions
Hilbert Filter • Filter type is set to Single-rate,

Decimator, or Interpolator.
• For Filter type that is set to Single-rate,

Structure is set to Direct-form FIR or
Direct-form FIR transposed.

• For Filter type that is set to Decimator,
Structure is set to Direct-form FIR
polyphase decimator and Rate options is
set to Enforce single-rate processing.

• For Filter type that is set to Interpolator:

• Interpolation Factor cannot be equal to
1.

• Rate options is set to Enforce single-
rate processing.

• Input processing is set to Columns as
channels (frame based).

• Input signal has a data type of single or
double.

• Input port dimensions cannot be equal to [1
1].

Inverse Sinc Filter • Filter type is set to Single-rate,
Decimator, or Interpolator.

• For Filter type that is set to Single-rate,
Structure is set to Direct-form FIR or
Direct-form FIR transposed.

• For Filter type that is set to Decimator,
Structure is set to Direct-form FIR
polyphase decimator and Rate options is
set to Enforce single-rate processing.

• For Filter type that is set to Interpolator,
Rate options is set to Enforce single-
rate processing.

• Input processing is set to Columns as
channels (frame based).

• Input signal has a data type of single or
double.

LMS Filter • Algorithm parameter is set to LMS or
Normalized LMS.

• Input signal is real-valued.
• Input signal has a data type of single or

double.
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Simulink blocks Conditions
Lowpass Filter • Filter type is set to FIR.

• Input signal has a data type of single or
double.

Nyquist Filter • Filter type is set to Single-rate,
Decimator, or Interpolator.

• For Filter type that is set to Single-rate,
Structure is set to Direct-form FIR or
Direct-form FIR transposed.

• For Filter type that is set to Decimator,
Structure is set to Direct-form FIR
polyphase decimator and Rate options is
set to Enforce single-rate processing.

• For Filter type that is set to Interpolator:

• Interpolation Factor cannot be equal to
1.

• Rate options is set to Enforce single-
rate processing.

• Input processing is set to Columns as
channels (frame based).

• Input signal has a data type of single or
double.

• Input port dimensions cannot be equal to [1
1].

Sample-Rate Converter • For upsampling, the ratio of output sample
rate to input sample rate must be an integer.

• For downsampling, the ratio of input sample
rate to output sample rate must be an integer.

• Input signal has a data type of single or
double.

Variable Bandwidth FIR Filter • Input signal has a data type of single or
double.

See Also

More About
• “System objects in DSP System Toolbox that Support SIMD Code Generation” on page 19-54
• “Generate High Performance SIMD Code on Intel from Simulink Blocks in DSP System Toolbox”

on page 19-63
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Generate High Performance SIMD Code on Intel from Simulink
Blocks in DSP System Toolbox

To configure a Simulink model to generate SIMD code on Intel®:

• In the Modeling tab of the model toolstrip, click Model Settings.

• In the Configuration Parameters dialog box that opens, in the Code Generation pane, set the
System target file to ert.tlc.

Note This workflow does not support the MinGW C/C++ compiler. You can choose any other
compiler listed in Supported Compilers. To select a different compiler that is installed on your
machine, run mex -setup in the MATLAB command prompt and follow the instructions.

• Under Code Generation, in the Interface pane, set the Code Replacement libraries to either
DSP Intel AVX2-FMA (Windows), DSP Intel AVX2-FMA (Linux), or DSP Intel AVX2-
FMA (Mac). Using these libraries, you can generate high performance SIMD code. For more
information on Code Replacement Libraries, see “What Is Code Replacement?” (Embedded
Coder).
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• In the model window, initiate code generation and the build process for the model by using one of
these common options:

• Click the Build Model button.
• Press Ctrl+B.

For an example on how to select a system target file for a Simulink model and how to generate C
code for embedded systems, see “Generate Code Using Embedded Coder” (Embedded Coder).

The SIMD code is generated using Intel AVX2-FMA technology. The Intel AVX2 SIMD intrinsics
significantly improve the performance of the code generated from the supported algorithms on
Intel platforms, in most cases meeting or exceeding the performance of the simulation and plain C
code.

Compare the Performance of SIMD Code with Generated Plain C Code
Consider this Simulink model that models a digital communication system. The model contains a root-
raised cosine filter on the transmitter and the receiver side, a couple of FIR Interpolation and FIR
Decimation blocks to increase and decrease the sample rate of the signal, respectively, and an
additive white Gaussian noise (AWGN) communication channel to transmit the signal. The root-raised
cosine filters on both sides perform matched filtering. The combined response of the two root-raised
cosine filters forms a raised-cosine filter, which helps in minimizing the intersymbol interference (ISI).
Due to matched filtering, the signal received at the output has a high signal to noise ratio (SNR) and
low probability of error. To confirm, view the output in the constellation diagram that follows.

To open the model, type ex_qam_matchedfilter in the MATLAB command prompt.
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In the Modeling tab of the model, click Model Settings. In the configuration parameters window
that opens, under Code Generation in the Interface pane, set Code replacement libraries to
None. Build the model and this setting generates plain C code executable in the current MATLAB
directory. However, if you specify a code generation folder (Simulink) in Simulink preferences,
building the model generates plain C code executable in the specified folder. Measure the time it
takes to run the executable.

tic; 
system('ex_qam_matchedfilter');
tplain = toc

tplain =

   37.4883

Repeat the process by setting the Code replacement libraries to DSP Intel AVX2-FMA
(Windows), DSP Intel AVX2-FMA (Linux), or DSP Intel AVX2-FMA (Mac), depending on the
platform of the machine you are using. Build the model and measure the time it takes to run the
generated AVX2 executable.

tic; 
system('ex_qam_matchedfilter'); 
tavx2 = toc

tavx2 =

   8.29

The generated SIMD code is around 4.5x compared to the plain C code on a Windows 10 machine.

tplain/tavx2

ans =

    4.5221

See Also

More About
• “Simulink Blocks in DSP System Toolbox that Support SIMD Code Generation” on page 19-58
• “Generate High Performance SIMD Code on Intel from MATLAB Algorithms in DSP System

Toolbox” on page 19-56
• “Generate Code Using Embedded Coder” (Embedded Coder)
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In-Place Memory Optimization
In-place optimization is a memory optimization technique that uses a single buffer, that is, the same
memory to store the input and output data. Every time there is an intermediary output value in the
algorithm, the same buffer is overwritten to store this value. This technique optimizes the memory
usage and generates code that uses very less memory.

These following features in DSP System Toolbox support in-place memory optimization.

• Discrete FIR Filter
• Array-Vector Add
• Array-Vector Subtract
• Array-Vector Multiply
• Array-Vector Divide
• dsp.FIRFilter

To illustrate the technique of in-place optimization, consider this model that contains a sequence of
three, connected Discrete FIR Filter blocks. Each block filters the input it receives and generates an
output that is of the same size as the input.

When you generate code from such a model, you can see the in-place optimization in the generated
code.

This section shows the in-place optimized generated code. The three for loops with the iteration
index n correspond to the respective Discrete FIR Filter block in the Simulink model. In each of these
three for loops, the filter output is computed and stored in the m3fir_Y.Output[] buffer. The
m3fir_Y.Output[] buffer rewrites its value every time the Discrete FIR Filter block has an updated
output.
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The generated code reuses the output buffer and hence is efficient and uses less memory.

When you generate code from a MATLAB algorithm containing a sequence of dsp.FIRFilter
objects, you see a similar optimization in the generated code.

See Also
Functions
codegen

Related Examples
• “Generate C Code from Simulink Model” on page 19-19
• “Generate C Code from MATLAB Code” on page 19-10
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HDL Code Generation

• “Find Blocks That Support HDL Code Generation” on page 20-2
• “HDL Filter Architectures” on page 20-4
• “Subsystem Optimizations for Filters” on page 20-9
• “Multichannel FIR Filter for FPGA” on page 20-19
• “Programmable FIR Filter for FPGA” on page 20-22
• “Implement Digital Downconverter for FPGA” on page 20-28
• “Implement Digital Upconverter for FPGA” on page 20-45

20



Find Blocks That Support HDL Code Generation

Blocks
In the Simulink library browser, you can find blocks supported for HDL code generation in the HDL
Coder, Communications Toolbox HDL Support, and DSP System Toolbox HDL Support
libraries, as well as DSP HDL Toolbox™ and Wireless HDL Toolbox™ libraries.

To create a library of HDL-supported blocks from all your installed products, enter hdllib at the
MATLAB command line. This command requires an HDL Coder™ license.

You can also view blocks that are supported for HDL code generation in documentation by filtering
the block reference list. Click Blocks in the blue bar at the top of the Help window, then select the
HDL code generation check box at the bottom of the left column. The blocks are listed in their
respective products. You can use the table of contents in the left column to navigate between
products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for block
implementations, properties, and restrictions for HDL code generation.
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System Objects
You can view System objects that are supported for HDL code generation in documentation by
filtering the functions reference list. Click Functions in the blue bar at the top of the Help window,
then select the HDL code generation check box at the bottom of the left column. The System
objects are listed in their respective products. You can use the table of contents in the left column to
navigate between products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for
restrictions for HDL code generation.
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HDL Filter Architectures
The HDL Coder software provides architecture options that extend your control over speed vs. area
tradeoffs in the realization of filter designs. To achieve the desired tradeoff for generated HDL code,
you can either specify a fully parallel architecture, or choose one of several serial architectures.
Configure a serial architecture using the “SerialPartition” (HDL Coder) and “ReuseAccum” (HDL
Coder) parameters. You can also choose a frame-based filter for increased throughput.

Use pipelining parameters to improve speed performance of your filter designs. Add pipelines to the
adder logic of your filter using AddPipelineRegisters (HDL Coder) for scalar input filters, and
“AdderTreePipeline” (HDL Coder) for frame-based filters. Specify pipeline stages before and after
each multiplier with MultiplierInputPipeline (HDL Coder) and MultiplierOutputPipeline (HDL Coder).
Set the number of pipeline stages before and after the filter using “InputPipeline” (HDL Coder) and
“OutputPipeline” (HDL Coder). The architecture diagrams show the locations of the various
configurable pipeline stages.

Fully Parallel Architecture
This option is the default architecture. A fully parallel architecture uses a dedicated multiplier and
adder for each filter tap. The taps execute in parallel. A fully parallel architecture is optimal for
speed. However, it requires more multipliers and adders than a serial architecture, and therefore
consumes more chip area. The diagrams show the architectures for direct form and for transposed
filter structures with fully parallel implementations, and the location of configurable pipeline stages.

Direct Form

By default, the block implements linear adder logic. When you enable AddPipelineRegisters, the
adder logic is implemented as a pipelined adder tree. The adder tree uses full-precision data types. If
you generate a validation model, you must use full precision in the original model to avoid validation
mismatches.
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Transposed

The AddPipelineRegisters parameter has no effect on a transposed filter implementation.

Serial Architectures
Serial architectures reuse hardware resources in time, saving chip area. Configure a serial
architecture using the “SerialPartition” (HDL Coder) and “ReuseAccum” (HDL Coder) parameters.
The available serial architecture options are fully serial, partly serial, and cascade serial.

Fully Serial

A fully serial architecture conserves area by reusing multiplier and adder resources sequentially. For
example, a four-tap filter design uses a single multiplier and adder, executing a multiply-accumulate
operation once for each tap. The multiply-accumulate section of the design runs at four times the
filter's input/output sample rate. This design saves area at the cost of some speed loss and higher
power consumption.

In a fully serial architecture, the system clock runs at a much higher rate than the sample rate of the
filter. Thus, for a given filter design, the maximum speed achievable by a fully serial architecture is
less than that of a parallel architecture.

Partly Serial

Partly serial architectures cover the full range of speed vs. area tradeoffs that lie between fully
parallel and fully serial architectures.

In a partly serial architecture, the filter taps are grouped into a number of serial partitions. The taps
within each partition execute serially, but the partitions execute in parallel with respect to one
another. The outputs of the partitions are summed at the final output.

When you select a partly serial architecture, you specify the number of partitions and the length
(number of taps) of each partition. Suppose you specify a four-tap filter with two partitions, each
having two taps. The system clock runs at twice the filter's sample rate.
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Cascade Serial

A cascade-serial architecture closely resembles a partly serial architecture. As in a partly serial
architecture, the filter taps are grouped into a number of serial partitions that execute in parallel
with respect to one another. However, the accumulated output of each partition is cascaded to the
accumulator of the previous partition. The output of all partitions is therefore computed at the
accumulator of the first partition. This technique is termed accumulator reuse. A final adder is not
required, which saves area.

The cascade-serial architecture requires an extra cycle of the system clock to complete the final
summation to the output. Therefore, the frequency of the system clock must be increased slightly
with respect to the clock used in a noncascade partly serial architecture.

To generate a cascade-serial architecture, specify a partly serial architecture with accumulator reuse
enabled. If you do not specify the serial partitions, HDL Coder automatically selects an optimal
partitioning.

Latency in Serial Architectures

Serialization of a filter increases the total latency of the design by one clock cycle. The serial
architectures use an accumulator (an adder with a register) to add the products sequentially. An
additional final register is used to store the summed result of all the serial partitions, requiring an
extra clock cycle for the operation. To model this latency, HDL Coder inserts a Delay block into the
generated model after the filter block.

Full-Precision for Serial Architectures

When you choose a serial architecture, the code generator uses full precision in the HDL code. HDL
Coder therefore forces full precision in the generated model. If you generate a validation model, you
must use full precision in the original model to avoid validation mismatches.

Frame-Based Architecture
When you select a frame-based architecture and provide an M-sample input frame, the coder
implements a fully parallel filter architecture. The filter includes M parallel subfilters for each input
sample.
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Each of the subfilters includes every Mth coefficient. The subfilter results are added so that each
output sample is the sum of each of the coefficients multiplied with one input sample.

The diagram shows the filter architecture for a frame size of two samples (M = 2), and a filter length
of six coefficients. The input is a vector with two values representing samples in time. The input
samples, x[2n] and x[2n+1], represent the nth input pair. Every second sample from each stream is
fed to two parallel subfilters. The four subfilter results are added together to create two output
samples. In this way, each output sample is the sum of each of the coefficients multiplied with one of
the input samples.

The sums are implemented as a pipelined adder tree. Set “AdderTreePipeline” (HDL Coder) to specify
the number of pipeline stages between levels of the adder tree. To improve clock speed, it is
recommended that you set this parameter to 2. To fit the multipliers into DSP blocks on your FPGA,
add pipeline stages before and after the multipliers using MultiplierInputPipeline (HDL Coder) and
MultiplierOutputPipeline (HDL Coder).
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For symmetric or antisymmetric coefficients, the filter architecture reuses the coefficient multipliers
and adds design delay between the multiplier and summation stages as required.

See Also

More About
• “HDL Filter Block Properties” (HDL Coder)
• “Distributed Arithmetic for HDL Filters” (HDL Coder)
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Subsystem Optimizations for Filters
The Discrete FIR Filter (when used with scalar or multichannel input data) and Biquad Filter blocks
participate in subsystem-level optimizations. To set optimization properties, right-click on the
subsystem and open the HDL Properties dialog box.

For these blocks to participate in subsystem-level optimizations, you must leave the block-level
Architecture set to the default, Fully parallel.

You cannot use these subsystem optimizations when using the Discrete FIR Filter in frame-based
input mode.

Sharing
These filter blocks support sharing resources within the filter and across multiple blocks in the
subsystem. When you specify a SharingFactor, the optimization tools generate a filter
implementation in HDL that shares resources using time-multiplexing. To generate an HDL
implementation that uses the minimum number of multipliers, set the SharingFactor to a number
greater than or equal to the total number of multipliers. The sharing algorithm shares multipliers that
have the same input and output data types. To enable sharing between blocks, you may need to
customize the internal data types of the filters. Alternatively, you can target a particular system clock
rate with your choice of SharingFactor.

Resource sharing applies to multipliers by default. To share adders, select the check box under
Resource sharing on the Configuration Parameters > HDL Code Generation > Global
Settings > Optimizations dialog box.

For more information, see “Resource Sharing” (HDL Coder) and the “Area Reduction of Multichannel
Filter Subsystem” on page 20-10 example.

You can also use a SharingFactor with multichannel filters. See “Area Reduction of Filter
Subsystem” on page 20-15.

Streaming
Streaming refers to sharing an atomic part of the design across multiple channels. To generate a
streaming HDL implementation of a multichannel subsystem, set StreamingFactor to the number of
channels in your design.

If the subsystem contains a single filter block, the block-level ChannelSharing option and the
subsystem-level StreamingFactor option result in similar HDL implementations. Use
StreamingFactor when your subsystem contains either more than one filter block or additional
multichannel logic that can participate in the optimization. You must set block-level ChannelSharing
to off to use StreamingFactor at the subsystem level.

See “Streaming” (HDL Coder) and the “Area Reduction of Filter Subsystem” on page 20-15 example.

Pipelining
You can enable DistributedPipelining at the subsystem level to allow the filter to participate in
pipeline optimizations. The optimization tools operate on the InputPipeline and OutputPipeline
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pipeline stages specified at subsystem level. The optimization tools also operate on these block-level
pipeline stages:

• InputPipeline and OutputPipeline
• MultiplierInputPipeline and MultiplierOutputPipeline
• AddPipelineRegisters

The optimization tools do not move design delays within the filter architecture. See “Distributed
Pipelining” (HDL Coder).

The filter block also participates in clock-rate pipelining, if enabled in Configuration Parameters.
This feature is enabled by default. See “Clock-Rate Pipelining” (HDL Coder).

Area Reduction of Multichannel Filter Subsystem
To reduce the number of multipliers in the HDL implementation of a multichannel filter and
surrounding logic, use the StreamingFactor HDL Coder™ optimization.

The model includes a two-channel sinusoidal signal source feeding a filter subsystem targeted for
HDL code generation.

The subsystem contains a Discrete FIR Filter block and a constant multiplier. The multiplier is
included to show the optimizations operating over all eligible logic in a subsystem.
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The filter has 44 symmetric coefficients. With no optimizations enabled, the generated HDL code
takes advantage of symmetry. The nonoptimized HDL implementation uses 46 multipliers: 22 for each
channel of the filter and 1 for each channel of the Product block.

To enable streaming optimization for the Multichannel FIR Filter Subsystem, right-click the
subsystem and select HDL Code > HDL Block Properties.
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Set the StreamingFactor to 2, because this design is a two-channel system.

To observe the effect of the optimization, under Configuration Parameters > HDL Code
Generation, select Generate resource utilization report and Generate optimization report.
Then, to generate HDL code, right-click the Multichannel FIR Filter Subsystem and select HDL Code
> Generate HDL for Subsystem.

With the streaming factor applied, the logic for one channel is instantiated once and run at twice the
rate of the original model.
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In the Code Generation Report window, click High-level Resource Report. The generated HDL
code now uses 23 multipliers, compared to 46 in the nonoptimized code. The multipliers in the filter
kernel and subsequent scaling are shared between the channels.

To apply SharingFactor to multichannel filters, set the SharingFactor to 23.
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The optimized HDL now uses only 2 multipliers. The optimization tools do not share multipliers of
different sizes.
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Area Reduction of Filter Subsystem
To reduce the number of multipliers in the HDL implementation of a multifilter design, use the
SharingFactor HDL Coder™ optimization.

The model includes a sinusoidal signal source feeding a filter subsystem targeted for HDL code
generation.
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The subsystem contains a Discrete FIR Filter block and a Biquad Filter block. This design
demonstrates how the optimization tools share resources between multiple filter blocks.

The Discrete FIR Filter block has 43 symmetric coefficients. The Biquad Filter block has 6
coefficients, two of which are unity. With no optimizations enabled, the generated HDL code takes
advantage of symmetry and unity coefficients. The nonoptimized HDL implementation of the
subsystem uses 27 multipliers.

To enable streaming optimization for the Multi-Filter Subsystem, right-click the subsystem and
select HDL Code > HDL Block Properties.
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Set the SharingFactor to 27 to reduce the design to a single multiplier. The optimization tools
attempt to share multipliers with matching data types. To reduce to a single multiplier, you must set
the internal data types of the filter blocks to match each other.

To observe the effect of the optimization, under Configuration Parameters > HDL Code
Generation, select Generate resource utilization report and Generate optimization report.
Then, to generate HDL code, right-click the Multi-Filter Subsystem and select HDL Code >
Generate HDL for Subsystem.

With the SharingFactor applied, the subsystem upsamples the rate by 27 to share a single multiplier
for all the coefficients.
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In the Code Generation Report window, click High-level Resource Report. The generated HDL
code now uses one multiplier.

See Also

More About
• “Resource Sharing” (HDL Coder)
• “Streaming” (HDL Coder)
• “Clock-Rate Pipelining” (HDL Coder)
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Multichannel FIR Filter for FPGA
This example shows how to implement a discrete FIR filter with multiple input data streams for
hardware.

In many DSP applications, multiple data streams are filtered by the same filter. The straightforward
solution is to implement a separate filter for each channel. You can create a more area-efficient
structure by sharing one filter implementation across multiple channels. The resulting hardware
requires a faster clock rate compared to the clock rate used for a single channel filter.

Model Multichannel FIR Filter

modelname = 'dspmultichannelhdl';
open_system(modelname);

The model contains a two-channel FIR filter. The input data vector includes two streams of sinusoidal
signal with different frequencies. The input data streams are processed by a lowpass filter whose
coefficients are specified by the Model Properties InitFcn Callback function.

Select a fully parallel architecture for the Discrete FIR Filter block, and enable resource sharing
across multiple channels.

systemname = [modelname '/Multichannel FIR Filter'];
blockname = [systemname '/Discrete FIR Filter'];
set_param(blockname,'FilterStructure','Direct form symmetric');
hdlset_param(blockname,'Architecture','Fully Parallel');
hdlset_param(blockname,'ChannelSharing','On');

You can alternatively specify these settings on the HDL Block Properties menu, which you access
by right-clicking a block and selecting HDL Code > HDL Block Properties.
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Simulation Results

Run the example model and open the scope to compare the two data streams.

sim(modelname);
open_system([modelname '/Scope']);

Generate HDL Code and Test Bench

You must have an HDL Coder™ license to generate HDL code for this example model. Use this
command to generate HDL code for the Multichannel FIR Filter subsystem. Enable the resource use
report.

makehdl(systemname,'resource','on');

Use this command to generate a test bench that compares the HDL simulation results with the
Simulink model results.

makehdltb(systemname);

Compare Resource Utilization

To compare resource use with and without sharing, you can disable sharing resources across
channels and generate HDL code again, then compare the resource use reports.
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hdlset_param(blockname,'ChannelSharing','Off');
makehdl(systemname,'resource','on');
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Programmable FIR Filter for FPGA
This example shows how to implement a programmable FIR filter for hardware. You can program the
filter to a desired response by loading the coefficients into internal registers using the host interface.

In this example, we will implement a bank of filters, each having different responses, on a chip. If all
of the filters have a direct-form FIR structure, and the same length, then we can use a host interface
to load the coefficients for each response to a register file when needed.

This design adds latency of a few cycles before the input samples can be processed with the loaded
coefficients. However, it has the advantage that the same filter hardware can be programmed with
new coefficients to obtain a different filter response. This saves chip area, as otherwise each filter
would be implemented separately on the chip.

Model Programmable FIR Filter

Consider two FIR filters, one with a lowpass response and the other with a highpass response. The
coefficients are specified by using the Model Properties>Callbacks>InitFcn function.

The Programmable FIR via Registers block loads the lowpass coefficients from the Host Behavioral
Model, and processes the input chirp samples first. Then the block loads the highpass coefficients and
processes the same chirp samples again.
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The coeffs_registers block loads the coefficients into internal registers when the write_enable
signal is high. The shadow registers are updated from the coefficients registers when the
write_done signal is high. The shadow registers enable simultaneous loading and processing of data
by the filter entity. The blocks load the second set of coefficients at the same time as processing the
last few input samples.

This model is configured to use a fully parallel architecture for the Discrete FIR Filter block. You can
also choose serial architectures from the HDL Block Properties menu.

Simulink Simulation Results

To compare the Design Under Test (DUT) with the reference filter, open the Scope and run the
example model.
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Using the Logic Analyzer

You can also view the signals in the Logic Analyzer. The Logic Analyzer enables you to view multiple
signals in one window. It also makes it easy to spot the transitions in the signals.

Launch the Logic Analyzer from the model's toolstrip.

The signals of interest -- input coefficients, write address, write enable, write done, filter in, filter out,
reference out, and error have been added to the Logic Analyzer for observation.
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The Logic Analyzer display can also be controlled on a per-wave or per-divider basis. To modify an
individual wave or divider, select a wave or divider and then click on the "Wave" tab. A useful mode of
visualization in the Logic Analyzer is the Analog format.
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For further information on the Logic Analyzer, refer to the Logic Analyzer documentation.

Generate HDL Code and Test Bench

You must have an HDL Coder™ license to generate HDL code for this example model. Use this
command to generate HDL code.

systemname = [modelname '/Programmable FIR via Registers'];
makehdl(systemname);

Use this command to generate a test bench that compares the results of an HDL simulation against
the Simulink simulation behavior. makehdltb(systemname);

ModelSim Simulation Results

The following figure shows the ModelSim® HDL simulator after running the generated .do file scripts
for the test bench. Compare the ModelSim result with the Simulink result as plotted before.
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Implement Digital Downconverter for FPGA
This example shows how to design a digital downconverter (DDC) for radio communication
applications such as LTE, and generate HDL code.

Introduction

DDCs are widely used in digital communication receivers to convert radio frequency (RF) or
intermediate frequency (IF) signals to baseband. The DDC operation shifts the signal to a lower
frequency and reduces its sampling rate to facilitate subsequent processing stages. The DDC in this
example performs complex frequency translation followed by sample rate conversion using a four-
stage filter chain. The example starts by designing the DDC with DSP System Toolbox™ functions in
floating point. Then, each stage is converted to fixed point, and used in a Simulink® model that
generates synthesizable HDL code. The example uses these two test signals to demonstrate and
verify the DDC operation:

• A sinusoid that is modulated onto a 32 MHz IF carrier.
• An LTE downlink signal with a bandwidth of 1.4 MHz modulated onto a 32 MHz IF carrier.

The example compares the signal quality at the output of the floating-point DDC with the signal
quality at the output of the fixed-point DDC.

Finally, the example presents an implementation of the filter chain for FPGAs, and synthesis results.

This example uses DDCTestUtils, a helper class that contains functions for generating stimulus and
analyzing the DDC output. For more information, see the DDCTestUtils.m file.

DDC Structure

The DDC consists of a numerically controlled oscillator (NCO), mixer, and decimating filter chain. The
filter chain consists of a cascade integrator-comb (CIC) decimator, CIC gain correction, a CIC
compensation decimator (FIR), a halfband FIR decimator, and a final FIR decimator.

The overall response of the filter chain is equivalent to that of a single decimation filter with the same
specification. However, splitting the filter into multiple decimation stages results in a more efficient
design that uses fewer hardware resources.

The CIC decimator provides a large initial decimation factor, which enables subsequent filters to work
at lower rates. The CIC compensation decimator improves the spectral response by compensating for
the CIC droop while decimating by two. The halfband is an intermediate decimator, and the final
decimator implements the precise Fpass and Fstop characteristics of the DDC. The lower sampling
rates near the end of the chain mean the later filters can optimize resource use by sharing
multipliers.

This figure shows a block diagram of the DDC.

20 HDL Code Generation

20-28



The sample rate of the input to the DDC is 122.88 Msps, and the output sample rate is 1.92 Msps.
These rates give an overall decimation factor of 64. LTE receivers use 1.92 Msps as the typical
sampling rate for cell search and master information block (MIB) recovery. The DDC filters are
designed to suit this application. The DDC is optimized to run at a clock rate of 122.88 MHz.

DDC Design

This section explains how to design the DDC using floating-point operations and filter-design
functions in MATLAB®.

DDC Parameters

This example designs the DDC filter characteristics to meet these specifications for the given input
sampling rate and carrier frequency.

FsIn = 122.88e6;    % Sampling rate of DDC input
FsOut = 1.92e6;     % Sampling rate of DDC output
Fc = 32e6;          % Carrier frequency
Fpass = 540e3;      % Passband frequency, equivalent to 36x15kHz LTE subcarriers
Fstop = 700e3;      % Stopband frequency
Ap = 0.1;           % Passband ripple
Ast = 60;           % Stopband attenuation

CIC Decimator

The first filter stage is a CIC decimator because of its ability to efficiently implement a large
decimation factor. The response of a CIC filter is similar to a cascade of moving average filters, but a
CIC filter uses no multiplication or division. As a result, the CIC filter has a large DC gain.

cicParams.DecimationFactor = 8;
cicParams.DifferentialDelay = 1;
cicParams.NumSections = 3;
cicParams.FsOut = FsIn/cicParams.DecimationFactor;

cicFilt = dsp.CICDecimator(cicParams.DecimationFactor, ...
    cicParams.DifferentialDelay,cicParams.NumSections)       %#ok<*NOPTS>
cicGain = gain(cicFilt)

cicFilt = 

  dsp.CICDecimator with properties:

      DecimationFactor: 8
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     DifferentialDelay: 1
           NumSections: 3
    FixedPointDataType: 'Full precision'

cicGain =

   512

Because the CIC gain is a power of two, a hardware implementation can easily correct for the gain
factor by using a shift operation. For analysis purposes, the example represents the gain correction in
MATLAB with a one-tap dsp.FIRFilter System object™.

cicGainCorr = dsp.FIRFilter('Numerator',1/cicGain)

cicGainCorr = 

  dsp.FIRFilter with properties:

            Structure: 'Direct form'
      NumeratorSource: 'Property'
            Numerator: 0.0020
    InitialConditions: 0

  Use get to show all properties

Display the magnitude response of the CIC filter with and without gain correction by using fvtool.
For analysis, combine the CIC filter and the gain correction filter into a dsp.FilterCascade System
object. CIC filters use fixed-point arithmetic internally, so fvtool plots both the quantized and
unquantized responses.

ddcPlots.cicDecim = fvtool(...
    cicFilt, ...
    dsp.FilterCascade(cicFilt,cicGainCorr), ...
    'Fs',[FsIn,FsIn]);
legend(ddcPlots.cicDecim, ...
    'CIC No Correction', ...
    'CIC With Gain Correction');
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CIC Droop Compensation Filter

Because the magnitude response of the CIC filter has a significant droop within the passband region,
the example uses a FIR-based droop compensation filter to flatten the passband response. The droop
compensator has the same properties as the CIC decimator. This filter implements decimation by a
factor of two, so you must also specify bandlimiting characteristics for the filter. Use the design
function to return a filter System object with the specified characteristics.

compParams.R = 2;                                % CIC compensation decimation factor
compParams.Fpass = Fstop;                        % CIC compensation passband frequency
compParams.FsOut = cicParams.FsOut/compParams.R; % New sampling rate
compParams.Fstop = compParams.FsOut - Fstop;     % CIC compensation stopband frequency
compParams.Ap = Ap;                              % Same passband ripple as overall filter
compParams.Ast = Ast;                            % Same stopband attenuation as overall filter

compSpec = fdesign.decimator(compParams.R,'ciccomp', ...
    cicParams.DifferentialDelay, ...
    cicParams.NumSections, ...
    cicParams.DecimationFactor, ...
    'Fp,Fst,Ap,Ast', ...
    compParams.Fpass,compParams.Fstop,compParams.Ap,compParams.Ast, ...
    cicParams.FsOut);
compFilt = design(compSpec,'SystemObject',true)

compFilt = 
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  dsp.FIRDecimator with properties:

    DecimationFactor: 2
     NumeratorSource: 'Property'
           Numerator: [-0.0398 -0.0126 0.2901 0.5258 0.2901 -0.0126 -0.0398]
           Structure: 'Direct form'

  Use get to show all properties

Plot the combined response of the CIC filter (with gain correction) and droop compensation.

ddcPlots.cicComp = fvtool(...
    dsp.FilterCascade(cicFilt,cicGainCorr,compFilt), ...
    'Fs',FsIn,'Legend','off');

Halfband Decimator

The halfband filter provides efficient decimation by two. Halfband filters are efficient because
approximately half of their coefficients are equal to zero, and those multipliers are excluded from the
hardware implementation.

hbParams.FsOut = compParams.FsOut/2;
hbParams.TransitionWidth = hbParams.FsOut - 2*Fstop;
hbParams.StopbandAttenuation = Ast;

hbSpec = fdesign.decimator(2,'halfband',...
    'Tw,Ast', ...
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    hbParams.TransitionWidth, ...
    hbParams.StopbandAttenuation, ...
    compParams.FsOut);
hbFilt = design(hbSpec,'SystemObject',true)

hbFilt = 

  dsp.FIRDecimator with properties:

    DecimationFactor: 2
     NumeratorSource: 'Property'
           Numerator: [0.0089 0 -0.0565 0 0.2977 0.5000 0.2977 0 -0.0565 ... ]
           Structure: 'Direct form'

  Use get to show all properties

Plot the response of the DDC up to the halfband filter output.

ddcPlots.halfbandFIR = fvtool(...
    dsp.FilterCascade(cicFilt,cicGainCorr,compFilt,hbFilt), ...
    'Fs',FsIn,'Legend','off');

Final FIR Decimator
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The final FIR implements the detailed passband and stopband characteristics of the DDC. This filter
has more coefficients than the earlier FIR filters, but because it operates at a lower sampling rate it
can use resource sharing for an efficient hardware implementation.

Add 3 dB of headroom to the stopband attenuation so that the DDC still meets the specification after
fixed-point quantization. This value was found empirically by using fvtool.

finalSpec = fdesign.decimator(2,'lowpass', ...
    'Fp,Fst,Ap,Ast',Fpass,Fstop,Ap,Ast+3,hbParams.FsOut);
finalFilt = design(finalSpec,'equiripple','SystemObject',true)

finalFilt = 

  dsp.FIRDecimator with properties:

    DecimationFactor: 2
     NumeratorSource: 'Property'
           Numerator: [9.3365e-04 0.0013 9.3466e-04 -5.3189e-04 -0.0022 ... ]
           Structure: 'Direct form'

  Use get to show all properties

Visualize the overall magnitude response of the DDC.

ddcFilterChain           = dsp.FilterCascade(cicFilt,cicGainCorr,compFilt,hbFilt,finalFilt);
ddcPlots.overallResponse = fvtool(ddcFilterChain,'Fs',FsIn,'Legend','off');
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Fixed-Point Conversion

The frequency response of the floating-point DDC filter chain now meets the specification. Next,
quantize each filter stage to use fixed-point types and analyze them to confirm that the filter chain
still meets the specification.

Filter Quantization

This example uses 16-bit coefficients, which are sufficient to meet the specification. Using fewer than
18 bits for the coefficients minimizes the number of DSP blocks that are required for an FPGA
implementation. The input to the DDC filter chain is 16-bit data with 15 fractional bits. The filter
outputs are 18-bit values, which provide extra headroom and precision in the intermediate signals.

For the CIC decimator, choosing the 'Minimum section word lengths' fixed-point data type
option automatically optimizes the internal wordlengths based on the output wordlength and other
CIC parameters.

cicFilt.FixedPointDataType = 'Minimum section word lengths';
cicFilt.OutputWordLength = 18;

Configure the fixed-point properties of the gain correction and FIR-based System objects. The object
uses the default RoundingMethod and OverflowAction property values ('Floor' and 'Wrap'
respectively).

% CIC Gain Correction
cicGainCorr.FullPrecisionOverride = false;
cicGainCorr.CoefficientsDataType = 'Custom';
cicGainCorr.CustomCoefficientsDataType = numerictype(fi(cicGainCorr.Numerator,1,16));
cicGainCorr.OutputDataType = 'Custom';
cicGainCorr.CustomOutputDataType = numerictype(1,18,16);

% CIC Droop Compensation
compFilt.FullPrecisionOverride = false;
compFilt.CoefficientsDataType = 'Custom';
compFilt.CustomCoefficientsDataType = numerictype([],16,15);
compFilt.ProductDataType = 'Full precision';
compFilt.AccumulatorDataType = 'Full precision';
compFilt.OutputDataType = 'Custom';
compFilt.CustomOutputDataType = numerictype([],18,16);

% Halfband
hbFilt.FullPrecisionOverride = false;
hbFilt.CoefficientsDataType = 'Custom';
hbFilt.CustomCoefficientsDataType = numerictype([],16,15);
hbFilt.ProductDataType = 'Full precision';
hbFilt.AccumulatorDataType = 'Full precision';
hbFilt.OutputDataType = 'Custom';
hbFilt.CustomOutputDataType = numerictype([],18,16);

% FIR
finalFilt.FullPrecisionOverride = false;
finalFilt.CoefficientsDataType = 'Custom';
finalFilt.CustomCoefficientsDataType = numerictype([],16,15);
finalFilt.ProductDataType = 'Full precision';
finalFilt.AccumulatorDataType = 'Full precision';
finalFilt.OutputDataType = 'Custom';
finalFilt.CustomOutputDataType = numerictype([],18,16);
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Fixed-Point Analysis

Inspect the quantization effects with fvtool. You can analyze the filters individually or in a cascade.
fvtool shows the quantized and unquantized (reference) responses overlayed. For example, this
figure shows the effect of quantizing the final FIR filter stage.

ddcPlots.quantizedFIR = fvtool(finalFilt, ...
    'Fs',hbParams.FsOut,'arithmetic','fixed');

Redefine the ddcFilterChain cascade object to include the fixed-point properties of the individual
filters. Then, use fvtool to analyze the entire filter chain and confirm that the quantized DDC still
meets the specification.

ddcFilterChain = dsp.FilterCascade(cicFilt, ...
    cicGainCorr,compFilt,hbFilt,finalFilt);
ddcPlots.quantizedDDCResponse = fvtool(ddcFilterChain, ...
    'Fs',FsIn,'Arithmetic','fixed');

legend(ddcPlots.quantizedDDCResponse, ...
    'DDC filter chain');
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HDL-Optimized Simulink Model

The next step in the design flow is to implement the DDC in Simulink using blocks that support HDL
code generation.

Model Configuration

The model relies on variables in the MATLAB workspace to configure the blocks and settings. It uses
the same filter chain variables defined earlier in the example. Next, define the NCO characteristics
and the input signal. The example uses these characteristics to configure the NCO block.

Specify the desired frequency resolution and calculate the number of accumulator bits that are
required to achieve the desired resolution. Set the desired spurious free dynamic range, and then
define the number of quantized accumulator bits. The NCO uses the quantized output of the
accumulator to address the sine lookup table. Also compute the phase increment that the NCO uses
to generate the specified carrier frequency. The NCO applies phase dither to those accumulator bits
that are removed during quantization.

nco.Fd = 1;
nco.AccWL =  nextpow2(FsIn/nco.Fd)+1;
SFDR  = 84;
nco.QuantAccWL = ceil((SFDR-12)/6);
nco.PhaseInc = round((-Fc*2^nco.AccWL)/FsIn);
nco.NumDitherBits = nco.AccWL-nco.QuantAccWL;

The input to the DDC comes from the ddcIn variable. For now, assign a dummy value for ddcIn so
that the model can compute its data types. During testing, ddcIn provides input data to the model.
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ddcIn = 0; %#ok<NASGU>

You can create a sample-based signal by setting up the FrameSize to 1, and output each individual
sample as it is received. For a higher input sampling frequency or power reducing consideration, this
design could also realize frame-based processing, and the FrameSize should be modified
accordingly. In this case, we're showing a case for the FrameSize of 4.

FrameSize = 4;

Model Structure

This figure shows the top level of the DDC Simulink model. The model imports the ddcIn variable
from the MATLAB workspace by using a Signal From Workspace block, converts the input signal to
16-bit values, and applies the signal to the DDC. You can generate HDL code from the HDL_DDC
subsystem.

modelName = 'DDCforLTEHDL';
open_system(modelName);
set_param(modelName,'SimulationCommand','Update');
set_param(modelName,'Open','on');

The HDL_DDC subsystem implements the DDC filter. First, the NCO block generates a complex phasor
at the carrier frequency. This signal goes to a mixer that multiplies the phasor with the input signal.
Then, the output of the mixer is passed to the filter chain and decimated to 1.92 Msps.

set_param([modelName '/HDL_DDC'],'Open','on');

NCO Block Parameters

The NCO block in the model is configured with the parameters defined in the nco structure. This
figure shows both tabs of the NCO block parameters dialog.
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CIC Decimation and Gain Correction

The first filter stage is a CIC Decimator that is implemented with a CIC Decimator block. The block
parameters are set to the cicParams structure values. To implement the gain correction, the model
selects the Gain correction parameter. The image shows the block parameters for the CIC
Decimator block.
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The model configures the filters by using the properties of the corresponding System objects. The CIC
compensation, halfband decimation, and final decimation filters operate at effective sample rates that
are lower than the clock rate by factors of 8, 16, and 32, respectively. The model implements these
sample rates by using the valid input signal to indicate which samples are valid at each rate. The
signals in the filter chain all have the same Simulink sample time.

The CIC Compensation, Halfband Decimation, and Final Decimation filters are each implemented by
an FIR Decimator. By setting the Minimum number of cycles between valid input parameter, we
can use the invalid cycles between input samples. For example,the spacing between every input of
CIC Compensation Decimator is 8, which equals the decimation factor. So the CIC Compensation
Decimator has the Minimum number of cycles between valid input set to
ceil(cicParams.DecimationFactor/FrameSize), which equals 2 cycles. The image shows the
block parameters for the CIC Compensation Decimation block.
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The FIR Decimator block fully reuses the multipliers in time over the number of clock cycles you
specify. For FrameSize is 4, the CIC Compensation Decimation filter with complex input data would
use 4 multipliers. The Halfband Decimation uses 4 multipliers, and the Final Decimation uses 12
multipliers. For FrameSize is 1, since the inputs spacing of CIC Compensation Decimation and
Halfband Decimation are larger than their filter length, those two decimators only require 2
multipliers. And the Final Decimation needs 4 multipliers at that time.

Sinusoid on Carrier Test and Verification

To test the DDC, modulate a 40 kHz sinusoid onto the carrier frequency and pass the modulated sine
wave through the DDC. Then, measure the spurious- free dynamic range (SFDR) of the resulting tone
and the SFDR of the NCO output. Plot the SFDR of the NCO and the fixed-point DDC output.

% Initialize random seed before executing any simulations.
rng(0);

% Generate a 40 kHz test tone, modulated onto the carrier.
ddcIn = DDCTestUtils.GenerateTestTone(40e3,Fc);

% Demodulate the test signal with the floating-point DDC.
ddcOut = DDCTestUtils.DownConvert(ddcIn,FsIn,Fc,ddcFilterChain);
release(ddcFilterChain);

% Demodulate the test signal by running the Simulink model.
out = sim(modelName);
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% Measure the SFDR of the NCO, floating-point DDC outputs, and fixed-point
% DDC outputs.
results.sfdrNCO = sfdr(real(out.ncoOut),FsIn);
results.sfdrFloatDDC = sfdr(real(ddcOut),FsOut);
results.sfdrFixedDDC = sfdr(real(out.ddcFixedOut),FsOut);

disp('SFDR Measurements');
disp(['   Floating-point DDC SFDR: ',num2str(results.sfdrFloatDDC) ' dB']);
disp(['   Fixed-point NCO SFDR: ',num2str(results.sfdrNCO) ' dB']);
disp(['   Optimized fixed-point DDC SFDR: ',num2str(results.sfdrFixedDDC) ' dB']);
fprintf(newline);

% Plot the SFDR of the NCO and fixed-point DDC outputs.
ddcPlots.ncoOutSDFR = figure;
sfdr(real(out.ncoOut),FsIn);

ddcPlots.OptddcOutSFDR = figure;
sfdr(real(out.ddcFixedOut),FsOut);

SFDR Measurements
   Floating-point DDC SFDR: 291.4188 dB
   Fixed-point NCO SFDR: 83.0306 dB
   Optimized fixed-point DDC SFDR: 110.1203 dB
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LTE Signal Test

You can use an LTE test signal to perform more rigorous testing of the DDC. Generate a standard-
compliant LTE waveform by using LTE Toolbox™ functions. Then, downconvert the waveform with the
DDC model. Use LTE Toolbox functions to measure the error vector magnitude (EVM) of the resulting
signals.

rng(0);
% Execute this test only if you have the LTE Toolbox product.
if license('test','LTE_Toolbox')

    % Generate a modulated LTE test signal by using the LTE Toolbox functions.
    [ddcIn,sigInfo] = DDCTestUtils.GenerateLTETestSignal(Fc);

    % Downconvert the signal with the floating-point DDC.
    ddcOut = DDCTestUtils.DownConvert(ddcIn,FsIn,Fc,ddcFilterChain);
    release(ddcFilterChain);

    % Downconvert the signal with the Simulink model, then measure and plot the
    % EVM of the floating-point and fixed-point results. Pad the input with zeros
    % to represent propagation latency and return the complete result.
    ddcIn = [ddcIn;zeros(2480*FrameSize,1)];
    out = sim(modelName);

    results.evmFloat = DDCTestUtils.MeasureEVM(sigInfo,ddcOut);
    results.evmFixed = DDCTestUtils.MeasureEVM(sigInfo,out.ddcFixedOut(1:length(ddcOut)));
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    disp('LTE Error Vector Magnitude (EVM) Measurements');
    disp(['   Floating-point DDC RMS EVM: '  num2str(results.evmFloat.RMS*100,3) '%']);
    disp(['   Floating-point DDC Peak EVM: ' num2str(results.evmFloat.Peak*100,3) '%']);
    disp(['   Fixed-point DDC RMS EVM: '     num2str(results.evmFixed.RMS*100,3) '%']);
    disp(['   Fixed-point DDC Peak EVM: '    num2str(results.evmFixed.Peak*100,3) '%']);
    fprintf(newline);

end

LTE Error Vector Magnitude (EVM) Measurements
   Floating-point DDC RMS EVM: 0.633%
   Floating-point DDC Peak EVM: 2.44%
   Fixed-point DDC RMS EVM: 0.731%
   Fixed-point DDC Peak EVM: 2.69%

HDL Code Generation and FPGA Implementation

To generate the HDL code for this example you must have the HDL Coder™ product. Use the
makehdl and makehdltb commands to generate HDL code and an HDL test bench for the HDL_DDC
subsystem. The DDC was synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation board. The table
shows the post place-and-route resource utilization results. The design met timing with a clock
frequency of 331 MHz.

T = table(...
    categorical({'LUT'; 'LUTRAM'; 'FF'; 'BRAM'; 'DSP'}),...
    categorical({'4341'; '383'; '8248'; '2.0'; '36'}),...
    'VariableNames',{'Resource','Usage'})

T =

  5x2 table

    Resource    Usage
    ________    _____

     LUT        4341 
     LUTRAM     383  
     FF         8248 
     BRAM       2.0  
     DSP        36   

20 HDL Code Generation

20-44



Implement Digital Upconverter for FPGA
This example shows how to design a digital upconverter (DUC) for radio communication applications
such as LTE, and generate HDL code.

Introduction

DUCs are widely used in digital communication transmitters to convert baseband signals to radio
frequency (RF) or intermediate frequency (IF) signals. The DUC operation increases the sample rate
of the signal and shifts it to a higher frequency to facilitate subsequent processing stages. The DUC
in this example performs sample rate conversion using a four-stage filter chain followed by complex
frequency translation. The example starts by designing the DUC with DSP System Toolbox™ functions
in floating point. Then, each stage is converted to fixed point, and used in a Simulink® model that
generates synthesizable HDL code. The example uses these two test signals to demonstrate and
verify the DUC operation:

• A sinusoid that is modulated onto a 32 MHz IF carrier.
• An LTE downlink signal with a bandwidth of 1.4 MHz, modulated onto a 32 MHz IF carrier.

The example downconverts the outputs of the floating-point and fixed-point DUCs, and compares the
signal quality of the two outputs.

Finally, the example presents an implementation of the filter chain for FPGAs, and synthesis results.

This example uses DUCTestUtils, a helper class that contains functions for generating stimulus and
analyzing the DUC output. For more information, see the DUCTestUtils.m file.

DUC Structure

The DUC consists of an interpolating filter chain, numerically controlled oscillator (NCO), and mixer.
The filter chain consists of a lowpass interpolator, halfband interpolator, CIC compensation
interpolator (FIR), CIC interpolator, and CIC gain correction.

The overall response of the filter chain is equivalent to that of a single interpolation filter with the
same specification. However, splitting the filter into multiple interpolation stages results in a more
efficient design that uses fewer hardware resources.

The first lowpass interpolator implements the precise Fpass and Fstop characteristics of the DUC.
The halfband filter is an intermediate interpolator. The lower sampling rates at the beginning of the
chain mean the earlier filters can optimize resource use by sharing multipliers. The CIC
compensation interpolator improves the spectral response by compensating for the later CIC droop
while interpolating by two. The CIC interpolator provides a large interpolation factor, which meets
the filter chain upsampling requirements.

This figure shows a block diagram of the DUC.
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The sample rate of the input to the DUC is 1.92 Msps, and the output sample rate is 122.88 Msps.
These rates give an overall interpolation factor of 64. LTE receivers use 1.92 Msps as the typical
sampling rate for cell search and master information block (MIB) recovery. The DUC filters are
designed to suit this application. The DUC is optimized to run at a clock rate of 122.88 MHz.

DUC Design

This section explains how to design the DUC using floating-point operations and filter-design
functions in MATLAB®. The DUC object enables you to specify several characteristics that define the
response of the cascade for the four filters, including passband and stopband frequencies, passband
ripple, and stopband attenuation.

DUC Parameters

This example designs the DUC filter characteristics to meet these desired response values for the
given input sampling rate and carrier frequency.

FsIn = 1.92e6;      % Sampling rate at input to DUC
FsOut = 122.88;     % Sampling rate at the output
Fc = 32e6;          % Carrier frequency
Fpass = 540e3;      % Passband frequency, equivalent to 36*15kHz LTE subcarriers
Fstop = 700e3;      % Stopband frequency
Ap = 0.1;           % Passband ripple
Ast = 60;           % Stopband attenuation

First Lowpass Interpolator

This filter interpolates by two, and operates at the lowest sampling rate of the filter chain. The low
sample rate means this filter can use resource sharing for an efficient hardware implementation.

lowpassParams.FsIn = FsIn;
lowpassParams.InterpolationFactor = 2;
lowpassParams.FsOut = FsIn*lowpassParams.InterpolationFactor;

lowpassSpec = fdesign.interpolator(lowpassParams.InterpolationFactor, ...
    'lowpass','Fp,Fst,Ap,Ast',Fpass,Fstop,Ap,Ast,lowpassParams.FsOut);
lowpassFilt = design(lowpassSpec,'SystemObject',true)

lowpassFilt = 

  dsp.FIRInterpolator with properties:

    InterpolationFactor: 2
        NumeratorSource: 'Property'
              Numerator: [0.0020 0.0021 4.9115e-04 -0.0027 -0.0050 ... ]

  Use get to show all properties

Display the magnitude response of the lowpass filter without gain correction.

ducPlots.lowpass = fvtool(lowpassFilt,'Fs',FsIn*2,'Legend','off');
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Second Halfband Interpolator

The halfband filter provides efficient interpolation by two. Halfband filters are efficient for hardware
because approximately half of their coefficients are equal to zero, and those multipliers are excluded
from the hardware implementation.

 hbParams.FsIn = lowpassParams.FsOut;
 hbParams.InterpolationFactor = 2;
 hbParams.FsOut = lowpassParams.FsOut*hbParams.InterpolationFactor;
 hbParams.TransitionWidth = hbParams.FsIn - 2*Fstop;
 hbParams.StopbandAttenuation = Ast;

 hbSpec = fdesign.interpolator(hbParams.InterpolationFactor,'halfband', ...
          'TW,Ast', ...
          hbParams.TransitionWidth, ...
          hbParams.StopbandAttenuation, ...
          hbParams.FsOut);

hbFilt = design(hbSpec,'SystemObject',true)

hbFilt = 

  dsp.FIRInterpolator with properties:

    InterpolationFactor: 2
        NumeratorSource: 'Property'
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              Numerator: [0.0178 0 -0.1129 0 0.5953 1 0.5953 0 -0.1129 0 ... ]

  Use get to show all properties

Visualize the magnitude response of the halfband interpolation.

ducFilterChain = dsp.FilterCascade(lowpassFilt,hbFilt);
ducPlots.hbFilt = fvtool(lowpassFilt,hbFilt,ducFilterChain, ...
                           'Fs',[FsIn*2,FsIn*4,FsIn*4]);

legend(ducPlots.hbFilt, ...
       'Lowpass Interpolator', ...
       'Halfband Interpolator', ...
       'Lowpass+Halfband');

CIC Compensation Interpolator

Because the magnitude response of the last CIC filter has a significant droop within the passband
region, the example uses an FIR-based droop compensation filter to flatten the passband response.
The droop compensator has the same properties as the CIC interpolator. This filter implements
interpolation by a factor of two, so you must also specify bandlimiting characteristics for the filter.
Also, specify the CIC interpolator properties that are used for this compensation filter as well as the
later CIC interpolator.

Use the design function to return a filter System object with the specified characteristics.
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compParams.FsIn = hbParams.FsOut;
compParams.InterpolationFactor = 2;                                 % CIC compensation interpolation factor
compParams.FsOut = compParams.FsIn*compParams.InterpolationFactor;  % New sampling rate
compParams.Fpass = 1/2*compParams.FsIn + Fpass;                     % CIC compensation passband frequency
compParams.Fstop = 1/2*compParams.FsIn + 1/4*compParams.FsIn;       % CIC compensation stopband frequency
compParams.Ap = Ap;                                                 % Same passband ripple as overall filter
compParams.Ast = Ast;                                               % Same stopband attenuation as overall filter
N = 31;                                                             % 32 tap filter to take advantage of 16 cycles between input

cicParams.InterpolationFactor = 8;  % CIC interpolation factor
cicParams.DifferentialDelay = 1;    % CIC interpolator differential delay
cicParams.NumSections = 3;          % CIC interpolator number of integrator and comb sections

compSpec = fdesign.interpolator(compParams.InterpolationFactor,'ciccomp', ...
           cicParams.DifferentialDelay, ...
           cicParams.NumSections, ...
           cicParams.InterpolationFactor, ...
           'N,Fp,Ap,Ast', ...
           N,compParams.Fpass,compParams.Ap,compParams.Ast, ...
           compParams.FsOut);
compFilt = design(compSpec,'SystemObject',true)

compFilt = 

  dsp.FIRInterpolator with properties:

    InterpolationFactor: 2
        NumeratorSource: 'Property'
              Numerator: [-6.9876e-04 -0.0099 0.0038 0.0134 -0.0255 ... ]

  Use get to show all properties

Plot the response of the CIC compensation interpolator.

ducFilterChain = dsp.FilterCascade(lowpassFilt,hbFilt,compFilt);
ducPlots.cicComp = fvtool(lowpassFilt,hbFilt,compFilt,ducFilterChain, ...
                           'Fs',[FsIn*2,FsIn*4,FsIn*8,FsIn*8]);

legend(ducPlots.cicComp, ...
       'Lowpass Interpolator', ...
       'Halfband Interpolator', ...
       'CIC Comp Interpolator', ...
       'Lowpass+Halfband+CIC Comp');
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CIC Interpolator

The last filter stage is implemented as a CIC interpolator because of this type of filter's ability to
efficiently implement a large decimation factor. The response of a CIC filter is similar to a cascade of
moving average filters, but a CIC filter uses no multiplication or division. As a result, the CIC filter
has a large DC gain.

cicParams.FsIn = compParams.FsOut;
cicParams.FsOut = cicParams.FsIn*cicParams.InterpolationFactor;

cicFilt = dsp.CICInterpolator(cicParams.InterpolationFactor, ...
          cicParams.DifferentialDelay,cicParams.NumSections) %#ok<*NOPTS>

cicFilt = 

  dsp.CICInterpolator with properties:

    InterpolationFactor: 8
      DifferentialDelay: 1
            NumSections: 3
     FixedPointDataType: 'Full precision'

Visualize the magnitude response of the CIC interpolation. CIC filters use fixed-point arithmetic
internally, so fvtool plots both the quantized and unquantized responses.
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ducFilterChain = dsp.FilterCascade(lowpassFilt,hbFilt,compFilt,cicFilt);
ducPlots.cicInter = fvtool(lowpassFilt,hbFilt,compFilt,cicFilt,ducFilterChain, ...
                      'Fs',[FsIn*2,FsIn*4,FsIn*8,FsIn*64,FsIn*64]);

legend(ducPlots.cicInter, ...
       'First Halfband Interpolator', ...
       'Second Halfband Interpolator', ...
       'CIC Compensation Interpolator', ...
       'CIC Interpolator',...
       'Overall Response');

Every interpolator has a DC gain that is determined by its interpolation factor. The CIC interpolator
has a larger gain than other filters. Call the gain function to get the gain factor of this filter.

Because the CIC gain is a power of two, a hardware implementation can easily correct for the gain
factor by using a shift operation. For analysis purposes, the example represents the gain correction
by using a one-tap dsp.FIRFilter System object. Combine the filter chain and the gain correction
filter into a dsp.FilterCascade System object.

cicGain = gain(cicFilt)
Gain = lowpassParams.InterpolationFactor* ...
    hbParams.InterpolationFactor*compParams.InterpolationFactor* ...
    cicParams.InterpolationFactor*cicGain;
GainCorr = dsp.FIRFilter('Numerator',1/Gain)

cicGain =
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    64

GainCorr = 

  dsp.FIRFilter with properties:

            Structure: 'Direct form'
      NumeratorSource: 'Property'
            Numerator: 2.4414e-04
    InitialConditions: 0

  Use get to show all properties

Plot the overall chain response with and without gain correction.

ducPlots.overallResponse = fvtool(ducFilterChain,dsp.FilterCascade(ducFilterChain,GainCorr), ...
                           'Fs',[FsIn*64,FsIn*64]);
legend(ducPlots.overallResponse, ...
       'Overall Response: No Gain Correction',...
       'Overall Response: Gain Correction');
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Fixed-Point Conversion

The frequency response of the floating-point DUC filter chain now meets the specification. Next,
quantize each filter stage to use fixed-point types and analyze them to confirm that the filter chain
still meets the specification.

Filter Quantization

This example uses 16-bit coefficients, which are sufficient to meet the specification. Using fewer than
18 bits for the coefficients minimizes the number of DSP blocks that are required for an FPGA
implementation. The input to the DUC filter chain is 16-bit data with 15 fractional bits. The filter
outputs are 18-bit values, which provide extra headroom and precision in the intermediate signals.

% First Lowpass Interpolator
lowpassFilt.FullPrecisionOverride = false;
lowpassFilt.CoefficientsDataType = 'Custom';
lowpassFilt.CustomCoefficientsDataType = numerictype([],16,15);
lowpassFilt.ProductDataType = 'Full precision';
lowpassFilt.AccumulatorDataType = 'Full precision';
lowpassFilt.OutputDataType = 'Custom';
lowpassFilt.CustomOutputDataType = numerictype([],18,14);

% Halfband
hbFilt.FullPrecisionOverride = false;
hbFilt.CoefficientsDataType = 'Custom';
hbFilt.CustomCoefficientsDataType = numerictype([],16,14);
hbFilt.ProductDataType = 'Full precision';
hbFilt.AccumulatorDataType = 'Full precision';
hbFilt.OutputDataType = 'Custom';
hbFilt.CustomOutputDataType = numerictype([],18,14);

% CIC Compensation Interpolator
compFilt.FullPrecisionOverride = false;
compFilt.CoefficientsDataType = 'Custom';
compFilt.CustomCoefficientsDataType = numerictype([],16,14);
compFilt.ProductDataType = 'Full precision';
compFilt.AccumulatorDataType = 'Full precision';
compFilt.OutputDataType = 'Custom';
compFilt.CustomOutputDataType = numerictype([],18,14);

For the CIC interpolator, choosing the 'Minimum section word lengths' fixed-point data type
option automatically optimizes the internal wordlengths based on the output wordlength and other
CIC parameters.

cicFilt.FixedPointDataType = 'Minimum section word lengths';
cicFilt.OutputWordLength = 18;

Configure the fixed-point properties of the gain correction and FIR-based System objects. The object
uses the default RoundingMethod and OverflowAction property values ('Floor' and 'Wrap'
respectively).

% CIC Gain Correction
GainCorr.FullPrecisionOverride = false;
GainCorr.CoefficientsDataType = 'Custom';
GainCorr.CustomCoefficientsDataType = numerictype(fi(GainCorr.Numerator,1,16));
GainCorr.OutputDataType = 'Custom';
GainCorr.CustomOutputDataType = numerictype(1,18,14);

 Implement Digital Upconverter for FPGA

20-53



Fixed-Point Analysis

Inspect the quantization effects with fvtool. You can analyze the filters individually or in a cascade.
fvtool shows the quantized and unquantized (reference) responses overlayed. For example, this
figure shows the effect of quantizing the first FIR filter stage.

ducPlots.quantizedFIR = fvtool(lowpassFilt,'Fs',lowpassParams.FsIn*2,'arithmetic','fixed');

legend(ducPlots.quantizedFIR, ...
       'Lowpass Interpolator');

Redefine the ducFilterChain cascade object to include the fixed-point properties of the individual
filters. Then use fvtool to analyze the entire filter chain and confirm that the quantized DUC still
meets the specification.

ducFilterChain = dsp.FilterCascade(lowpassFilt,hbFilt,compFilt,cicFilt,GainCorr);
ducPlots.quantizedDUCResponse = fvtool(ducFilterChain, ...
    'Fs',FsIn*64,'Arithmetic','fixed');

legend(ducPlots.quantizedDUCResponse, ...
       'DUC filter chain');
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HDL-Optimized Simulink Model

The next step in the design flow is to implement the DUC in Simulink using blocks that support HDL
code generation.

Model Configuration

The model relies on variables in the MATLAB workspace to configure the blocks and settings. The
filter blocks are configured by using the filter chain objects defined earlier in the example.

The input to the DUC comes from the ducIn variable. For now, assign a dummy value for ducIn so
that the model can compute its data types. During testing, ducIn provides input data to the model.

ducIn = 0; %#ok<NASGU>

The outputFrame parameter sets the frame size of the output based on the DAC requirement.
outputFrame affects the input vector size and valid sample spacing, and it should be a power of two.

outputFrame = 4;

Model Structure

This figure shows the top level of the DUC Simulink model. The model imports the ducIn variable
from the MATLAB workspace by using a Signal From Workspace block, converts the signal to 16-bit
values, and applies the signal to the DUC. The design is single rate, and uses a valid signal to convey
the rate change from block to block. To simulate the input running 64 times slower than the clock, it
is upsampled by 64 with zero insertion. You can generate HDL code from the HDL_DUC subsystem.
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modelName = 'DUCforLTEHDL';
open_system(modelName);
set_param(modelName,'Open','on');

The DUC implementation is inside the HDL_DUC subsystem.

set_param([modelName '/HDL_DUC'],'Open','on');

Filter Block Parameters

All of the filters are configured to inherit the coefficients of the corresponding System objects. Each
block also has a "Minimum number of cycles between valid input" parameter that is used to optimize
the resulting HDL code. The lowpass, halfband, and CIC compensation filters have cycles between
valid inputs that can be used for resource sharing - 64, 32, and 16 cycles, respectively.

For example, because the sample rate of the input to the Lowpass Interpolation block is Fclk/64, 64
clock cycles are available to process each input sample.

The first filter interpolates by 2. Each polyphase branch is implemented by a separate FIR Filter.
Because the "Number of cycles between valid input" is greater than 1, each FIR is implemented using
"Partly-serial systolic" architecture. The filter has 69 coefficients in total, and after polyphase
decomposition each branch has 35 coefficients. There are 64 cycles available for sharing, so each
branch is implemented with a fully serial FIR. With complex input, each branch uses 2 multipliers, for
a total of 4 multipliers in this filter.

20 HDL Code Generation

20-56



The second filter is a halfband interpolator. This filter can also take advantage of cycles between valid
input to perform resource sharing. These cycles are available because each interpolator output has
idle cycles between valid samples. The first filter has 64 cycles and interpolates by 2. Therefore, it
will output data every 32 cycles. The second filter has 6 coefficients per polyphase branch and so it
can be implemented as a fully serial FIR. In this filter, the second branch only contains one non-zero
coefficient, and it is a power of 2. The FIR Interpolator block implements this branch as a shift rather
than a multiplier. The second filter then has only 2 multipliers.

The third filter is a CIC compensation filter which interpolates by 2. It has 32 coefficients in total,
which we specified when designing the filter. The filter is implemented using 2 fully serial complex
FIRs, giving a total of 4 multipliers for this filter.

Gain Correction

The gain correction divides the output by 4096, which is equivalent to shifting right by 12 bits.
Because the input and output signals of the gain correction each are expressed with 18 bits, the
model implements this shift by reinterpreting the data type of the output signal. The Conversion
block reinterprets the 12-bit number to have 20 fractional bits rather than 8 fractional bits.

set_param([modelName '/HDL_DUC/Gain Correction'],'Open','on');
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NCO Block Parameters

The NCO block generates a complex phasor at the carrier frequency. This signal goes to a mixer that
multiplies the phasor with the output signal. The output of the mixer is sampled at 122.88 Msps.

Specify the desired frequency resolution, then calculate the number of accumulator bits required to
achieve the desired resolution, and define the number of quantized accumulator bits. The NCO uses
the quantized output of the accumulator to address the sine lookup table. Also compute the phase
increment the NCO must use to generate the specified carrier frequency. The NCO applies phase
dither to the accumulator bits that are removed during quantization.

nco.Fd = 1;
nco.AccWL = nextpow2(FsIn*64/nco.Fd) + 1;
nco.QuantAccWL = 12;
nco.PhaseInc = round((Fc*2^nco.AccWL)/(FsIn*64));
nco.NumDitherBits = nco.AccWL-nco.QuantAccWL;

The NCO block in the model is configured with the parameters defined in the nco structure. This
figure shows the NCO block parameters dialog.
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Mixer

The Mixer subsystem performs a complex multiply of the filter output and NCO.

set_param([modelName '/HDL_DUC/Mixer'],'Open','on');
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To map the mixer to DSP slices on FPGA, the mixer is pipelined and the blocks have specific settings.
The delay blocks in the mixer are configured to have reset turned off as shown in the image. There
are 2 pipeline stages at the input, 1 between the multiplier and adder, and another post-adder. Also,
the multipliers and adders are configured to use full-precision output. These blocks use Floor
rounding method, and the saturate on overflow logic is disabled.

Sinusoid on Carrier Test

To test the DUC, pass a 40kHz sinusoid through the DUC and modulate the output signal onto the
carrier frequency. Demodulate and resample the signal. Then measure the spurious free dynamic
range (SFDR) of the resulting tone and the SFDR of the NCO output.

% Initialize random seed before executing any simulations.
rng(0);

% Generate a 40kHz test tone.
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ducIn = DUCTestUtils.GenerateTestTone(40e3);

% Upconvert the test signal with the floating-point DUC.
ducTx = DUCTestUtils.UpConvert(ducIn,FsIn*64,Fc,ducFilterChain);
release(ducFilterChain);

% Down convert the output of DUC.
ducRx = DUCTestUtils.DownConvert(ducTx,FsIn*64,Fc);

% Upconvert the test signal by running the fixed-point Simulink model.
simOut = sim(modelName);

% Downconvert the output of DUC.
simTx = simOut.ducOut;
simRx = DUCTestUtils.DownConvert(simTx,FsIn*64,Fc);

% Measure the SFDR of the NCO, floating point DUC, and fixed-point DUC outputs.
results.sfdrNCO = sfdr(real(simOut.ncoOut),FsIn);
results.sfdrFloatDUC = sfdr(real(ducRx),FsIn);
results.sfdrFixedDUC = sfdr(real(simRx),FsIn);

disp('SFDR Measurements');
disp(['   Floating-point DUC SFDR: ',num2str(results.sfdrFloatDUC) ' dB']);
disp(['   Fixed-point NCO SFDR: ',num2str(results.sfdrNCO) ' dB']);
disp(['   Fixed-point DUC SFDR: ',num2str(results.sfdrFixedDUC) ' dB']);
fprintf(newline);

% Plot the SFDR of the NCO and fixed-point DUC outputs.
ducPlots.ncoOutSDFR = figure;
sfdr(real(simOut.ncoOut),FsIn);

ducPlots.ducOutSDFR = figure;
sfdr(real(simRx),FsIn);

SFDR Measurements
   Floating-point DUC SFDR: 287.9336 dB
   Fixed-point NCO SFDR: 86.2454 dB
   Fixed-point DUC SFDR: 89.5756 dB
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LTE Signal Test

You can use an LTE test signal to perform more rigorous testing of the DUC. Generate a standard-
compliant LTE waveform by using LTE Toolbox™ functions. Then, upconvert the waveform with the
DUC model. Use LTE Toolbox functions to measure the error vector magnitude (EVM) of the resulting
signals.

rng(0);
% Execute this test only if you have the LTE Toolbox product.
if license('test','LTE_Toolbox')

    % Generate an LTE test signal by using LTE Toolbox functions.
    [ducIn, sigInfo] = DUCTestUtils.GenerateLTETestSignal();

    % Upconvert the signal with the floating-point DUC and modulate onto carrier.
    ducTx = DUCTestUtils.UpConvert(ducIn,FsIn*64,Fc,ducFilterChain);
    release(ducFilterChain);

    % Add noise to the transmit signal.
    ducTxAddNoise = DUCTestUtils.AddNoise(ducTx);

    % Downconvert the received signal.
    ducRx = DUCTestUtils.DownConvert(ducTxAddNoise,FsIn*64,Fc);

    % Upconvert the signal by using the Simulink model.
    simOut = sim(modelName);
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    % Add noise to the transmit signal.
    simTx = simOut.ducOut;
    simTxAddNoise = DUCTestUtils.AddNoise(simTx);

    % Downconvert the received signal.
    simRx = DUCTestUtils.DownConvert(simTxAddNoise,FsIn*64,Fc);

    results.evmFloat = DUCTestUtils.MeasureEVM(sigInfo,ducRx);
    results.evmFixed = DUCTestUtils.MeasureEVM(sigInfo,simRx);

    disp('LTE EVM Measurements');
    disp(['   Floating-point DUC RMS EVM: '  num2str(results.evmFloat.RMS*100,3) '%']);
    disp(['   Floating-point DUC Peak EVM: ' num2str(results.evmFloat.Peak*100,3) '%']);
    disp(['   Fixed-point DUC RMS EVM: '     num2str(results.evmFixed.RMS*100,3) '%']);
    disp(['   Fixed-point DUC Peak EVM: '    num2str(results.evmFixed.Peak*100,3) '%']);
    fprintf(newline);

end

LTE EVM Measurements
   Floating-point DUC RMS EVM: 0.813%
   Floating-point DUC Peak EVM: 2.53%
   Fixed-point DUC RMS EVM: 0.816%
   Fixed-point DUC Peak EVM: 2.82%

HDL Code Generation and FPGA Implementation

To generate the HDL code for this example you must have the HDL Coder™ product. Use the
makehdl and makehdltb commands to generate HDL code and an HDL test bench for the HDL_DUC
subsystem. The DUC was synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation board. The table
shows the post place-and-route resource utilization results for outputFrame of size 4. The design met
timing with a clock frequency of 335 MHz.

T = table(...
    categorical({'LUT'; 'LUTRAM'; 'FF'; 'BRAM'; 'DSP'}),...
    categorical({'4708'; '654'; '6849'; '2'; '32'}),...
    'VariableNames',{'Resource','Usage'})

T =

  5x2 table

    Resource    Usage
    ________    _____

     LUT        4708 
     LUTRAM     654  
     FF         6849 
     BRAM       2    
     DSP        32   
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Links to Category Pages

• “Signal Management Library” on page 21-2
• “Sinks Library” on page 21-3
• “Math Functions Library” on page 21-4
• “Filtering Library” on page 21-5
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Signal Management Library
You can find the relevant blocks in the following pages:

• “Buffers, Switches, and Counters”
• “Signal Attributes and Indexing”
• “Signal Operations”
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Sinks Library
You can find the relevant blocks in the following pages:

• “Signal Input and Output”
• “Scopes and Data Logging”

 Sinks Library
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Math Functions Library
You can find the relevant blocks in the following pages:

• “Array and Matrix Mathematics”
• “Linear Algebra”
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Filtering Library
You can find the relevant blocks in the following pages:

• “Filter Design”
• “Single-Rate Filters”
• “Multirate and Multistage Filters”
• “Adaptive Filters”

 Filtering Library
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Designing Lowpass FIR Filters

• “Lowpass FIR Filter Design” on page 22-2
• “Controlling Design Specifications in Lowpass FIR Design” on page 22-7
• “Designing Filters with Non-Equiripple Stopband” on page 22-12
• “Minimizing Lowpass FIR Filter Length” on page 22-16
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Lowpass FIR Filter Design
This example shows how to design a lowpass FIR filter using fdesign. An ideal lowpass filter
requires an infinite impulse response. Truncating or windowing the impulse response results in the
so-called window method of FIR filter design.

A Lowpass FIR Filter Design Using Various Windows

FIR filters are widely used due to the powerful design algorithms that exist for them, their inherent
stability when implemented in non-recursive form, the ease with which one can attain linear phase,
their simple extensibility to multirate cases, and the ample hardware support that exists for them
among other reasons. This example showcases functionality in the DSP System Toolbox™ for the
design of low pass FIR filters with a variety of characteristics. Many of the concepts presented here
can be extended to other responses such as highpass, bandpass, etc.

Consider a simple design of a lowpass filter with a cutoff frequency of 0.4*pi radians per sample:

Fc = 0.4;
N = 100;
Hf = fdesign.lowpass('N,Fc',N,Fc);

We can design this lowpass filter using the window method. For example, we can use a Hamming
window or a Dolph-Chebyshev window:

Hd1 = design(Hf,'window','window',@hamming,'systemobject',true);
Hd2 = design(Hf,'window','window',{@chebwin,50}, ...
            'systemobject',true);
hfvt = fvtool(Hd1,Hd2,'Color','White');
legend(hfvt,'Hamming window design', ...
       'Dolph-Chebyshev window design')
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The choice of filter was arbitrary. Since ideally the order should be infinite, in general, a larger order
results in a better approximation to ideal at the expense of a more costly implementation. For
instance, with a Dolph-Chebyshev window, we can decrease the transition region by increasing the
filter order:

Hf.FilterOrder = 200;
Hd3 = design(Hf,'window','window',{@chebwin,50},...
            'systemobject',true);
hfvt2 = fvtool(Hd2,Hd3,'Color','White');
legend(hfvt2,'Dolph-Chebyshev window design. Order = 100',...
    'Dolph-Chebyshev window design. Order = 200')
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Minimum Order Lowpass Filter Design

In order to determine a suitable filter order, it is necessary to specify the amount of passband ripple
and stopband attenuation that will be tolerated. It is also necessary to specify the width of the
transition region around the ideal cutoff frequency. The latter is done by setting the passband edge
frequency and the stopband edge frequency. The difference between the two determines the
transition width.

Fp = 0.38;
Fst = 0.42;
Ap = 0.06;
Ast = 60;
setspecs(Hf,'Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast);

We can still use the window method, along with a Kaiser window, to design the low pass filter.

Hd4 = design(Hf,'kaiserwin','systemobject',true);
measure(Hd4)

ans = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.38                      
3-dB Point       : 0.39539                   
6-dB Point       : 0.4                       
Stopband Edge    : 0.42                      
Passband Ripple  : 0.016058 dB               
Stopband Atten.  : 60.092 dB                 
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Transition Width : 0.04                      
 

ans =

Sampling Frequency : N/A (normalized frequency)
Passband Edge      : 0.38                      
3-dB Point         : 0.39539                   
6-dB Point         : 0.4                       
Stopband Edge      : 0.42                      
Passband Ripple    : 0.016058 dB               
Stopband Atten.    : 60.092 dB                 
Transition Width   : 0.04      

One thing to note is that the transition width as specified is centered around the cutoff frequency of
0.4 pi. This will become the point at which the gain of the lowpass filter is half the passband gain (or
the point at which the filter reaches 6 dB of attenuation).

Optimal Minimum Order Designs

The Kaiser window design is not an optimal design and as a result the filter order required to meet
the specifications using this method is larger than it needs to be. Equiripple designs result in the
lowpass filter with the smallest possible order to meet a set of specifications.

Hd5 = design(Hf,'equiripple','systemobject',true);
hfvt3 = fvtool(Hd4,Hd5,'Color','White');
legend(hfvt3,'Kaiser window design','Equiripple design')

 Lowpass FIR Filter Design

22-5



In this case, 146 coefficients are needed by the equiripple design while 183 are needed by the Kaiser
window design.

See Also
fdesign | design | fdesign.lowpass | fvtool

More About
• “Design a Filter in Fdesign — Process Overview” on page 5-2
• “Controlling Design Specifications in Lowpass FIR Design” on page 22-7
• “Designing Filters with Non-Equiripple Stopband” on page 22-12
• “Minimizing Lowpass FIR Filter Length” on page 22-16
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Controlling Design Specifications in Lowpass FIR Design
This example shows how to control the filter order, passband ripple, stopband attenuation, and
transition region width of a lowpass FIR filter.

Controlling the Filter Order and Passband Ripples and Stopband Attenuation

When targeting custom hardware, it is common to find cases where the number of coefficients is
constrained to a set number. In these cases, minimum order designs are not useful because there is
no control over the resulting filter order. As an example, suppose that only 101 coefficients could be
used and the passband ripple/stopband attenuation specifications need to be met. We can still use
equiripple designs for these specifications. However, we lose control over the transition width which
will increase. This is the price to pay for reducing the order while maintaining the passband ripple/
stopband attenuation specifications.

Consider a simple design of a lowpass filter with a cutoff frequency of 0.4*pi radians per sample:

  Ap = 0.06;
  Ast = 60;
  Fp = 0.38;
  Fst = 0.42;
  Hf=fdesign.lowpass('Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast);

Design an equiripple filter:

  Hd1 = design(Hf,'equiripple','systemobject',true);

Set the number of coefficients to 101, which means setting the order to 100:

  N = 100;   
  Fc = 0.4;
  setspecs(Hf,'N,Fc,Ap,Ast',N,Fc,Ap,Ast);

Design a second equiripple filter with the given constraint:

  Hd2 = design(Hf,'equiripple','systemobject',true);

Measure the filter variables of the second equiripple filter, and compare the graphs of the first and
second filters:

  measure(Hd2)

ans = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.37316                   
3-dB Point       : 0.39285                   
6-dB Point       : 0.4                       
Stopband Edge    : 0.43134                   
Passband Ripple  : 0.06 dB                   
Stopband Atten.  : 60 dB                     
Transition Width : 0.058177                  
 

  hfvt = fvtool(Hd1,Hd2,'Color','White');
  legend(hfvt,'Equiripple design, 146 coefficients', ...
        'Equiripple design, 101 coefficients')

 Controlling Design Specifications in Lowpass FIR Design

22-7



The transition has increased by almost 50%. This is not surprising given the almost 50% difference
between 101 coefficients and 146 coefficients.

Controlling the Transition Region Width

Another option when the number of coefficients is set is to maintain the transition width at the
expense of control over the passband ripple/stopband attenuation.

  setspecs(Hf,'N,Fp,Fst',N,Fp,Fst);
  Hd3 = design(Hf,'equiripple','systemobject',true);
  measure(Hd3)

ans = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.38                      
3-dB Point       : 0.39407                   
6-dB Point       : 0.4                       
Stopband Edge    : 0.42                      
Passband Ripple  : 0.1651 dB                 
Stopband Atten.  : 40.4369 dB                
Transition Width : 0.04                      
 

  hfvt2 = fvtool(Hd1,Hd3,'Color','White');
  legend(hfvt2,'Equiripple design, 146 coefficients',...
        'Equiripple design, 101 coefficients')
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The differences between using 146 coefficients and using 101 coefficients is reflected in a larger
passband ripple and a smaller stopband attenuation.

It is possible to increase the attenuation in the stopband while keeping the same filter order and
transition width by the use of weights. Weights are a way of specifying the relative importance of the
passband ripple versus the stopband attenuation. By default, passband and stopband are equally
weighted (a weight of one is assigned to each). If we increase the stopband weight, we can increase
the stopband attenuation at the expense of increasing the stopband ripple as well.

  Hd4 = design(Hf,'equiripple','Wstop',5,'systemobject',true);
  measure(Hd4)

ans = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.38                      
3-dB Point       : 0.39143                   
6-dB Point       : 0.39722                   
Stopband Edge    : 0.42                      
Passband Ripple  : 0.34529 dB                
Stopband Atten.  : 48.0068 dB                
Transition Width : 0.04                      
 

  hfvt3 = fvtool(Hd3,Hd4,'Color','White');
  legend(hfvt3,'Passband weight = 1, Stopband weight = 1',...
        'Passband weight = 1, Stopband weight = 5')
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Another possibility is to specify the exact stopband attenuation desired and lose control over the
passband ripple. This is a powerful and very desirable specification. One has control over most
parameters of interest.

  setspecs(Hf,'N,Fp,Fst,Ast',N,Fp,Fst,Ast);
  Hd5 = design(Hf,'equiripple','systemobject',true);
  hfvt4 = fvtool(Hd4,Hd5,'Color','White');
  legend(hfvt4,'Equiripple design using weights',...
        'Equiripple design constraining the stopband')
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Designing Filters with Non-Equiripple Stopband
This example shows how to design lowpass filters with stopbands that are not equiripple.

Optimal Non-Equiripple Lowpass Filters

To start, set up the filter parameters and use fdesign to create a constructor for designing the filter.

  N = 100;
  Fp = 0.38;
  Fst = 0.42;
  Hf = fdesign.lowpass('N,Fp,Fst',N,Fp,Fst);

Equiripple designs achieve optimality by distributing the deviation from the ideal response uniformly.
This has the advantage of minimizing the maximum deviation (ripple). However, the overall deviation,
measured in terms of its energy tends to be large. This may not always be desirable. When low pass
filtering a signal, this implies that remnant energy of the signal in the stopband may be relatively
large. When this is a concern, least-squares methods provide optimal designs that minimize the
energy in the stopband.

  Hd1 = design(Hf,'equiripple','systemobject',true);
  Hd2 = design(Hf,'firls','systemobject',true);
  hfvt = fvtool(Hd1,Hd2,'Color','White');
  legend(hfvt,'Equiripple design','Least-squares design')

22 Designing Lowpass FIR Filters

22-12



Notice how the attenuation in the stopband increases with frequency for the least-squares designs
while it remains constant for the equiripple design. The increased attenuation in the least-squares
case minimizes the energy in that band of the signal to be filtered.

Equiripple Designs with Increasing Stopband Attenuation

An often undesirable effect of least-squares designs is that the ripple in the passband region close to
the passband edge tends to be large. For low pass filters in general, it is desirable that passband
frequencies of a signal to be filtered are affected as little as possible. To this extent, an equiripple
passband is generally preferable. If it is still desirable to have an increasing attenuation in the
stopband, we can use design options for equiripple designs to achieve this.

  Hd3 = design(Hf,'equiripple','StopbandShape','1/f',...
              'StopbandDecay',4,'systemobject',true);
  hfvt2 = fvtool(Hd2,Hd3,'Color','White');
  legend(hfvt2,'Least-squares design',...
        'Equiripple design with stopband decaying as (1/f)^4')

Notice that the stopbands are quite similar. However the equiripple design has a significantly smaller
passband ripple,

  mls = measure(Hd2);
  meq = measure(Hd3);
  mls.Apass

ans = 0.3504

  meq.Apass
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ans = 0.1867

Filters with a stopband that decays as (1/f)^M will decay at 6M dB per octave. Another way of
shaping the stopband is using a linear decay. For example given an approximate attenuation of 38 dB
at 0.4*pi, if an attenuation of 70 dB is desired at pi, and a linear decay is to be used, the slope of the
line is given by (70-38)/(1-0.4) = 53.333. Such a design can be achieved from:

  Hd4 = design(Hf,'equiripple','StopbandShape','linear',...
              'StopbandDecay',53.333,'systemobject',true);
  hfvt3 = fvtool(Hd3,Hd4,'Color','White');
  legend(hfvt3,'Equiripple design with stopband decaying as (1/f)^4',...
      'Equiripple design with stopband decaying linearly and a slope of 53.333')

Yet another possibility is to use an arbitrary magnitude specification and select two bands (one for
the passband and one for the stopband). Then, by using weights for the second band, it is possible to
increase the attenuation throughout the band.

  N = 100;
  B = 2;  % number of bands
  F = [0 .38 .42:.02:1];
  A = [1 1 zeros(1,length(F)-2)];
  W = linspace(1,100,length(F)-2);
  Harb = fdesign.arbmag('N,B,F,A',N,B,F(1:2),A(1:2),F(3:end),...
                        A(3:end));
  Ha = design(Harb,'equiripple','B2Weights',W,...
             'systemobject',true);
  fvtool(Ha,'Color','White')
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Minimizing Lowpass FIR Filter Length
This example shows how to minimize the number coefficients, by designing minimum-phase or
minimum-order filters.

Minimum-Phase Lowpass Filter Design

To start, set up the filter parameters and use fdesign to create a constructor for designing the filter.

  N = 100;
  Fp = 0.38;
  Fst = 0.42;
  Ap = 0.06;
  Ast = 60;
  Hf = fdesign.lowpass('Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast);

So far, we have only considered linear-phase designs. Linear phase is desirable in many applications.
Nevertheless, if linear phase is not a requirement, minimum-phase designs can provide significant
improvements over linear phase counterparts. For instance, returning to the minimum order case, a
minimum-phase/minimum-order design for the same specifications can be computed with:

  Hd1 = design(Hf,'equiripple','systemobject',true);
  Hd2 = design(Hf,'equiripple','minphase',true,...
              'systemobject',true);
  hfvt = fvtool(Hd1,Hd2,'Color','White');
  legend(hfvt,'Linear-phase equiripple design',...
         'Minimum-phase equiripple design')
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Notice that the number of coefficients has been reduced from 146 to 117. As a second example,
consider the design with a stopband decaying in linear fashion. Notice the increased stopband
attenuation. The passband ripple is also significantly smaller.

  setspecs(Hf,'N,Fp,Fst',N,Fp,Fst);
  Hd3 = design(Hf,'equiripple','StopbandShape','linear',...
      'StopbandDecay',53.333,'systemobject',true);
  setspecs(Hf,'Fp,Fst,Ap,Ast',Fp,Fst,Ap,Ast);
  Hd4 = design(Hf,'equiripple','StopbandShape','linear',...
      'StopbandDecay',53.333,'minphase',true,'systemobject',true);
  hfvt2 = fvtool(Hd3,Hd4,'Color','White');
  legend(hfvt2,'Linear-phase equiripple design with linearly decaying stopband',...
      'Minimum-phase equiripple design with linearly decaying stopband')

Minimum-Order Lowpass Filter Design Using Multistage Techniques

A different approach to minimizing the number of coefficients that does not involve minimum-phase
designs is to use multistage techniques. Here we show an interpolated FIR (IFIR) approach.

  Hd5 = ifir(Hf);
  hfvt3 = fvtool(Hd1,Hd5,'Color','White');
  legend(hfvt3,'Linear-phase equirriple design',...
        'Linear-phase IFIR design')
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The number of nonzero coefficients required in the IFIR case is 111. Less than both the equiripple
linear-phase and minimum-phase designs.
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Filter Designer: A Filter Design and
Analysis App

• “Using Filter Designer” on page 23-2
• “Importing a Filter Design” on page 23-25
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Using Filter Designer
Filter Designer is a powerful user interface for designing and analyzing filters. Filter Designer
enables you to quickly design digital FIR or IIR filters by setting filter performance specifications, by
importing filters from your MATLAB workspace or by adding, moving, or deleting poles and zeros.
Filter Designer also provides tools for analyzing filters, such as magnitude and phase response plots
and pole-zero plots.

Getting Started
To open filter designer, type

filterDesigner

at the MATLAB command prompt.

A Tip of the Day dialog displays with suggestions for using Filter Designer. Then, the interface
displays with a default filter.
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The Filter Designer interface has three main regions:

• The Current Filter Information region
• The Filter Display region and
• The Design panel

The upper half of the interface displays information on filter specifications and responses for the
current filter. The Current Filter Information region, in the upper left, displays filter properties,
namely the filter structure, order, number of sections used and whether the filter is stable or not. It
also provides access to the Filter manager for working with multiple filters.

The Filter Display region, in the upper right, displays various filter responses, such as, magnitude
response, group delay and filter coefficients.
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The lower half of the interface is the interactive portion of Filter Designer. The Design Panel, in the
lower half is where you define your filter specifications. It controls what is displayed in the other two
upper regions. Other panels can be displayed in the lower half by using the sidebar buttons.

The tool includes Context-sensitive help. You can right-click or click the What's This? button to get
information on the different parts of the tool.

Note that when you open filter designer, Design Filter is not enabled. You must make a change to
the default filter design in order to enable Design Filter. This is true for each time you want to
change the filter design. Changes to radio button items or drop down menu items such as those under
Response Type or Filter Order enable Design Filter immediately. Changes to specifications in text
boxes such as Fs, Fpass, and Fstop require you to click outside the text box to enable Design Filter.

Choosing a Response Type
You can choose from several response types:

• Lowpass
• Raised cosine
• Highpass
• Bandpass
• Bandstop
• Differentiator
• Multiband
• Hilbert transformer
• Arbitrary magnitude
• Arbitrary Group Delay
• Peaking
• Notching

To design a bandpass filter, select the radio button next to Bandpass in the Response Type region of
the app.

Note Not all filter design methods are available for all response types. Once you choose your
response type, this may restrict the filter design methods available to you. Filter design methods that
are not available for a selected response type are removed from the Design Method region of the app.
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Choosing a Filter Design Method
You can use the default filter design method for the response type that you've selected, or you can
select a filter design method from the available FIR and IIR methods listed in the app.

To select the Remez algorithm to compute FIR filter coefficients, select the FIR radio button and
choose Equiripple from the list of methods.

Setting the Filter Design Specifications
• “Viewing Filter Specifications” on page 23-5
• “Filter Order” on page 23-5
• “Options” on page 23-6
• “Bandpass Filter Frequency Specifications” on page 23-6
• “Bandpass Filter Magnitude Specifications” on page 23-7

Viewing Filter Specifications

The filter design specifications that you can set vary according to response type and design method.
The display region illustrates filter specifications when you select Analysis > Filter Specifications
or when you click the Filter Specifications toolbar button.

You can also view the filter specifications on the Magnitude plot of a designed filter by selecting View
> Specification Mask.

Filter Order

You have two mutually exclusive options for determining the filter order when you design an
equiripple filter:

• Specify order: You enter the filter order in a text box.
• Minimum order: The filter design method determines the minimum order filter.
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Select the Minimum order radio button for this example.

Note that filter order specification options depend on the filter design method you choose. Some filter
methods may not have both options available.

Options

The available options depend on the selected filter design method. Only the FIR Equiripple and FIR
Window design methods have settable options. For FIR Equiripple, the option is a Density Factor.
See firpm for more information. For FIR Window the options are Scale Passband, Window
selection, and for the following windows, a settable parameter:

Window Parameter
Chebyshev (chebwin) Sidelobe attenuation
Gaussian (gausswin) Alpha
Kaiser (kaiser) Beta
Taylor (taylorwin) Nbar and Sidelobe level
Tukey (tukeywin) Alpha
User Defined Function Name, Parameter

You can view the window in the Window Visualization Tool (WVTool) by clicking the View button.

For this example, set the Density factor to 16.

Bandpass Filter Frequency Specifications

For a bandpass filter, you can set

• Units of frequency:

• Hz
• kHz
• MHz
• GHz
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• Normalized (0 to 1)
• Sampling frequency
• Passband frequencies
• Stopband frequencies

You specify the passband with two frequencies. The first frequency determines the lower edge of the
passband, and the second frequency determines the upper edge of the passband.

Similarly, you specify the stopband with two frequencies. The first frequency determines the upper
edge of the first stopband, and the second frequency determines the lower edge of the second
stopband.

For this example:

• Keep the units in Hz (default).
• Set the sampling frequency (Fs) to 2000 Hz.
• Set the end of the first stopband (Fstop1) to 200 Hz.
• Set the beginning of the passband (Fpass1) to 300 Hz.
• Set the end of the passband (Fpass2) to 700 Hz.
• Set the beginning of the second stopband (Fstop2) to 800 Hz.

Bandpass Filter Magnitude Specifications

For a bandpass filter, you can specify the following magnitude response characteristics:

• Units for the magnitude response (dB or linear)
• Passband ripple
• Stopband attenuation

For this example:

• Keep Units in dB (default).
• Set the passband ripple (Apass) to 0.1 dB.
• Set the stopband attenuation for both stopbands (Astop1, Astop2) to 75 dB.

 Using Filter Designer

23-7



Computing the Filter Coefficients
Now that you've specified the filter design, click the Design Filter button to compute the filter
coefficients.

Notice that the Design Filter button is disabled once you've computed the coefficients for your filter
design. This button is enabled again once you make any changes to the filter specifications.

Analyzing the Filter
• “Displaying Filter Responses” on page 23-8
• “Using Data Tips” on page 23-10
• “Drawing Spectral Masks” on page 23-10
• “Changing the Sampling Frequency” on page 23-11
• “Displaying the Response in FVTool” on page 23-11

Displaying Filter Responses

You can view the following filter response characteristics in the display region or in a separate
window.

• Magnitude response
• Phase response
• Magnitude and Phase responses
• Group delay response
• Phase delay response
• Impulse response
• Step response
• Pole-zero plot
• Zero-phase response — available from the y-axis context menu in a Magnitude or Magnitude and

Phase response plot.
• Magnitude Response Estimate
• Round-off Noise Power Spectrum

The Magnitude Response Estimate and Round-off Noise Power Spectrum analyses use filter
internals.
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For descriptions of the above responses and their associated toolbar buttons and other filter designer
toolbar buttons, see FVTool.

You can display two responses in the same plot by selecting Analysis > Overlay Analysis and
selecting an available response. A second y-axis is added to the right side of the response plot. (Note
that not all responses can be overlaid on each other.)

You can also display the filter coefficients and detailed filter information in this region.

For all the analysis methods, except zero-phase response, you can access them from the Analysis
menu, the Analysis Parameters dialog box from the context menu, or by using the toolbar buttons. For
zero-phase, right-click the y-axis of the plot and select Zero-phase from the context menu.

For example, to look at the filter's magnitude response, select the Magnitude Response button 
on the toolbar.

You can also overlay the filter specifications on the Magnitude plot by selecting View > Specification
Mask.

Note You can use specification masks in FVTool only if FVTool was launched from filter designer.

 Using Filter Designer

23-9



Using Data Tips

You can click the response to add plot data tips that display information about particular points on the
response.

For information on using data tips, see “Interactively Explore Plotted Data”.

Drawing Spectral Masks

To add spectral masks or rejection area lines to your magnitude plot, click View > User-defined
Spectral Mask.

The mask is defined by a frequency vector and a magnitude vector. These vectors must be the same
length.

• Enable Mask — Select to turn on the mask display.
• Normalized Frequency — Select to normalize the frequency between 0 and 1 across the

displayed frequency range.
• Frequency Vector — Enter a vector of x-axis frequency values.
• Magnitude Units — Select the desired magnitude units. These units should match the units

used in the magnitude plot.
• Magnitude Vector — Enter a vector of y-axis magnitude values.

The magnitude response below shows a spectral mask.
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Changing the Sampling Frequency

To change the sampling frequency of your filter, right-click any filter response plot and select
Sampling Frequency from the context menu.

To change the filter name, type the new name in Filter name. (In FVTool, if you have multiple filters,
select the desired filter and then enter the new name.)

To change the sampling frequency, select the desired unit from Units and enter the sampling
frequency in Fs. (For each filter in fvtool, you can specify a different sampling frequency or you can
apply the sampling frequency to all filters.)

To save the displayed parameters as the default values to use when filter designer or FVTool is
opened, click Save as Default.

To restore the default values, click Restore Original Defaults.

Displaying the Response in FVTool

To display the filter response characteristics in a separate window, select View > Filter
Visualization Tool (available if any analysis, except the filter specifications, is in the display region)

or click the Full View Analysis button:

This launches the Filter Visualization Tool (fvtool).
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Note If Filter Specifications are shown in the display region, clicking the Full View Analysis toolbar
button launches a MATLAB figure window instead of FVTool. For details, see “Add Annotations to
Chart”. The associated menu item is Print to figure, which is enabled only if the filter specifications
are displayed.

You can use this tool to annotate your design, view other filter characteristics, and print your filter
response. You can link filter designer and fvtool so that changes made in filter designer are
immediately reflected in fvtool. See FVTool for more information.

Editing the Filter Using the Pole/Zero Editor
• “Displaying the Pole-Zero Plot” on page 23-12
• “Changing the Pole-Zero Plot” on page 23-13

Displaying the Pole-Zero Plot

You can edit a designed or imported filter's coefficients by moving, deleting, or adding poles and/or
zeros using the Pole/Zero Editor panel.

Note You cannot generate MATLAB code (File > Generate MATLAB code) if your filter was
designed or edited with the Pole/Zero Editor.

You cannot move quantized poles and zeros. You can only move the reference poles and zeros.

Click the Pole/Zero Editor button in the sidebar or select Edit > Pole/Zero Editor to display this
panel.
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Poles are shown using x symbols and zeros are shown using o symbols.

Changing the Pole-Zero Plot

Plot mode buttons are located to the left of the pole/zero plot. Select one of the buttons to change the
mode of the pole/zero plot. The Pole/Zero Editor has these buttons from left to right: move pole, add
pole, add zero, and delete pole or zero.

The following plot parameters and controls are located to the left of the pole/zero plot and below the
plot mode buttons.

• Gain — factor to compensate for the filter's pole(s) and zero(s) gains
• Coordinates — units (Polar or Rectangular) of the selected pole or zero
• Magnitude — if polar coordinates is selected, magnitude of the selected pole or zero
• Angle — if polar coordinates is selected, angle of selected pole(s) or zero(s)
• Real — if rectangular coordinates is selected, real component of selected pole(s) or zero(s)
• Imaginary — if rectangular coordinates is selected, imaginary component of selected pole or zero

 Using Filter Designer

23-13



• Section — for multisection filters, number of the current section
• Conjugate — creates a corresponding conjugate pole or zero or automatically selects the

conjugate pole or zero if it already exists.
• Auto update — immediately updates the displayed magnitude response when poles or zeros are

added, moved, or deleted.

The Edit > Pole/Zero Editor has items for selecting multiple poles/zeros, for inverting and mirroring
poles/zeros, and for deleting, scaling and rotating poles/zeros.

Moving one of the zeros on the vertical axis produces the following result:
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• The selected zero pair is shown in green.
• When you select one of the zeros from a conjugate pair, the Conjugate check box and the

conjugate are automatically selected.
• The Magnitude Response plot updates immediately because Auto update is active.

Converting the Filter Structure
• “Converting to a New Structure” on page 23-15
• “Converting to Second-Order Sections” on page 23-16

Converting to a New Structure

You can use Edit > Convert Structure to convert the current filter to a new structure. All filters can
be converted to the following representations:

• Direct-form I
• Direct-form II
• Direct-form I transposed
• Direct-form II transposed
• Lattice ARMA

Note If you have DSP System Toolbox product installed, you will see additional structures in the
Convert structure dialog box.
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In addition, the following conversions are available for particular classes of filters:

• Minimum phase FIR filters can be converted to Lattice minimum phase
• Maximum phase FIR filters can be converted to Lattice maximum phase
• Allpass filters can be converted to Lattice allpass
• IIR filters can be converted to Lattice ARMA

Note Converting from one filter structure to another may produce a result with different
characteristics than the original. This is due to the computer's finite-precision arithmetic and the
variations in the conversion's roundoff computations.

For example:

• Select Edit > Convert Structure to open the Convert structure dialog box.
• Select Direct-form I in the list of filter structures.

Converting to Second-Order Sections

You can use Edit > Convert to Second-Order Sections to store the converted filter structure as a
collection of second-order sections rather than as a monolithic higher-order structure.

Note The following options are also used for Edit > Reorder and Scale Second-Order Sections,
which you use to modify an SOS filter structure.

The following Scale options are available when converting a direct-form II structure only:

• None (default)
• L-2 (L2 norm)
• L-infinity (L∞ norm)

The Direction (Up or Down) determines the ordering of the second-order sections. The optimal
ordering changes depending on the Scale option selected.

For example:
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• Select Edit > Convert to Second-Order Sections to open the Convert to SOS dialog box.
• Select L-infinity from the Scale menu for L∞ norm scaling.
• Leave Up as the Direction option.

Note To convert from second-order sections back to a single section, use Edit > Convert to
Single Section.

Exporting a Filter Design
• “Exporting Coefficients or Objects to the Workspace” on page 23-17
• “Exporting Coefficients to an ASCII File” on page 23-17
• “Exporting Coefficients or Objects to a MAT-File” on page 23-17
• “Exporting to a Simulink Model” on page 23-18
• “Other Ways to Export a Filter” on page 23-20

Exporting Coefficients or Objects to the Workspace

You can save the filter either as filter coefficients variables or as a filter System object variable. To
save the filter to the MATLAB workspace:

1 Select File > Export. The Export dialog box appears.
2 Select Workspace from the Export To menu.
3 Select Coefficients from the Export As menu to save the filter coefficients or select System

Objects to save the filter in a filter System object.
4 For coefficients, assign variable names using the Numerator (for FIR filters) or Numerator and

Denominator (for IIR filters), or SOS Matrix and Scale Values (for IIR filters in second-order
section form) text boxes in the Variable Names region.

For System objects, assign the variable name in the Discrete Filter (or Quantized Filter) text
box. If you have variables with the same names in your workspace and you want to overwrite
them, select the Overwrite Variables check box.

5 Click the Export button.

Exporting Coefficients to an ASCII File

To save filter coefficients to a text file,

1 Select File > Export. The Export dialog box appears.
2 Select Coefficients File (ASCII) from the Export To menu.
3 Click the Export button. The Export Filter Coefficients to .FCF File dialog box appears.
4 Choose or enter a filename and click the Save button.

The coefficients are saved in the text file that you specified, and the MATLAB Editor opens to display
the file. The text file also contains comments with the MATLAB version number, the Signal Processing
Toolbox version number, and filter information.

Exporting Coefficients or Objects to a MAT-File

To save filter coefficients or a filter object as variables in a MAT-file:
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1 Select File > Export. The Export dialog box appears.
2 Select MAT-file from the Export To menu.
3 Select Coefficients from the Export As menu to save the filter coefficients or select Objects

to save the filter in a filter object.
4 For coefficients, assign variable names using the Numerator (for FIR filters) or Numerator and

Denominator (for IIR filters), or SOS Matrix and Scale Values (for IIR filters in second-order
section form) text boxes in the Variable Names region.

For objects, assign the variable name in the Discrete Filter (or Quantized Filter) text box. If
you have variables with the same names in your workspace and you want to overwrite them,
select the Overwrite Variables check box.

5 Click the Export button. The Export to a MAT-File dialog box appears.
6 Choose or enter a filename and click the Save button.

Exporting to a Simulink Model

If you have the Simulink product installed, you can export a Simulink block of your filter design and
insert it into a new or existing Simulink model.

You can export a filter designed using any filter design method available in the filter designer app.

Note If you have the DSP System Toolbox and Fixed-Point Designer installed, you can export a CIC
filter to a Simulink model.

1 After designing your filter, click the Realize Model sidebar button or select File > Export to
Simulink Model. The Realize Model panel is displayed.

2 Specify the name to use for your block in Block name.
3 To insert the block into the current (most recently selected) Simulink model, set the Destination

to Current. To inset the block into a new model, select New. To insert the block into a user-
defined subsystem, select User defined.

4 If you want to overwrite a block previously created from this panel, check Overwrite generated
`Filter' block.

5 If you select the Build model using basic elements check box, your filter is created as a
subsystem (Simulink) block, which uses separate sub-elements. In this mode, the following
optimization(s) are available:
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• Optimize for zero gains — Removes zero-valued gain paths from the filter structure.
• Optimize for unity gains — Substitutes a wire (short circuit) for gains equal to 1 in the
filter structure.

• Optimize for negative gains — Substitutes a wire (short circuit) for gains equal to -1
and changes corresponding additions to subtractions in the filter structure.

• Optimize delay chains — Substitutes delay chains composed of n unit delays with a
single delay of n.

• Optimize for unity scale values — Removes multiplications for scale values equal to
1 from the filter structure.

The following illustration shows the effects of some of the optimizations:

Optimization Effects

Note The Build model using basic elements check box is enabled only when you have a DSP
System Toolbox license and your filter can be designed using digital filter blocks from that
library. For more information, see the Filter Realization Wizard.

6 Set the Input processing parameter to specify whether the generated filter performs sample- or
frame-based processing on the input. Depending on the type of filter you design, one or both of
the following options may be available:
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• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

7 Click the Realize Model button to create the filter block. When the Build model using basic
elements check box is selected, filter designer implements the filter as a subsystem block using
Sum, Gain, and Delay blocks.

If you double-click the Simulink Filter block, the filter structure is displayed.

Other Ways to Export a Filter

You can also send your filter to a C header file or generate MATLAB code to construct your filter from
the command line. For detailed instructions, see the following sections:

• “Generating a C Header File” on page 23-20
• “Generating MATLAB Code” on page 23-21

Generating a C Header File
You may want to include filter information in an external C program. To create a C header file with
variables that contain filter parameter data, follow this procedure:

1 Select Targets > Generate C Header. The Generate C Header dialog box appears.

2 Enter the variable names to be used in the C header file. The particular filter structure
determines the variables that are created in the file
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Filter Structure Variable Parameter
Direct-form I
Direct-form II
Direct-form I transposed
Direct-form II transposed

Numerator, Numerator length*, Denominator, Denominator
length*, and Number of sections (inactive if filter has only one
section)

Lattice ARMA Lattice coeffs, Lattice coeffs length*, Ladder coeffs, Ladder
coeffs length*, Number of sections (inactive if filter has only one
section)

Lattice MA Lattice coeffs, Lattice coeffs length*, and Number of sections
(inactive if filter has only one section)

Direct-form FIR Direct-
form FIR transposed

Numerator, Numerator length*, and Number of sections
(inactive if filter has only one section)

*length variables contain the total number of coefficients of that type.

Note Variable names cannot be C language reserved words, such as “for.”
3 Select Export Suggested to use the suggested data type or select Export As and select the

desired data type from the pull-down.

Note If you do not have DSP System Toolbox software installed, selecting any data type other
than double-precision floating point results in a filter that does not exactly match the one you
designed in the filter designer. This is due to rounding and truncating differences.

4 Click Generate to generate the C header file. Click Close to close the dialog box.

Generating MATLAB Code
You can generate MATLAB code that constructs the filter you designed in filter designer from the
command line. Select File > Generate MATLAB Code > Filter Design Function and specify the
filename in the Generate MATLAB code dialog box.

Note You cannot generate MATLAB code through File > Generate MATLAB Code > Filter Design
Function (with System Objects) or through File > Generate MATLAB Code > Data Filtering
Function (with System Objects), if your filter was designed or edited with the Pole/Zero Editor.

The following is generated MATLAB code when you choose File > Generate MATLAB Code > Data
Filtering Function (with System Objects) for the equiripple bandpass filter designed in this
example.
function Hd = ExFilter
%EXFILTER Returns a discrete-time filter object.

% MATLAB Code
% Generated by MATLAB(R) 9.1 and the DSP System Toolbox 9.3.
% Generated on: 17-Nov-2016 14:55:28

% Equiripple Bandpass filter designed using the FIRPM function.

% All frequency values are in Hz.
Fs = 2000;  % Sampling Frequency

Fstop1 = 200;              % First Stopband Frequency
Fpass1 = 300;              % First Passband Frequency
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Fpass2 = 700;              % Second Passband Frequency
Fstop2 = 800;              % Second Stopband Frequency
Dstop1 = 0.000177827941;   % First Stopband Attenuation
Dpass  = 0.0057563991496;  % Passband Ripple
Dstop2 = 0.000177827941;   % Second Stopband Attenuation
dens   = 16;               % Density Factor

% Calculate the order from the parameters using FIRPMORD.
[N, Fo, Ao, W] = firpmord([Fstop1 Fpass1 Fpass2 Fstop2]/(Fs/2), [0 1 ...
    0], [Dstop1 Dpass Dstop2]);

% Calculate the coefficients using the FIRPM function.
b  = firpm(N, Fo, Ao, W, {dens});
Hd = dsp.FIRFilter( ...
    'Numerator', b);

% [EOF]

Managing Filters in the Current Session
You can store filters designed in the current filter designer session for cascading together, exporting
to FVTool or for recalling later in the same or future filter designer sessions.

You store and access saved filters with the Store filter and Filter Manager buttons, respectively, in
the Current Filter Information pane.

Store Filter — Displays the Store Filter dialog box in which you specify the filter name to use when
storing the filter in the Filter Manager. The default name is the type of the filter.

Filter Manager — Opens the Filter Manager.
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The current filter is listed below the listbox. To change the current filter, highlight the desired filter. If
you select Edit current filter, filter designer displays the currently selected filter specifications. If
you make any changes to the specifications, the stored filter is updated immediately.

To cascade two or more filters, highlight the desired filters and press Cascade. A new cascaded filter
is added to the Filter Manager.

To change the name of a stored filter, press Rename. The Rename filter dialog box is displayed.

To remove a stored filter from the Filter Manager, press Delete.

To export one or more filters to FVTool, highlight the filter(s) and press FVTool.

Saving and Opening Filter Design Sessions
You can save your filter design session as a MAT-file and return to the same session another time.

Select the Save session button  to save your session as a MAT-file. The first time you save a
session, a Save Filter Design Session browser opens, prompting you for a session name.

For example, save this design session as TestFilter.fda in your current working directory by
typing TestFilter in the File name field.

The .fda extension is added automatically to all filter design sessions you save.

Note You can also use the File > Save session and File > Save session as to save a session.
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You can load existing sessions into the Filter Design and Analysis Tool by selecting the Open session

button, Open session button,  or File > Open session . A Load Filter Design Session browser
opens that allows you to select from your previously saved filter design sessions.

See Also

Related Examples
• “Use Filter Designer with DSP System Toolbox Software” on page 5-9
• “Importing a Filter Design” on page 23-25
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Importing a Filter Design

In this section...
“Import Filter Panel” on page 23-25
“Filter Structures” on page 23-25

Import Filter Panel
The Import Filter panel allows you to import a filter. You can access this region by clicking the
Import Filter button in the sidebar.

The imported filter can be in any of the representations listed in the Filter Structure pull-down
menu. You can import a filter as second-order sections by selecting the check box.

Specify the filter coefficients in Numerator and Denominator, either by entering them explicitly or
by referring to variables in the MATLAB workspace.

Select the frequency units from the following options in the Units menu, and for any frequency unit
other than Normalized, specify the value or MATLAB workspace variable of the sampling frequency in
the Fs field.

To import the filter, click the Import Filter button. The display region is automatically updated when
the new filter has been imported.

You can edit the imported filter using the Pole/Zero Editor panel.

Filter Structures
The available filter structures are:

• Direct Form, which includes direct-form I, direct-form II, direct-form I transposed, direct-form II
transposed, and direct-form FIR

• Lattice, which includes lattice allpass, lattice MA min phase, lattice MA max phase, and lattice
ARMA

The structure that you choose determines the type of coefficients that you need to specify in the text
fields to the right.
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Direct-form

For direct-form I, direct-form II, direct-form I transposed, and direct-form II transposed, specify the
filter by its transfer function representation

H(z) = b(1) + b(2)z−1 + b(3)z−2 + …b(m + 1)z−m

a(1) + a(2)z−1 + a(3)Z−3 + …a(n + 1)z−n

• The Numerator field specifies a variable name or value for the numerator coefficient vector b,
which contains m+1 coefficients in descending powers of z.

• The Denominator field specifies a variable name or value for the denominator coefficient vector
a, which contains n+1 coefficients in descending powers of z. For FIR filters, the Denominator
is 1.

Filters in transfer function form can be produced by all of the Signal Processing Toolbox filter design
functions (such as fir1, fir2, firpm, butter, yulewalk). See “Transfer Function” for more
information.

Importing as second-order sections

For all direct-form structures, except direct-form FIR, you can import the filter in its second-order
section representation:

H(z) = G ∏
k = 1

L b0k + b1kz−1 + b2kz−2

a0k + a1kz−1 + a2kz−2

The Gain field specifies a variable name or a value for the gain G, and the SOS Matrix field specifies
a variable name or a value for the L-by-6 SOS matrix

SOS =

b01 b11 b21 1 a11 a22
b02 b12 b22 1 a12 a22

· · · · · ·
· · · · · ·

b0L b1L b2L 1 a1L a2L

whose rows contain the numerator and denominator coefficients bik and aik of the second-order
sections of H(z).

Filters in second-order section form can be produced by functions such as tf2sos, zp2sos, ss2sos,
and sosfilt. See “Second-Order Sections (SOS)” for more information.

Lattice

For lattice allpass, lattice minimum and maximum phase, and lattice ARMA filters, specify the filter
by its lattice representation:

• For lattice allpass, the Lattice coeff field specifies the lattice (reflection) coefficients, k(1) to
k(N), where N is the filter order.

• For lattice MA (minimum or maximum phase), the Lattice coeff field specifies the lattice
(reflection) coefficients, k(1) to k(N), where N is the filter order.
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• For lattice ARMA, the Lattice coeff field specifies the lattice (reflection) coefficients, k(1) to
k(N), and the Ladder coeff field specifies the ladder coefficients, v(1) to v(N+1), where N is the
filter order.

Filters in lattice form can be produced by tf2latc. See “Lattice Structure” for more information.
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Designing a Filter in the Filter Builder
GUI
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Filter Builder Design Process
In this section...
“Introduction to Filter Builder” on page 24-2
“Design a Filter Using Filter Builder” on page 24-2
“Select a Response” on page 24-2
“Select a Specification” on page 24-4
“Select an Algorithm” on page 24-5
“Customize the Algorithm” on page 24-6
“Analyze the Design” on page 24-7
“Realize or Apply the Filter to Input Data” on page 24-7

Introduction to Filter Builder
The filterBuilder function provides a graphical interface to the fdesign object-object oriented
filter design paradigm and is intended to reduce development time during the filter design process.
filterBuilder uses a specification-centered approach to find the best algorithm for the desired
response.

Note filterBuilder requires the Signal Processing Toolbox. The functionality of filterBuilder
is greatly expanded by the DSP System Toolbox. Many of the features described or displayed below
are only available if the DSP System Toolbox is installed. You may verify your installation by typing
ver at the command prompt.

Design a Filter Using Filter Builder
The basic workflow in using filterBuilder is to choose the constraints and specifications of the
filter, and to use those as a starting point in the design. Postponing the choice of algorithm for the
filter allows the best design method to be determined automatically, based upon the desired
performance criteria. The following are the details of each of the steps for designing a filter with
filterBuilder.

Select a Response
When you open the filterBuilder tool by typing:

filterBuilder

at the MATLAB command prompt, the Response Selection dialog box appears, listing all possible
filter responses available in DSP System Toolbox.
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Note This step cannot be skipped because it is not automatically completed for you by the software.
You must select a response to initiate the filter design process.

After you choose a response, say bandpass, you start the design of the Specifications Object, and the
Bandpass Design dialog box appears. This dialog box contains a Main pane, a Data Types pane and a
Code Generation pane. The specifications of your filter are generally set in the Main pane of the
dialog box.

The Data Types pane provides settings for precision and data types, and the Code Generation pane
contains options for various implementations of the completed filter design.

For the initial design of your filter, you will mostly use the Main pane.
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The Bandpass Design dialog box contains all the parameters you need to determine the
specifications of a bandpass filter. The parameters listed in the Main pane depend upon the type of
filter you are designing. However, no matter what type of filter you have chosen in the Response
Selection dialog box, the filter design dialog box contains the Main, Data Types, and Code
Generation panes.

Select a Specification
To choose the specification for the bandpass filter, you can begin by selecting an Impulse Response,
Order Mode, and Filter Type in the Filter Specifications frame of the Main Pane. You can further
specify the response of your filter by setting frequency and magnitude specifications in the
appropriate frames on the Main Pane.
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Note Frequency, Magnitude, and Algorithm specifications are interdependent and may change
based upon your Filter Specifications selections. When choosing specifications for your filter, select
your Filter Specifications first and work your way down the dialog box- this approach ensures that the
best settings for dependent specifications display as available in the dialog box.

Select an Algorithm
The algorithms available for your filter depend upon the filter response and design parameters you
have selected in the previous steps. For example, in the case of a bandpass filter, if the impulse
response selected is IIR and the Order Mode field is set to Minimum, the design methods available
are Butterworth, Chebyshev type I or II, or Elliptic, whereas if the Order Mode field is set to
Specify, the design method available is IIR least p-norm.
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Customize the Algorithm
By expanding the Design options section of the Algorithm frame, you can further customize the
algorithm specified. The options available will depend upon the algorithm and settings that have
already been selected in the dialog box. In the case of a bandpass IIR filter using the Butterworth
method, design options such as Match Exactly are available. Select the Use a System object to
implement filter check box to generate a System object for the filter designed. With these settings,
the filterBuilder generates a dsp.BiquadFilter System object.
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Analyze the Design
To analyze the filter response, click on the View Filter Response button. The Filter Visualization Tool
opens displaying the magnitude plot of the filter response.

Realize or Apply the Filter to Input Data
When you have achieved the desired filter response through design iterations and analysis using the
Filter Visualization Tool, apply the filter to the input data. Again, this step is never automatically
performed for you by the software. To filter your data, you must explicitly execute this step. In the
Bandpass Design dialog box, click OK and DSP System Toolbox creates the filter System object and
exports it to the MATLAB workspace.

The filter is then ready to be used to filter actual input data. To filter input data, x, enter the following
in the MATLAB command prompt:

>> y = Hbp(x);

Tip If you have Simulink, you have the option of exporting this filter to a Simulink block using the
realizemdl command. To get help on this command, type:

>> help realizemdl
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Visualize Data and Signals

Learn how to display data and signals with DSP System Toolbox.

25



Display Time-Domain Data
In this section...
“Configure the Time Scope Properties” on page 25-3
“Use the Simulation Controls” on page 25-6
“Modify the Time Scope Display” on page 25-7
“Inspect Your Data (Scaling the Axes and Zooming)” on page 25-8
“Manage Multiple Time Scopes” on page 25-10
“Display Complex-Valued Input Signal” on page 25-12
“Display Input Signal of Changing Size” on page 25-12
“Display Simulink Enumeration Input Signal” on page 25-12

The following tutorial shows you how to configure the Time Scope blocks in the ex_timescope_tut
model to display time-domain signals. To get started with this tutorial, open the model by typing

ex_timescope_tut

at the MATLAB command line.

Use the following workflow to configure the Time Scope blocks in the ex_timescope_tut model:

1 “Configure the Time Scope Properties” on page 25-3
2 “Use the Simulation Controls” on page 25-6
3 “Modify the Time Scope Display” on page 25-7
4 “Inspect Your Data (Scaling the Axes and Zooming)” on page 25-8
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5 “Manage Multiple Time Scopes” on page 25-10

Configure the Time Scope Properties
The Configuration Properties dialog box provides a central location from which you can change the
appearance and behavior of the Time Scope block. To open the Configuration Properties dialog box,
you must first open the Time Scope window by double-clicking the Time Scope block in your model.
When the window opens, select View > Configuration Properties. Alternatively, in the Time Scope

toolbar, click the Configuration Properties  button.

The Configuration Properties dialog box has four different tabs, Main, Time, Display, and Logging,
each of which offers you a different set of options. For more information about the options available
on each of the tabs, see the Time Scope block reference page.

Note As you progress through this workflow, notice the blue question mark icon ( ) in the lower-
left corner of the subsequent dialog boxes. This icon indicates that context-sensitive help is available.
You can get more information about any of the parameters on the dialog box by right-clicking the
parameter name and selecting What's This?

Configure Appearance and Specify Signal Interpretation

First, you configure the appearance of the Time Scope window and specify how the Time Scope block
should interpret input signals. In the Configuration Properties dialog box, click the Main tab. Choose
the appropriate parameter settings for the Main tab, as shown in the following table.

Parameter Setting
Open at simulation
start

Checked

Number of input
ports

2

Input processing Columns as channels (frame based)
Maximize axes Auto
Axes scaling Manual

In this tutorial, you want the block to treat the input signal as frame-based, so you must set the Input
processing parameter to Columns as channels (frame based).

Configure Axes Scaling and Data Alignment

The Main tab also allows you to control when and how Time Scope scales the axes. These options
also control how Time Scope aligns your data with respect to the axes. Click the link labeled
Configure... to the right of the Axes scaling parameter to see additional options for axes scaling.
After you click this button, the label changes to Hide... and new parameters appear. The following
table describes these additional options.
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Parameter Description
Axes scaling Specify when the scope automatically scales the axes. You can select one of

the following options:

• Manual — When you select this option, the scope does not automatically
scale the axes. You can manually scale the axes in any of the following
ways:

• Select Tools > Axes Scaling Properties.
• Press one of the Scale Axis Limits toolbar buttons.
• When the scope figure is the active window, press Ctrl and A

simultaneously.
• Auto — When you select this option, the scope scales the axes as needed,

both during and after simulation. Selecting this option shows the Do not
allow Y-axis limits to shrink check box.

• After N Updates — Selecting this option causes the scope to scale the
axes after a specified number of updates. This option is useful and more
efficient when your scope display starts with one axis scale, but quickly
reaches a different steady state axis scale. Selecting this option shows the
Number of updates edit box.

By default, this property is set to Auto. This property is Tunable (Simulink).
Scale axes limits at
stop

Select this check box to scale the axes when the simulation stops. The y-axis is
always scaled. The x-axis limits are only scaled if you also select the Scale X-
axis limits check box.

Data range (%) Allows you to specify how much white space surrounds your signal in the Time
Scope window. You can specify a value for both the y- and x-axis. The higher
the value you enter for the y-axis Data range (%), the tighter the y-axis range
is with respect to the minimum and maximum values in your signal. For
example, to have your signal cover the entire y-axis range when the block
scales the axes, set this value to 100.

Align Allows you to specify where the block should align your data with respect to
each axis. You can choose to have your data aligned with the top, bottom, or
center of the y-axis. Additionally, if you select the Autoscale X-axis limits
check box, you can choose to have your data aligned with the right, left, or
center of the x-axis.

Set the parameters to the values shown in the following table.

Parameter Setting
Axes scaling Manual
Scale axes limits at
stop

Checked

Data range (%) 80
Align Center
Autoscale X-axis
limits

Unchecked
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Set Time Domain Properties

In the Configuration Properties dialog box, click the Time tab. Set the parameters to the values
shown in the following table.

Parameter Setting
Time span One frame period
Time span overrun
action

Wrap

Time units Metric (based on Time Span)
Time display offset 0
Time-axis labels All
Show time-axis
label

Checked

The Time span parameter allows you to enter a numeric value, a variable that evaluates to a numeric
value, or select the One frame period menu option. You can also select the Auto menu option; in
this mode, Time Scope automatically calculates the appropriate value for time span from the
difference between the simulation “Start time” (Simulink) and “Stop time” (Simulink) parameters.
The actual range of values that the block displays on the time axis depends on the value of both the
Time span and Time display offset parameters.

If the Time display offset parameter is a scalar, the value of the minimum time-axis limit is equal to
the Time display offset. In addition, the value of the maximum time-axis limit is equal to the sum of
the Time display offset parameter and the Time span parameter. For information on the other
parameters in the Time Scope window, see the Time Scope reference page.

In this tutorial, the values on the time-axis range from 0 to One frame period, where One frame
period is 0.05 seconds (50 ms).

Set Display Properties

In the Configuration Properties dialog box, click the Display tab. Set the parameters to the values
shown in the following table.

Parameter Setting
Active display 1
Title
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Parameter Setting
Show legend Checked
Show grid Checked
Plot signal(s) as magnitude and phase Unchecked
Y-limits (Minimum) -2.5
Y-limits (Maximum) 2.5
Y-label Amplitude

Set Logging Properties

In the Configuration Properties dialog box, click the Logging tab. Set Log data to workspace to
unchecked.

Click OK to save your changes and close the Configuration Properties dialog box.

Note  If you have not already done so, repeat all of these procedures for the Time Scope1 block
(except leave the Number of input ports on the Main tab as 1) before continuing with the other
sections of this tutorial.

Use the Simulation Controls
One advantage to using the Time Scope block in your models is that you can control model simulation
directly from the Time Scope window. The buttons on the Simulation Toolbar of the Time Scope
window allow you to play, pause, stop, and take steps forward or backward through model simulation.
Alternatively, there are several keyboard shortcuts you can use to control model simulation when the
Time Scope is your active window.

You can access a list of keyboard shortcuts for the Time Scope by selecting Help > Keyboard
Command Help. The following procedure introduces you to these features.

1 If the Time Scope window is not open, double-click the block icon in the ex_timescope_tut
model. Start model simulation. In the Time Scope window, on the Simulation Toolbar, click the

Run button ( ) on the Simulation Toolbar. You can also use one of the following keyboard
shortcuts:

• Ctrl+T
• P
• Space

2 While the simulation is running and the Time Scope is your active window, pause the simulation.
Use either of the following keyboard shortcuts:

• P
• Space

Alternatively, you can pause the simulation in one of two ways:

•
In the Time Scope window, on the Simulation Toolbar, click the Pause button ( ).

25 Visualize Data and Signals

25-6

matlab:ex_timescope_tut


• From the Time Scope menu, select Simulation > Pause.
3 With the model simulation still paused, advance the simulation by a single time step. To do so, in

the Time Scope window, on the Simulation Toolbar, click the Next Step button ( ).

Next, try using keyboard shortcuts to achieve the same result. Press the Page Down key to
advance the simulation by a single time step.

4 Resume model simulation using any of the following methods:

• From the Time Scope menu, select Simulation > Continue.
•

In the Time Scope window, on the Simulation Toolbar, click the Continue button ( ).
• Use a keyboard shortcut, such as P or Space.

Modify the Time Scope Display
You can control the appearance of the Time Scope window using options from the display or from the
View menu. Among other capabilities, these options allow you to:

• Control the display of the legend
• Edit the line properties of your signals
• Show or hide the available toolbars

Change Signal Names in the Legend

You can change the name of a signal by double-clicking the signal name in the legend. By default, the
Time Scope names the signals based on the block they are coming from. For this example, set the
signal names as shown in the following table.

Block Name Original Signal Name New Signal Name
Time Scope Add Noisy Sine Wave
Time Scope Digital Filter – Lowpass Filtered Noisy Sine Wave
Time Scope1 Sine Wave Original Sine Wave

Modify Axes Colors and Line Properties

Use the Style dialog box to modify the appearance of the axes and the lines for each of the signals in
your model. In the Time Scope menu, select View > Style.

1 Change the Plot Type parameter to Auto for each Time Scope block. This setting ensures that
Time Scope displays a line graph if the signal is continuous and a stairstep graph if the signal is
discrete.

2 Change the Axes colors parameters for each Time Scope block. Leave the axes background
color as black and set the ticks, labels, and grid colors to white.

3 Set the Properties for line parameter to the name of the signal for which you would like to
modify the line properties. Set the line properties for each signal according to the values shown
in the following table.
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Block Name Signal Name Line Line Width Marker Color
Time Scope Noisy Sine Wave ———— 0.5 none White
Time Scope Filtered Noisy

Sine Wave
———— 0.5 Red

Time Scope1 Original Sine
Wave

———— 0.5 Yellow

Show and Hide Time Scope Toolbars

You can also use the options on the View menu to show or hide toolbars on the Time Scope window.
For example:

• To hide the simulation controls, select View > Toolbar. Doing so removes the simulation toolbar
from the Time Scope window and also removes the check mark from next to the Toolbar option in
the View menu.

• You can choose to show the simulation toolbar again at any time by selecting View > Toolbar.

Verify that all toolbars are visible before moving to the next section of this tutorial.

Inspect Your Data (Scaling the Axes and Zooming)
Time Scope has plot navigation tools that allow you to scale the axes and zoom in or out on the Time
Scope window. The axes scaling tools allow you to specify when and how often the Time Scope scales
the axes.

So far in this tutorial, you have configured the Time Scope block for manual axes scaling. Use one of
the following options to manually scale the axes:

• From the Time Scope menu, select Tools > Scale Axes Limits.
• Press the Scale Axes Limits toolbar button ( ).
• With the Time Scope as your active window, press Ctrl + A.

Adjust White Space Around the Signal

You can control how much space surrounds your signal and where your signal appears in relation to
the axes. To adjust the amount of space surrounding your signal and realign it with the axes, you
must first open the Tools—Plot Navigation Properties dialog box. From the Time Scope menu, select
Tools > Axes Scaling Properties .

In the Tools:Plot Navigation options dialog box, set the Data range (%) and Align parameters. In a
previous section, you set these parameters to 80 and Center, respectively.

• To decrease the amount of space surrounding your signal, set the Data range (%) parameter on
the Tools:Plot Navigation Options dialog box to 90.

• To align your signal with the bottom of the Y-axis, set the Align parameter to Bottom.

The next time you scale the axes of the Time Scope window, the window appears as follows.
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Use the Zoom Tools

The zoom tools allow you to zoom in simultaneously in the directions of both the x- and y-axes , or in
either direction individually. For example, to zoom in on the signal between 5010 ms and 5020 ms,
you can use the Zoom X option.

• To activate the Zoom X tool, select Tools > Zoom X, or press the corresponding toolbar button

( ). The Time Scope indicates that the Zoom X tool is active by depressing the toolbar button
and placing a check mark next to the Tools > Zoom X menu option.

• To zoom in on the region between 5010 ms and 5020 ms, in the Time Scope window, click and
drag your cursor from the 10 ms mark to the 20 ms mark.

 Display Time-Domain Data

25-9



• While zoomed in, to activate the Pan tool, select Tools > Pan, or press the corresponding toolbar

button ( ).
• To zoom out of the Time Scope window, right-click inside the window, and select Zoom Out.

Alternatively, you can return to the original view of your signal by right-clicking inside the Time
Scope window and selecting Reset to Original View.

Manage Multiple Time Scopes
The Time Scope block provides tools to help you manage multiple Time Scope blocks in your models.
The model used throughout this tutorial, ex_timescope_tut, contains two Time Scope blocks,
labeled Time Scope and Time Scope1. The following sections discuss the tools you can use to
manage these Time Scope blocks.

Open All Time Scope Windows

When you have multiple windows open on your desktop, finding the one you need can be difficult. The
Time Scope block offers a View > Bring All Time Scopes Forward menu option to help you manage
your Time Scope windows. Selecting this option brings all Time Scope windows into view. If a Time
Scope window is not currently open, use this menu option to open the window and bring it into view.

To try this menu option in the ex_timescope_tut model, open the Time Scope window, and close
the Time Scope1 window. From the View menu of the Time Scope window, select Bring All Time
Scopes Forward. The Time Scope1 window opens, along with the already active Time Scope window.
If you have any Time Scope blocks in other open Simulink models, then these also come into view.

Open Time Scope Windows at Simulation Start

When you have multiple Time Scope blocks in your model, you may not want all Time Scope windows
to automatically open when you start simulation. You can control whether or not the Time Scope
window opens at simulation start by selecting File > Open at Start of Simulation from the Time
Scope window. When you select this option, the Time Scope GUI opens automatically when you start
the simulation. When you do not select this option, you must manually open the scope window by
double-clicking the corresponding Time Scope block in your model.

Find the Right Time Scope Block in Your Model

Sometimes, you have multiple Time Scope blocks in your model and need to find the location of one
that corresponds to the active Time Scope window. In such cases, you can use the View > Highlight

Simulink Block menu option or the corresponding toolbar button ( ). When you do so, the model
window becomes your active window, and the corresponding Time Scope block flashes three times in
the model window. This option can help you locate Time Scope blocks in your model and determine to
which signals they are attached.

To try this feature, open the Time Scope window, and on the simulation toolbar, click the Highlight
Simulink Block button. Doing so opens the ex_timescope_tut model. The Time Scope block flashes
three times in the model window, allowing you to see where in your model the block of interest is
located.
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Docking Time Scope Windows in the Scopes Group Container

When you have multiple Time Scope blocks in your model you may want to see them in the same
window and compare them side-by-side. In such cases, you can select the Dock Time Scope button
( ) at the top-right corner of the Time Scope window for the Time Scope block.

The Time Scope window now appears in the Scopes group container. Next, press the Dock Time
Scope button at the top-right corner of the Time Scope window for the Time Scope1 block.

By default, the Scopes group container is situated above the MATLAB Command Window. However,
you can undock the Scopes group container by pressing the Show Actions button  at the top-right
corner of the container and selecting Undock. The Scopes group container is now independent from
the MATLAB Command Window.

Once docked, the Scopes group container displays the toolbar and menu bar of the Time Scope
window. If you open additional instances of Time Scope, a new Time Scope window appears in the
Scopes group container.
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You can undock any instance of Time Scope by pressing the corresponding Undock button ( ) in the
title bar of each docked instance. If you close the Scopes group container, all docked instances of
Time Scope close but the Simulink model continues to run.

Close All Time Scope Windows

If you save your model with Time Scope windows open, those windows will reopen the next time you
open the model. Reopening the Time Scope windows when you open your model can increase the
amount of time it takes your model to load. If you are working with a large model, or a model
containing multiple Time Scopes, consider closing all Time Scope windows before you save and close
that model. To do so, use the File > Close All Time Scope Windows menu option.

To use this menu option in the ex_timescope_tut model, open the Time Scope or Time Scope1
window, and select File > Close All Time Scope Windows. Both the Time Scope and Time Scope1
windows close. If you now save and close the model, the Time Scope windows do not automatically
open the next time you open the model. You can open Time Scope windows at any time by double-
clicking a Time Scope block in your model. Alternatively, you can choose to automatically open the
Time Scope windows at simulation start. To do so, from the Time Scope window, select File > Open
at Start of Simulation.

Display Complex-Valued Input Signal
This example shows how to display complex-valued signals in the Time Scope block.

By default, when the input is a complex-valued signal, Time Scope plots the real and imaginary
portions on the same axes. These real and imaginary portions appear as different-colored lines on the
same axes within the same active display.
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To separate the real and imaginary portions of the input, change the scope to plot magintude and
phase.

1 From the Scope menu, select View > Configuration Properties.
2 In the Configuration Properties window, on the Display tab, select Plot signal(s) as magnitude

and phase.
3 Click OK. The active display shows the magnitude of the input signal on the top axes. The signal

phase, in degrees, appears on the bottom axes.
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Display Input Signal of Changing Size
In this example, the size of the input signal to the Time Scope block changes as the simulation
progresses.

open_system("ex_timescope_varsize")
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When the simulation time is less than 5 seconds, Time Scope plots the signal connected to the third
input port of the Switch block, which has signal dimensions 1 by 2. After 5 seconds, Time Scope plots
the signal connected to the first input port of the Switch block, which has signal dimensions 1 by 3.

sim("ex_timescope_varsize")
open_system("ex_timescope_varsize/Time Scope")

As you can see in the figure, the third line on the display, colored red, appears only after 5 seconds.

Display Simulink Enumeration Input Signal
This example shows how to use the Time Scope to display an enumerated input signal.

open_system("ex_timescope_slenum")

In this example, Simulink® imports the variable x , from the MATLAB® workspace. This variable is
created when the model loads because the commands that construct it reside in the model Preload
function. To view these commands,
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1 On the Simulink toolbar, on the Modeling tab, in the Setup section, in the drop-down, select
Model Properties.

2 In the Model Properties dialog box, select the Callbacks tab. The following lines of MATLAB®
code appear.

if ~exist('BasicColors','class')
    Simulink.defineIntEnumType('BasicColors', ...
        {'Red', 'Yellow', 'Blue'}, ...
        [0;1;2], ...
        'Description', 'Basic colors', ...
        'DefaultValue', 'Blue', ...
        'AddClassNameToEnumNames', true);
end
x = [BasicColors(0), BasicColors(2), BasicColors(1)]

x = 

  1x3 BasicColors enumeration array

    Red       Blue      Yellow

The Signal from Workspace block has a sample time of 3 seconds. Thus, the input signal changes to
the next value in vector x every 3 seconds.

sim("ex_timescope_slenum")
open_system("ex_timescope_slenum/Time Scope")
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Display Frequency-Domain Data in Spectrum Analyzer
This example shows how you can use a Spectrum Analyzer block to display the frequency content of
two frame-based signals simultaneously. The Spectrum Analyzer block computes the Fast Fourier
Transform (FFT) of the input signal internally, transforming the signal into the frequency domain.

Open the ex_spectrumanalyzer_tut model.

model = 'ex_spectrumanalyzer_tut';
open_system(model)

The Signal From Workspace block repeatedly outputs the input signal, mtlb, as a frame-based signal
with a sample period of 1 second.

The Digital Filter Design block filters the input signal, using the default parameters.

open_system([model '/Digital Filter Design'])
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The Matrix Concatenate block combines the two signals so that each column corresponds to a
different signal.

The frequency of the signals are displayed in the Spectrum Analyzer. The Spectrum Analyzer uses
128 samples from each input channel to calculate a new windowed data segment, as shown in this
equation:

Therefore, the FFT also has a length of 128 frequency points. Also, because Overlap (%) is set to 50,
there is a buffer overlap length of 64 samples in each spectral estimate, as shown in the following
equation:
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Run the model and view power frequency of the signals in the Spectrum Analyzer. The power
spectrum of the first input signal, from column one, is the yellow line. The power spectrum of the
second input signal, from column two, is the blue line.

sim(model)
open_system([model '/Spectrum Analyzer'])

See Also
Spectrum Analyzer
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Related Examples
• “Spectrum Analyzer Measurements” on page 4-307
• “Configure Spectrum Analyzer” on page 25-25
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Visualize Central Limit Theorem in Array Plot
This example shows how to use and configure the dsp.ArrayPlot System object™ to visualize the
Central Limit Theorem. This theorem states that if you take a large number of random samples from a
population, the distribution of the means of the samples approaches a normal distribution.

Display a Uniform Distribution

The population for this example is a uniform distribution of random numbers between 0 and 1.
Generate a sample set of the values in MATLAB® using the rand function. Find their distributions
using the histcounts function.

numsamples = 1e4;
numbins = 20;
r = rand(numsamples,1);
hst = histcounts(r,numbins);

Create a new array plot object and configure the properties of the array plot object to plot a
histogram.

scope = dsp.ArrayPlot;
scope.XOffset = 0;
scope.SampleIncrement = 1/numbins;
scope.PlotType = 'Stem';
scope.YLimits = [0, max(hst)+1];

Call the scope to plot the uniform distribution.

scope(hst')
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Display the Distribution of Multiple Samples

Next, simulate the calculation of multiple uniformly distributed random samples. Because the
population is a uniformly distributed set of values between 0 and 1, we can simulate the sampling and
calculation of sample means by generating random values between 0 and 1. As the number of random
samples increases, the distribution of the means more closely resembles a normal curve. Run the
release method to let property values and input characteristics change.

hide(scope);
release(scope);

Change the configuration of the Array Plot properties for the display of a distribution function.

numbins = 201;
numtrials = 100;
r = zeros(numsamples,1);
scope.SampleIncrement = 1/numbins;
scope.PlotType = 'Stairs';

Call the scope repeatedly to plot the distribution of the samples.

show(scope);
for ii = 1:numtrials
    r = rand(numsamples,1)+r;
    hst = histcounts(r/ii,0:1/numbins:1);
    scope.YLimits = [min(hst)-1, max(hst)+1];
    scope(hst')
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    pause(0.1);
end

When the simulation has finished, the Array Plot figure displays a bell curve, indicating a distribution
that is close to normal.

Inspect Your Data by Zooming

The zoom tools allow you to zoom in simultaneously in the directions of both the x- and y-axes or in
either direction individually. For example, to zoom in on the distribution between 0.3 and 0.7, you can
use the Zoom X option.

• To activate the Zoom X tool, select Tools > Zoom X, or press the corresponding toolbar button.
You can determine if the Zoom X tool is active by looking for an indented toolbar button or a check
mark next to the Tools > Zoom X menu option.

• Next, zoom in on the region between 0.3 and 0.7. In the Array Plot window, click on the 0.3-second
mark and drag to the 0.7-second mark.

See Also
dsp.ArrayPlot | histcounts | rand
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Configure Spectrum Analyzer
Use the Spectrum Analyzer to visualize frequency. You can customize the spectrum analyzer display
to show the data and measurement information needed.

Signal and Spectrum Computation Information
The Spectrum Analyzer shows the spectrum computation settings for the current visualization. In the
scope status bar, check the Resolution Bandwidth, Time Resolution, and Offset indicators for this
information. The values specified by these indicators can change depending on your settings in the
Spectrum Settings panel. You can also view the simulation status and the amount of time data that
correspond to the current display. Check the Simulation status and Display time indicators for this
information.

• Resolution Bandwidth — The smallest positive frequency or frequency interval that can be
resolved.

Details

Spectrum Analyzer sets the resolution bandwidth based on the FrequencyResolutionMethod
property setting on the Main options pane of the Spectrum Settings panel. If
FrequencyResolutionMethod is RBW (Hz) then the specified value of RBW is used. You can
also get or set this value from the RBW property when RBWSource is set to 'Property'. By
default, the RBW (Hz) parameter on the Main options pane and the related RBWSource property
are set to 'Auto'. In this case, the Spectrum Analyzer determines the appropriate value to ensure
that there are 1024 RBW intervals over the specified Frequency Span.

You can set the resolution bandwidth to whatever value you choose. For this reason, there is a
minimum boundary on the number of input samples required to compute a spectral update. This
number of input samples required to compute one spectral update is shown as Samples/update
in the Main options pane. This value is directly related to RBW by the following equation:

Nsamples =
1−

Op
100 × NENBW × Fs

RBW

Overlap percentage, Op, is the value of the Overlap % parameter in the Window Options pane of
the Spectrum Settings panel. NENBW is the normalized effective noise bandwidth, a factor of
the windowing method used, which is shown in the Window Options pane. Fs is the sample rate.
In some cases, the number of samples provided in the input are not sufficient to achieve the
resolution bandwidth that you specify. When this situation occurs, Spectrum Analyzer shows a
warning message on the display.
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Spectrum Analyzer removes this message and displays a spectral estimate when enough data has
been input.

If the FrequencyResolutionMethod property setting on the Main options pane of the
Spectrum Settings is Window length, you specify the window length and the resulting RBW is

NENBW × Fs
Nwindow

The Samples/update in this case is directly related to RBW by the following equation:

Nsamples = 1−
Op
100 Nwindow

• Time Resolution — The time resolution for a spectrogram line.

Details

Time resolution is the amount of data, in seconds, used to compute a spectrogram line. The Time
Resolution parameter is available only when the spectrum View is Spectrogram. The minimum
attainable resolution is the amount of data time required to compute a single spectral estimate.
When the SpectrumType property is set to 'Spectrogram', you can get or set the minimum
attainable resolution value from the TimeResolution property. See the time resolution table in
the TimeResolution property description.

• Offset — The constant frequency offset to apply to the entire spectrum or a vector of frequency
offsets to apply to each spectrum for multiple inputs.

Details

Spectrum Analyzer adds this constant offset or the vector of offsets to the values on the frequency-
axis using the value of Offset on the Trace options pane of the Spectrum Settings panel. You
can also set the offset from the FrequencyOffset property. The offset is the current time value
at the middle of the interval of the line displayed at 0 seconds. The actual time of a particular
spectrogram line is the offset minus the y-axis time listing. The offset is displayed on the plot only
when the spectrum View is Spectrogram.

• Simulation Status — Provides the status of the model simulation.

Details

The status can be one of the following conditions:

• Processing — Occurs after you construct the SpectrumAnalyzer object and before you run
the release method.

• Stopped — Occurs after you run the release method.
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The Simulation Status is part of the status bar in the Spectrum Analyzer window. You can choose
to hide or display the entire status bar. From the Spectrum Analyzer menu, select View > Status
Bar.

• Display time — The amount of time that has progressed since the last update to the Spectrum
Analyzer display.

Details

Every time you call the scope, the simulation time increases by the number of rows in the input
signal divided by the sample rate, as given by the following formula:

tsim = tsim− 1 + length 0: length xsine − 1
SampleRate

. At the beginning of a simulation, you can modify the SampleRate parameter on the Main
options pane of the Spectrum Settings panel. You can also set the sample rate using the
SampleRate property. The display time is updated each time the display is updated. When
ReducePlotRate is true, the simulation time and display time might differ. If at the end of a for
loop that includes the Spectrum Analyzer, the times differ, you can call the release method to
update the display with any data left in the buffer. Note, however, that if the remaining data is not
a complete window interval, the display is not updated.

The Display time indicator is a component of the status bar in the Spectrum Analyzer window. You
can choose to hide or display the entire status bar. From the Spectrum Analyzer menu, select
View > Status Bar .

• Frequency span — The range of values shown on the frequency-axis on the Spectrum Analyzer
window.

Details

Spectrum Analyzer sets the frequency span using the values of parameters on the Main options
pane of the Spectrum Settings panel.

• Span(Hz) and CF(Hz) visible — The Frequency span value equals the Span parameter in the
Main options pane. You can also get or set this value from the Span property when the
FrequencySpan property is set to 'Span and Center Frequency'.

• FStart(Hz) and FStop(Hz) — The Frequency span value equals the difference of the FStop
and FStart parameters in the Main options pane, as given by the formula:
fspan = fstop− fstart. You can also get or set these values from the StartFrequency and
StopFrequency properties when the FrequencySpan property is set to 'Start and stop
frequencies'.

By default, the Full Span check box in the Main options pane is enabled, and its equivalent
FrequencySpan property is set to 'Full'. In this case, the Spectrum Analyzer computes and
plots the spectrum over the entire Nyquist frequency interval. When the Two-sided spectrum
check box in the Trace options pane is enabled, and its equivalent PlotAsTwoSidedSpectrum
property is true, the Nyquist interval is, in hertz:

−SampleRate
2 , SampleRate

2 + FrequencyOf f set

If you set the PlotAsTwoSidedSpectrum property to false, the Nyquist interval is in hertz:

0, SampleRate
2 + FrequencyOf f set
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Reduce Plot Rate to Improve Performance

By default, Spectrum Analyzer updates the display at fixed intervals of time at a rate not exceeding
20 hertz. If you want Spectrum Analyzer to plot a spectrum on every simulation time step, you can
disable the Simulation > Reduce Plot Rate to Improve Performance option.

Note When this option is selected, the Spectrum Analyzer may display a misleading spectrum in
some situations. For example, if the input signal is wide-band with non-stationary behavior, such as a
chirp signal, Spectrum Analyzer might display a stationary spectrum. The reason for this behavior is
that Spectrum Analyzer buffers the input signal data and only updates the display periodically at
approximately 20 times per second. Therefore, Spectrum Analyzer does not render changes to the
spectrum that occur and elapse between updates, which gives the impression of an incorrect
spectrum. To ensure that spectral estimates are as accurate as possible, clear the Reduce Plot Rate
to Improve Performance check box. When you clear this box, Spectrum Analyzer calculates spectra
whenever there is enough data, rendering results correctly.

Generate a MATLAB Script
You can change Spectrum Analyzer settings using menus and options in the interface of the scope, or
by changing properties at the command line. If you change settings in the dsp.SpectrumAnalyzer
interface, you can generate the corresponding command line settings to use later.

Note The script only generates commands for settings that are available from the command line,
applicable to the current visualization, and changed from the default value.

This example shows how to generate a script after making changes to the dsp.SpectrumAnalyzer
in the interface:

1 Create a dsp.SpectrumAnalyzer System object.

scope = dsp.SpectrumAnalyzer();
show(scope);

2 Set options in the Spectrum Analyzer. For this example, turn on the Cursor Measurements. Also
in the Spectrum Settings, change the View type to Spectrum and spectrogram and set the
Axes Layout to Horizontal.
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3 Generate a script to recreate the dsp.SpectrumAnalyzer with the same modified settings.
Either select File > Generate MATLAB Script or enter:

generateScript(scope);

A new editor window opens with code to regenerate the same scope.
% Creation Code for 'dsp.SpectrumAnalyzer'.
% Generated by Spectrum Analyzer on 10-Mar-2019 16:25:49 -0500.

specScope = dsp.SpectrumAnalyzer('ViewType','Spectrum and spectrogram', ...
    'AxesLayout','Horizontal');
% Cursor Measurements Configuration
specScope.CursorMeasurements.Enable = true;
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Spectral Masks
Add upper and lower masks to the Spectrum Analyzer to visualize spectrum limits and compare
spectrum values to specification values.

To open the Spectral Mask pane, in the toolbar, select the spectral mask button .

Set Up Spectral Masks

In the Spectrum Analyzer window:

1 In the Spectral Mask pane, select a Masks option.
2 In the Upper limits or Lower limits box, enter the mask limits as a constant scalar, an array, or

a workspace variable name.
3 (Optional) Select additional properties:

• Reference level — Set a reference level for the mask. Enter a specific value or select
Spectrum peak.

• Channel — Select a channel to use for the mask reference.
• Frequency offset — Set a frequency offset for mask.

From the command-line, to add a spectral mask to the dsp.SpectrumAnalyzer System object or
the SpectrumAnalyzerConfiguration block configuration object:

1 Create a SpectralMaskSpecfication object.
2 Set properties, such as EnabledMasks, LowerMask, or UpperMask. For a full list of properties,

see SpectralMask (block) and SpectralMask (System object).
3 In the dsp.SpectrumAnalyzer or SpectrumAnalyzerConfiguration object, set the

SpectralMask property equal to your SpectralMaskSpecfication object.

For example:

mask = SpectralMaskSpecification();
mask.EnabledMasks = 'Upper';
mask.UpperMask = 10;
scope = dsp.SpectrumAnalyzer();
scope.SpectralMask = mask;
scope.SpectralMask

ans = 

  SpectralMaskSpecification with properties:

            EnabledMasks: 'Upper'
               UpperMask: 10
               LowerMask: -Inf
          ReferenceLevel: 'Custom'
    CustomReferenceLevel: 0
     MaskFrequencyOffset: 0

  Events for class SpectralMaskSpecification: MaskTestFailed
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Check Spectral Masks

You can check the status of the spectral mask in several different ways:

• In the Spectrum Analyzer window, select the spectral mask button . In the Spectral Mask
pane, the Statistics section shows statistics about how often the masks fail, which channels have
caused a failure, and which masks are currently failing.

• To get the current status of the spectral masks, call getSpectralMaskStatus.
• To perform an action every time the mask fails, use the MaskTestFailed event. To trigger a

function when the mask fails, create a listener to the MaskTestFailed event and define a
callback function to trigger. For more details about using events, see “Events”.

Spectral Mask in Spectrum Analyzer Block

Create a new model based on the dsp_basic_filter template. Add a spectral mask to the
Spectrum Analyzer block in the model. Run the model.

Masks are overlaid on the spectrum. If the mask is green, the signal is passing. If the mask is red, the
signal is failing. The Spectral Mask panel shows what percentage of the time the mask is
succeeding, which mask is failing, how many times the mask(s) failed, and which channels are
causing the failure.

  [~,mdl] = fileparts(tempname);
  open_system(new_system(mdl,'FromTemplate','dsp_basic_filter'));
  saBlock = find_system(mdl,'BlockType','SpectrumAnalyzer');

  scopeConfig = get_param(saBlock{1},'ScopeConfiguration');
  upperMask = [0 50; 1200 50; 1200 -10; 24000 -10];
  scopeConfig.SpectralMask.UpperMask = upperMask;
  scopeConfig.SpectralMask.LowerMask = -100;
  scopeConfig.SpectralMask.EnabledMasks = 'Upper and lower';

  sim(mdl,'StopTime','20');
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Measurements Panels
The Measurements panels are the panels that appear on the right side of the Spectrum Analyzer.
These measurements allow you to interact with the frequency values.

Trace Selection Panel

When you use the scope to view multiple signals, the Trace Selection panel appears. Use this panel to
select which signal to measure. To open the Trace Selection panel:

• From the menu, select Tools > Measurements > Trace Selection.
• Open a measurement panel.
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•

Cursor Measurements Panel

The Cursor Measurements panel displays screen cursors. The panel provides two types of cursors
for measuring signals. Waveform cursors are vertical cursors that track along the signal. Screen
cursors are both horizontal and vertical cursors that you can place anywhere in the display.

Note If a data point in your signal has more than one value, the cursor measurement at that point is
undefined and no cursor value is displayed.

In the Scope menu, select Tools > Measurements > Cursor Measurements. Alternatively, in the

Scope toolbar, click the Cursor Measurements  button.

The Cursor Measurements panel for the spectrum and dual view:

The Cursor Measurements panel for the spectrogram view. You must pause the spectrogram display
before you can use cursors.

You can use the mouse or the left and right arrow keys to move vertical or waveform cursors and the
up and down arrow keys for horizontal cursors.
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In the Settings pane, you can modify the type of screen cursors used for calculating measurements.
When more than one signal is displayed, you can assign cursors to each trace individually.

• Screen Cursors — Shows screen cursors (for spectrum and dual view only).
• Horizontal — Shows horizontal screen cursors (for spectrum and dual view only).
• Vertical — Shows vertical screen cursors (for spectrum and dual view only).
• Waveform Cursors — Shows cursors that attach to the input signals (for spectrum and dual view

only).
• Lock Cursor Spacing — Locks the frequency difference between the two cursors.
• Snap to Data — Positions the cursors on signal data points.

The Measurements pane displays the frequency (Hz) , time (s), and power (dBm) value
measurements. Time is displayed only in spectrogram mode. Channel Power shows the total power
between the cursors.

• 1 — Shows or enables you to modify the frequency, time (for spectrograms only), or both, at
cursor number one.

• 2 — Shows or enables you to modify the frequency, time (for spectrograms only), or both, at
cursor number two.

• Δ — Shows the absolute value of the difference in the frequency, time (for spectrograms only), or
both, and power between cursor number one and cursor number two.

• Channel Power — Shows the total power in the channel defined by the cursors.

The letter after the value associated with a measurement indicates the abbreviation for the
appropriate International System of Units (SI) prefix.

Peak Finder Panel

The Peak Finder panel displays the maxima, showing the x-axis values at which they occur. Peaks
are defined as a local maximum where lower values are present on both sides of a peak. Endpoints
are not considered peaks. This panel allows you to modify the settings for peak threshold, maximum
number of peaks, and peak excursion.

• From the menu, select Tools > Measurements > Peak Finder.
•

On the toolbar, click the Peak Finder  button.

The Settings pane enables you to modify the parameters used to calculate the peak values within the
displayed portion of the input signal. For more information on the algorithms this pane uses, see the
findpeaks function reference.
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Properties to set:

• Peak Threshold — The level above which peaks are detected. This setting is equivalent to the
MINPEAKHEIGHT parameter, which you can set when you run the findpeaks function.

• Max Num of Peaks — The maximum number of peaks to show. The value you enter must be a
scalar integer from 1 through 99. This setting is equivalent to the NPEAKS parameter, which you
can set when you run the findpeaks function.

• Min Peaks Distance — The minimum number of samples between adjacent peaks. This setting is
equivalent to the MINPEAKDISTANCE parameter, which you can set when you run the findpeaks
function.

• Peak Excursion — The minimum height difference between a peak and its neighboring samples.
Peak excursion is illustrated alongside peak threshold in the following figure.

The peak threshold is a minimum value necessary for a sample value to be a peak. The peak
excursion is the minimum difference between a peak sample and the samples to its left and right
in the time domain. In the figure, the green vertical line illustrates the lesser of the two height
differences between the labeled peak and its neighboring samples. This height difference must be
greater than the Peak Excursion value for the labeled peak to be classified as a peak. Compare
this setting to peak threshold, which is illustrated by the red horizontal line. The amplitude must
be above this horizontal line for the labeled peak to be classified as a peak.
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The peak excursion setting is equivalent to the THRESHOLD parameter, which you can set when
you run the findpeaks function.

• Label Format — The coordinates to display next to the calculated peak values on the plot. To see
peak values, you must first expand the Peaks pane and select the check boxes associated with
individual peaks of interest. By default, both x-axis and y-axis values are displayed on the plot.
Select which axes values you want to display next to each peak symbol on the display.

• X+Y — Display both x-axis and y-axis values.
• X — Display only x-axis values.
• Y — Display only y-axis values.

The Peaks pane displays the largest calculated peak values. It also shows the coordinates at which
the peaks occur, using the parameters you define in the Settings pane. You set the Max Num of
Peaks parameter to specify the number of peaks shown in the list.

The numerical values displayed in the Value column are equivalent to the pks output argument
returned when you run the findpeaks function. The numerical values displayed in the second
column are similar to the locs output argument returned when you run the findpeaks function.

The Peak Finder displays the peak values in the Peaks pane. By default, the Peak Finder panel
displays the largest calculated peak values in the Peaks pane in decreasing order of peak height.

Use the check boxes to control which peak values are shown on the display. By default, all check
boxes are cleared and the Peak Finder panel hides all the peak values. To show or hide all the peak
values on the display, use the check box in the top-left corner of the Peaks pane.

The Peaks are valid for any units of the input signal. The letter after the value associated with each
measurement indicates the abbreviation for the appropriate International System of Units (SI) prefix,
such as m for milli-. For example, if the input signal is measured in volts, an m next to a measurement
value indicates that this value is in units of millivolts.

Channel Measurements Panel

The Channel Measurements panel displays occupied bandwidth or adjacent channel power ratio
(ACPR) measurements.

• From the menu, select Tools > Measurements > Channel Measurements.
•

On the toolbar, click the Channel Measurements  button.

In addition to the measurements, the Channel Measurements panel has an expandable Channel
Settings pane.

• Measurement — The type of measurement data to display. Available options are Occupied BW or
ACPR. See “Algorithms” for information on how Occupied BW is calculated. ACPR is the adjacent
channel power ratio, which is the ratio of the main channel power to the adjacent channel power.

When you select Occupied BW as the Measurement, the following fields appear.
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• Channel Settings — Modify the parameters for calculating the channel measurements.

Channel Settings for Occupied BW

• Select the frequency span of the channel, Span(Hz), and specify the center frequency CF
(Hz) of the channel. Alternatively, select the starting frequency, FStart(Hz), and specify the
starting frequency and ending frequency (FStop (Hz)) values of the channel.

• CF (Hz) — The center frequency of the channel.
• Occupied BW (%) — The percentage of the total integrated power of the spectrum centered

on the selected channel frequency over which to compute the occupied bandwidth.
• Channel Power — The total power in the channel.
• Occupied BW — The bandwidth containing the specified Occupied BW (%) of the total power of

the spectrum. This setting is available only if you select Occupied BW as the Measurement type.
• Frequency Error — The difference between the center of the occupied band and the center

frequency (CF) of the channel. This setting is available only if you select Occupied BW as the
Measurement type.

When you select ACPR as the Measurement, the following fields appear.
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• Channel Settings — Enables you to modify the parameters for calculating the channel
measurements.

Channel Settings for ACPR

• Select the frequency span of the channel, Span (Hz), and specify the center frequency CF
(Hz) of the channel. Alternatively, select the starting frequency, FStart(Hz), and specify the
starting frequency and ending frequency (FStop (Hz)) values of the channel.

• CF (Hz) — The center frequency of the channel.
• Number of Pairs — The number of pairs of adjacent channels.
• Bandwidth (Hz) — The bandwidth of the adjacent channels.
• Filter — The filter to use for both main and adjacent channels. Available filters are None,

Gaussian, and RRC (root-raised cosine).
• Channel Power — The total power in the channel.
• Offset (Hz) — The center frequency of the adjacent channel with respect to the center frequency

of the main channel. This setting is available only if you select ACPR as the Measurement type.
• Lower (dBc) — The power ratio of the lower sideband to the main channel. This setting is

available only if you select ACPR as the Measurement type.
• Upper (dBc) — The power ratio of the upper sideband to the main channel. This setting is

available only if you select ACPR as the Measurement type.

Distortion Measurements Panel

The Distortion Measurements panel displays harmonic distortion and intermodulation distortion
measurements.

• From the menu, select Tools > Measurements > Distortion Measurements.
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• On the toolbar, click the Distortion Measurements  button.

The Distortion Measurements panel has an expandable Harmonics pane, which shows
measurement results for the specified number of harmonics.

Note For an accurate measurement, ensure that the fundamental signal (for harmonics) or primary
tones (for intermodulation) is larger than any spurious or harmonic content. To do so, you may need
to adjust the resolution bandwidth (RBW) of the spectrum analyzer. Make sure that the bandwidth is
low enough to isolate the signal and harmonics from spurious and noise content. In general, you
should set the RBW so that there is at least a 10dB separation between the peaks of the sinusoids and
the noise floor. You may also need to select a different spectral window to obtain a valid
measurement.

• Distortion — The type of distortion measurements to display. Available options are Harmonic or
Intermodulation. Select Harmonic if your system input is a single sinusoid. Select
Intermodulation if your system input is two equal amplitude sinusoids. Intermodulation can
help you determine distortion when only a small portion of the available bandwidth will be used.

See “Distortion Measurements” for information on how distortion measurements are calculated.

When you select Harmonic as the Distortion, the following fields appear.

The harmonic distortion measurement automatically locates the largest sinusoidal component
(fundamental signal frequency). It then computes the harmonic frequencies and power in each
harmonic in your signal. Any DC component is ignored. Any harmonics that are outside the spectrum
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analyzer’s frequency span are not included in the measurements. Adjust your frequency span so that
it includes all the desired harmonics.

Note To view the best harmonics, make sure that your fundamental frequency is set high enough to
resolve the harmonics. However, this frequency should not be so high that aliasing occurs. For the
best display of harmonic distortion, your plot should not show skirts, which indicate frequency
leakage. Also, the noise floor should be visible.

For a better display, try a Kaiser window with a large sidelobe attenuation (e.g. between 100–300 db).

 

• Num. Harmonics — Number of harmonics to display, including the fundamental frequency. Valid
values of Num. Harmonics are from 2 to 99. The default value is 6.

• Label Harmonics — Select Label Harmonics to add numerical labels to each harmonic in the
spectrum display.

• 1 — The fundamental frequency, in hertz, and its power, in decibels of the measured power
referenced to 1 milliwatt (dBm).

• 2, 3, ... — The harmonics frequencies, in hertz, and their power in decibels relative to the carrier
(dBc). If the harmonics are at the same level or exceed the fundamental frequency, reduce the
input power.

• THD — The total harmonic distortion. This value represents the ratio of the power in the
harmonics, D, to the power in the fundamental frequency, S. If the noise power is too high in
relation to the harmonics, the THD value is not accurate. In this case, lower the resolution
bandwidth or select a different spectral window.

THD = 10 ⋅ log10(D/S)
• SNR — Signal-to-noise ratio (SNR). This value represents the ratio of power in the fundamental

frequency, S, to the power of all nonharmonic content, N, including spurious signals, in decibels
relative to the carrier (dBc).

SNR = 10 ⋅ log10(S/N)

If you see –– as the reported SNR, the total non-harmonic content of your signal is less than 30%
of the total signal.

• SINAD — Signal-to-noise-and-distortion. This value represents the ratio of the power in the
fundamental frequency, S to all other content (including noise, N, and harmonic distortion, D), in
decibels relative to the carrier (dBc).

SINAD = 10 ⋅ log10
S

N + D
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• SFDR — Spurious free dynamic range (SFDR). This value represents the ratio of the power in the
fundamental frequency, S, to power of the largest spurious signal, R, regardless of where it falls in
the frequency spectrum. The worst spurious signal may or may not be a harmonic of the original
signal. SFDR represents the smallest value of a signal that can be distinguished from a large
interfering signal. SFDR includes harmonics.

SNR = 10 ⋅ log10(S/R)

When you select Intermodulation as the Distortion, the following fields appear.

The intermodulation distortion measurement automatically locates the fundamental, first-order
frequencies (F1 and F2). It then computes the frequencies of the third-order intermodulation
products (2*F1-F2 and 2*F2-F1).

• Label frequencies — Select Label frequencies to add numerical labels to the first-order
intermodulation product and third-order frequencies in the spectrum analyzer display.

• F1 — Lower fundamental first-order frequency
• F2 — Upper fundamental first-order frequency
• 2F1 - F2 — Lower intermodulation product from third-order harmonics
• 2F2 - F1 — Upper intermodulation product from third-order harmonics
• TOI — Third-order intercept point. If the noise power is too high in relation to the harmonics, the

TOI value will not be accurate. In this case, you should lower the resolution bandwidth or select a
different spectral window. If the TOI has the same amplitude as the input two-tone signal, reduce
the power of that input signal.

CCDF Measurements Panel

The CCDF Measurements panel displays complimentary cumulative distribution function
measurements. CCDF measurements in this scope show the probability of the instantaneous power of
a signal being a specified level above the average power of the signal. These measurements are
useful indicators of the dynamic range of a signal.

To compute the CCDF measurements, each input sample is quantized to 0.01 dB increments. Using a
histogram 100 dB wide (10,000 points at 0.01 dB increments), the largest peak encountered is placed
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in the last bin of the histogram. If a new peak is encountered, the histogram shifts to make room for
that new peak.

To open this dialog box:

• From the menu, select Tools > Measurements > CCDF Measurements
• In the toolbar, click the CCDF Measurements  button.

• Plot Gaussian reference — Show the complex white Gaussian noise reference signal on the plot.
• Probability (%) — Percentage of the signal that contains the power level above the value listed in

the dB above average column
• dB above average — Expected minimum power level at the associated Probability (%).
• Average Power — Average power level of the signal since the start of simulation or from the last

reset.

Max Power — Maximum power level of the signal since the start of simulation or from the last
reset.

• PAPR — Ratio of the peak power to the average power of the signal. PAPR should be less that 100
dB to obtain accurate CCDF measurements. If PAPR is above 100 dB, only the highest 100 dB
power levels are plotted in the display and shown in the distribution table.

• Sample Count — Total number of samples used to compute the CCDF.
• Reset — Clear all current CCDF measurements and restart.

Customize Visualization
To control the labels, minimum and maximum values, the legend, and grid lines, use the configuration
properties. From the Spectrum Analyzer, select View > Configuration Properties or click the

toolbar button .
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In the Style dialog box, you can customize the style of spectrum display. This dialog box is not
available for the spectrogram view. You can change the color of the spectrum plot, color of the
background, and properties of the lines. To open this dialog box, select View > Style.

If you are viewing only the spectrum or the spectrogram, you only see the relevant options. For more
details about these options, see “Configuration Properties” and “Style”.

Zoom and Pan
To zoom in and out of the plot, or pan to different area of the plot, use the zoom buttons in the toolbar
or in the Tools menu.

You can set properties to zoom in/out automatically or scale the axes. In the Spectrum Analyzer
menu, select Tools > Axes Scaling.

If you are viewing only the spectrum or the spectrogram, you see only the relevant options. If you are
using the CCDF measurements, you will also see x-axis scaling options. For more details about these
options, see “Axes Scaling”.
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Configure Spectrum Analyzer MATLAB Object
When you use the spectrumAnalyzer object in MATLAB, you can configure many object settings
using the Spectrum Analyzer user interface and tools. These sections show you how to use the
Spectrum Analyzer interface and tools.

Signal Display
These figures highlight the important aspects of the Spectrum Analyzer window.

View type set to Spectrum

View type set to Spectrogram
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• Toolstrip

Toolstrip is the top of the Spectrum Analyzer window that contains all the settings and controls.
Use these settings to control the Spectrum Analyzer display.

The toolstrip contains the following tabs:

• Analyzer Tab –– Control spectrum and spectrogram display settings.
• Estimation Tab –– Control settings related to spectral estimation.
• Measurements Tab –– Control signal measurements.
• Spectrum Tab –– Control trace and scale options for the spectrum view.
• Spectrogram Tab –– Control trace and scale options for the spectrogram view.
• Spectral Mask Tab –– Configure upper and lower limits for spectral mask.
• Channel Measurements Tab –– Control channel measurements.

Use the pin button  to keep the toolstrip showing or the arrow button  to hide the toolstrip.
• Legend –– If the input signal has multiple channels, the scope uses an index number to identify

each channel of the signal. For example, the legend for a two-channel signal displays the default
names as Channel 1 and Channel 2. To show the legend, on the Analyzer tab, click Legend.

By default, the axes background in the scope is black, and the scope chooses line colors for each
channel in a manner similar to the Scope block. When the axes background is black, the scope
assigns each channel of each input signal a line color in the order shown in the legend.
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If there are more than seven channels, then the scope repeats this order when assigning line
colors to the remaining channels. When the axes background is a color other than black, the scope
assigns line colors in this order.

To choose line colors or background colors, on the Analyzer tab, click Settings ( ). Under
Color and Styling, use Background to change the background color of the scope, and Axes to
change the background of the plot. Click Line to choose channel, and Color to change the line
color of the selected channel.

• Title, Y-Axis Label, Y-Axis Limits, Colorbar Limits — You can customize the title, y-axis label,

y-axis limits, and the color limits (in spectrogram view) from Settings  or by using the Title,
YLabel, YLimits, and ColorLimits properties.

The x-axis is always a frequency axis. The X-Axis Label is therefore either Frequency (Hz) or
Frequency (kHz).

• Min X-Axis, Max X-Axis –– Spectrum Analyzer determines the x-axis limits based on the value of
the FrequencySpan property. To change the x-axis limits in the Spectrum Analyzer interface,
click the Estimation tab, in the Frequency Options section, select an option fromFrequency
Span.

• Display Controls –– To scale the plot axes, use the mouse to pan around the axes and the scroll
button on your mouse to zoom in and out of the plot. Additionally, you can use the buttons that
appear when you hover over the plot window.

•
 — Maximize the axes, hiding all labels and insetting the axes values.

•
 — Zoom in on the plot.

•
 — Pan the plot.

•
 — Autoscale the axes to fit the shown data.

• Status — Current status.
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• Processing –– After you run the object and before you run the release function.
• Stopped –– After you call the release function.
• Ready –– After you create the scope object and before you call the object for the first time.

• Status bar –– The status bar shows several signal display properties. To enable these properties
to show in the status bar, right-click the status bar and select the properties in the Customize
Status Bar window.

Analyzer Tab

The Analyzer tab contains these sections.

 Configure Spectrum Analyzer MATLAB Object

25-47



• Views –– Choose to view a spectrum, a spectrogram, or both. You can select the type of spectrum
by clicking the Spectrum drop-down and selecting one of the options. The Spectrum Analyzer
updates the display accordingly.

• Bandwidth –– Specify the sample rate, “RBW”, and the frequency offset for the frequency axis (x-
axis).

• Configuration –– Modify the Spectrum Analyzer settings, enable the legend and colorbar (for
spectrogram display), and set the display layout.

• Share –– Generate a MATLAB script to create a scope with the current settings. You can even
copy and print the display. For more information on generating a script, see generateScript.

Estimation Tab

The Estimation tab contains these sections.

• Domain –– Select the domain of the input signal that you want to visualize.
• Frequency Resolution –– Select the spectral estimation method as Filter bank or Welch. For

more information on these methods, see “Algorithms”.
• Averaging –– Select the method of averaging the power spectral estimate as VBW (video

bandwidth) or Exponential.

25 Visualize Data and Signals

25-48



• Frequency Options –– Select the frequency span. This property determines the x-axis (frequency
axis) limits in the display.

• Window Options –– When you set the spectral estimation method to Welch, the Spectrum
Analyzer uses Welch's method of averaged modified periodogram. In this technique, the algorithm
applies a window to the time-domain data before computing FFT and the power spectrum
estimate.

You can select the window and specify the corresponding window options.

Measurements Tab

The Measurements tab contains these sections.

• Channel –– Select the channel for which you want the Spectrum Analyzer to display the
measurements.

• Cursors –– Enable Data Cursors in the display. For more information, see Cursor Measurements.
• Peaks –– Enable Peak Finder to display the largest peak values. You can specify the number of

peaks, minimum height of the peaks, minimum distance between peaks, and label the peaks. For
more information, see Peak Measurements.

• Distortion –– Enable Distortion to compute and display the harmonic and intermodulation
distortion measurements. For more information, see Distortion Measurements.

Spectrum Tab

To enable the Spectrum tab, in the Analyzer tab, in the Views section, click Spectrum.

The Spectrum tab contains these sections.

• Trace Options –– Choose to display a two-sided spectrum or a one-sided spectrum, and select to
show maximum-hold trace, minimum-hold trace, or normal trace.

• Scale –– Specify reference load and spectrum units.
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Spectrogram Tab

To enable the Spectrogram tab, in the Analyzer tab, in the Views section, click Spectrogram.

In addition to the trace and scale options, the Spectrogram tab also contains Time Options. In the
Time Options section, you can specify the time resolution for each spectrogram line and the time
span of the spectrogram display.

Spectral Mask Tab

To enable the Spectral Mask tab, in the Analyzer tab, in the Views section, click Spectrum, and
select either Power or Power Density in the spectrum drop-down options.

Enable to show upper and lower masks in the Spectrum Analyzer. You can specify the upper and
lower limits of the mask, and select the channel over which the Spectrum Analyzer applies the mask.
For more information, see Spectral Mask.

Channel Measurements Tab

To enable the Channel Measurements tab, in the Analyzer tab, in the Views section, click
Spectrum. Use the Channel Measurements tab to enable the Spectrum Analyzer to compute and
display the occupied bandwidth and adjacent channel power ratio. For more information, see Channel
Measurements.
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See Also
spectrumAnalyzer

Related Examples
• “Configure Time Scope MATLAB Object” on page 25-89
• “Configure Array Plot” on page 25-52
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Configure Array Plot
When you use the dsp.ArrayPlot object in MATLAB or the Array Plot block in Simulink you can
configure many settings and tools from the interface. These sections show you how to use the Array
Plot interface and the tools available.

Signal Display
This figure highlights the important aspects of the Array Plot window, in MATLAB:

And in Simulink:
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• Min X-Axis — Array Plot sets the minimum x-axis limit using the value of the X-Offset property.
To change the X-Offset from the Array Plot window, click Settings and set the X-Offset.

• Max X-Axis — Array Plot sets the maximum x-axis limit by adding the value of X-Offset
parameter with the span of x-axis values multiplied by the Sample Increment property as
determined by this equation:

xmax = SampleIncrement ∗ length(x)− 1 + XOf f set

To modify the Sample Increment from the Array Plot window, click Settings and set the Sample
Increment. If you set Sample Increment to 0.1 and the input signal data has 51 samples, the
scope displays values on the x-axis from 0 to 5. If you also set the X-Offset to –2.5, the scope
displays values on the x-axis from –2.5 to 2.5. The values on the x-axis of the scope display
remain the same throughout simulation.

• Status — Provides the current status of the plot. The status can be:

• Processing

• Object — Occurs after you run the object and before you run the release method.
• Block — Occurs during the simulation.

• Stopped

• Object — Occurs after you call release.
• Block — Occurs before and after the simulation.
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• Ready

• Object — Occurs after you construct the scope object and before you first call the object.
• Block — Occurs after you open the scope and before your first run a simulation.

• Paused

• Block — Occurs when you pause the simulation.
• Title, X-Axis Label, Y-Axis Label — You can customize the title and axes labels from Settings or

by using the Title, YLabel, and XLabel properties.
• Toolstrip — The Plot tab contains buttons and settings to customize and share the array plot. The

Measurements tab contains buttons and settings to turn on different measurement tools. Use the
pin button  to keep the toolstrip showing or the arrow button  to hide the toolstrip.

• (Block only) Simulation Controls — Control your Simulink simulation from the Array Plot
window.

Multiple Signal Names and Colors
By default, if the input signal has multiple channels, the scope uses an index number to identify each
channel of that signal. For example, the legend for a two-channel signal will display the default names
Channel 1, Channel 2. To show the legend, on the Plot tab, click Legend. If there are a total of
seven input channels, the legend displayed is:

By default, the scope has a black axes background and chooses line colors for each channel in a
manner similar to the Scope block. When the scope axes background is black, it assigns each channel
of each input signal a line color in the order shown in the legend. If there are more than seven
channels, then the scope repeats this order to assign line colors to the remaining channels. When the
axes background is not black, the signals are colored in this order:

To choose line colors or background colors, on the Plot tab, click Settings. Use the Axes color drop-
down to change the background of the plot. Click Line to choose a line to change, and the Color
drop-down to change the line color of the selected line.

Configure Plot Settings
On the Plot tab, the Configuration section allows you to modify the plot.
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• The Legend button turns the legend on or off. When you show the legend, you can control which
signals are shown. If you click a signal name in the legend, the signal is hidden from the plot and
shown in grey on the legend. To redisplay the signal, click on the signal name again. This button
corresponds to the ShowLegend property in the object or the Show legend property on the block.

• The Magnitude Phase button splits the magnitude and phase of the input signal and plots them
on two separate axes within the same window. This button corresponds to the
PlotAsMagnitudePhase property in the object or the Plot as Magnitude and Phase property on
the block.

• The Settings button opens the settings window which allows you to customize the x-axis, y-limits,
plot labels, and signal colors.

Use Array Plot Measurements
All measurements are made for a specified channel. By default, measurements are applied to the first
channel. To change which channel is being measured, use the Select Channel drop-down in the
Measurements tab.

Data Cursors

Use the Data Cursors button to display screen cursors. The cursors are vertical cursors that track
along the selected signal. Between the two cursors, the difference between the x- and y-values of the
signal at the two cursor points is displayed.
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Signal Statistics

Use the Signal Statistics button to display statistics about the selected signal at the bottom of the
array plot window. You can hide or show the Statistics panel using the arrow button in the bottom
right of the panel.

• Max — Maximum value within the displayed portion of the input signal.
• Min — Minimum value within the displayed portion of the input signal.
• Peak to Peak — Difference between the maximum and minimum values within the displayed

portion of the input signal.
• Mean — Average or mean of the values within the displayed portion of the input signal.
• Variance –– Variance of the values within the displayed portion of the input signal.
• Standard Deviation –– Standard deviation of the values within the displayed portion of the input

signal.
• Median — Median value within the displayed portion of the input signal.
• RMS — Root mean square of the input signal.
• Mean Square –– Mean square of the values within the displayed portion of the input signal.

To customize which statistics to show and compute, use the Signal Statistics list.
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Peak Finder

Use the Peak Finder button to display peak values for the selected signal. Peaks are defined as a
local maximum where lower values are present on both sides of a peak. Endpoints are not considered
peaks. For more information on the algorithms used, see findpeaks.

When you turn on the peak finder measurements, an arrow appears on the plot at each maxima and a
Peaks panel appears at the bottom of the array plot window showing the x and y values at each peak.

You can customize several peak finder settings:

• Num Peaks — The number of peaks to show. Must be a scalar integer from 1 through 99.
• Min Height — The level above which peaks are detected.
• Min Distance — The minimum number of samples between adjacent peaks.
• Threshold — The minimum height difference between a peak and its neighboring samples.
• Label Peaks — Show labels (P1, P2, …) above the arrows on the plot.

Share or Save the Array Plot
If you want to save the array plot for future use or share it with others, use the buttons in the Share
section of the Plot tab.

• (Object only) Generate Script — Generate a script to regenerate your array plot with the same
settings. An editor window opens with the code required to recreate your dsp.ArrayPlot.
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• Copy Display — Copy the display to your clipboard. You can paste the image in another program
to save or share.

• Print — Opens a print dialog box from which you can print out the plot image.
• Snapshot — During a simulation, use the Snapshot button to pause the visualization at an

interesting point so you can take a screenshot of the Array Plot window.

Scale Axes
To scale the plot axes, you can use the mouse to pan around the axes and the scroll button on your
mouse to zoom in and out of the plot. Additionally, you can use the buttons that appear when you
hover over the plot window.

•
 — Maximize the axes, hiding all labels and insetting the axes values.

•
 — Zoom in on the plot.

•
 — Pan the plot.

•
 — Autoscale the axes to fit the shown data.

Set Additional Properties
You can only change some Array Plot properties outside the Array Plot window, such as the signal
names in the legend or the number of inputs. For the dsp.ArrayPlot object, you can set those
properties from the command-line. For the Array Plot block, set those properties using the Property
Inspector (“Set Block Parameter Values” (Simulink)) or from the command-line using get_param and
set_param.

Find the Array Plot Block in Your Model
To highlight the Array Plot block within your model, on the Plot tab, select the Highlight Block
button. On the Simulink canvas, the Array Plot block is outlined in a highlight color so you can more
easily identify it in your model.

See Also
dsp.ArrayPlot | Array Plot

More About
• “Visualize Central Limit Theorem in Array Plot” on page 25-22
• “Reconstruction Through Two-Channel Filter Banks” on page 4-258
• “Analyze a Subband of Input Frequencies Using Zoom FFT” on page 16-2
• “Group Delay Estimation in Simulink” on page 16-4
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Configure Time Scope Block

Signal Display
Time Scope uses the Time span and Time display offset parameters to determine the time range.
To change the signal display settings, select View > Configuration Properties to bring up the
Configuration Properties dialog box. Then, modify the values for the Time span and Time display
offset parameters on the Time tab. For example, if you set the Time span to 25 seconds, the scope
displays 25 seconds’ worth of simulation data at a time. If you also set the Time display offset to 5
seconds, the scope displays values on the time axis from 5 to 30 seconds. The values on the time axis
of the Time Scope display remain the same throughout simulation.

To communicate the simulation time that corresponds to the current display, the scope uses the Time
units, Time offset, and Simulation time indicators on the scope window. The following figure
highlights these and other important aspects of the Time Scope window.

Time Indicators

• Minimum time-axis limit — The Time Scope sets the minimum time-axis limit using the value of
the Time display offset parameter on the Main tab of the Configuration Properties dialog box. If
you specify a vector of values for the Time display offset parameter, the scope uses the smallest
of those values to set the minimum time-axis limit.

• Maximum time-axis limit — The Time Scope sets the maximum time-axis limit by summing the
value of Time display offset parameter with the value of the Time span parameter. If you
specify a vector of values for the Time display offset parameter, the scope sets the maximum
time-axis limit by summing the largest of those values with the value of the Time span parameter.

• Time units — The units used to describe the time-axis. The Time Scope sets the time units using
the value of the Time Units parameter on the Time tab of the Configuration Properties dialog
box. By default, this parameter is set to Metric (based on Time Span) and displays in metric
units such as milliseconds, microseconds, minutes, days, etc. You can change it to Seconds to
always display the time-axis values in units of seconds. You can change it to None to not display
any units on the time axis. When you set this parameter to None, then Time Scope shows only the
word Time on the time axis.

To hide both the word Time and the values on the time axis, set the Show time-axis labels
parameter to None. To hide both the word Time and the values on the time axis in all displays,
except the bottom ones in each column of displays, set this parameter to Bottom Displays
Only. This behavior differs from the Simulink Scope block, which always shows the values but
never shows a label on the x-axis.

For more information, see “Configure the Time Scope Properties” on page 25-3.

 Configure Time Scope Block

25-59



Simulation Indicators

• Simulation status — Provides the status of the model simulation. The status can be either of the
following conditions:

• Processing — Occurs after you run the step method and before you run the release
method.

• Stopped — Occurs after you construct the scope object and before you first run the step
method. This status also occurs after you run the release method.

The Simulation status is part of the status bar in the scope window. You can choose to hide or
display the entire status bar. From the scope menu, select View > Status Bar.

• Time offset — The Offset value helps you determine the simulation times for which the scope is
displaying data. The value is always in the range 0≤ Offset≤ Simulation time. If the time offset is
0, the Scope does not display the Offset status field. Add the Time offset to the fixed time span
values on the time-axis to get the overall simulation time.

For example, if you set the Time span to 20 seconds, and you see an Offset of 0 (secs) on the
scope window. This value indicates that the scope is displaying data for the first 0 to 20 seconds of
simulation time. If the Offset changes to 20 (secs), the scope displays data for simulation times
from 20 seconds to 40 seconds. The scope continues to update the Offset value until the
simulation is complete.

• Simulation time — The amount of time that the Time Scope has spent processing the input. Every
time you call the scope, the simulation time increases by the number of rows in the input signal
divided by the sample rate, as given by the following formula:
tsim = tsim− 1 + length 0: length xsine − 1

SampleRate . You can set the sample rate using the SampleRate
property. For frame-based inputs, the displayed Simulation time is the time at the beginning of the
frame.

The Simulation time is part of the status bar in the Time Scope window. You can choose to hide or
display the entire status bar. From the Time Scope menu, select View > Status Bar .

Axes Maximization

When the scope is in maximized axes mode, the following figure highlights the important indicators
on the scope window.

To toggle this mode, in the scope menu, select View > Configuration Properties. In the Main pane,
locate the Maximize axes parameter.

Specify whether to display the scope in maximized axes mode. In this mode, each of the axes is
expanded to fit into the entire display. To conserve space, labels do not appear in each display.
Instead, tick-mark values appear on top of the plotted data. You can select one of the following
options:
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• Auto — In this mode, the axes appear maximized in all displays only if the Title and YLabel
properties are empty for every display. If you enter any value in any display for either of these
properties, the axes are not maximized.

• On — In this mode, the axes appear maximized in all displays. Any values entered into the Title
and YLabel properties are hidden.

• Off — In this mode, none of the axes appear maximized.

The default setting is Auto.

Reduce Updates to Improve Performance

By default, the scope updates the displays periodically at a rate not exceeding 20 hertz. If you would
like the scope to update on every simulation time step, you can disable the Reduce Updates to
Improve Performance option. However, as a recommended practice, leave this option enabled
because doing so can significantly improve the speed of the simulation.

In the Time Scope menu, select Playback > Reduce Updates to Improve Performance to clear the
check box. Alternatively, use the Ctrl+R shortcut to toggle this setting. You can also set the
ReduceUpdates property to false to disable this option.

Display Multiple Signals
Multi-Signal Input

You can configure the Time Scope to show multiple signals within the same display or on separate
displays. By default, the signals appear as different-colored lines on the same display. The signals can
have different dimensions, sample rates, and data types. Each signal can be either real or complex
valued. You can set the number of input ports on the Time Scope in the following ways:

• Set the NumInputPorts property. This property is nontunable, so you should set it before you run
the scope.

• Run the show method to open the scope window. In the scope menu, select File > Number of
Input Ports.

• Run the show method to open the scope window. In the scope menu, select View > Configuration
Properties and set the Number of input ports on the Main tab.

An input signal may contain multiple channels, depending on its dimensions. Multiple channels of
data always appear as different-colored lines on the same display.
Multiple Signal Names and Colors

By default, if the input signal has multiple channels, the scope uses an index number to identify each
channel of that signal. For example, a 2-channel signal would have the following default names in the
channel legend: Channel 1, Channel 2. To show the legend, select View > Configuration
Properties, click the Display tab, and select the Show Legend check box. If there are a total of
seven input channels, the following legend appears in the display.

 Configure Time Scope Block

25-61



By default, the scope has a black axes background and chooses line colors for each channel in a
manner similar to the Simulink Scope block. When the scope axes background is black, it assigns
each channel of each input signal a line color in the order shown in the above figure.

If there are more than seven channels, then the scope repeats this order to assign line colors to the
remaining channels. To choose line colors for each channel, change the axes background color to any
color except black. To change the axes background color to white, select View > Style, click the Axes

background color button ( ), and select white from the color palette. Run the simulation again.
The following legend appears in the display. This figure shows the color order when the background
is not black.

Multiple Displays

You can display multiple channels of data on different displays in the scope window. In the scope

toolbar, select View > Layout, or select the Layout button ( ).

Note The Layout menu item and button are not available when the scope is in snapshot mode.

You can tile the window into multiple displays. For example, if there are three inputs to the scope, you
can display the signals in three separate displays. The layout grid shows a 4 by 4 grid, but you can
select up to 16 by 16 by clicking and dragging within the layout grid.

When you use the Layout option to tile the window into multiple displays, the display highlighted in
blue is referred to as the active display. The scope dialog boxes reference the active display.
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Time Scope Measurement Panels
The Measurements panels are the five panels that appear to the right side of the Scope GUI.

Trace Selection Panel

When you use the scope to view multiple signals, the Trace Selection panel appears. Use this panel to
select which signal to measure. To open the Trace Selection panel:

• From the menu, select Tools > Measurements > Trace Selection.
• Open a measurement panel.
•

Triggers Panel

What Is the Trigger Panel

The Trigger panel defines a trigger event to synchronize simulation time with input signals. You can
use trigger events to stabilize periodic signals such as a sine wave or capture non-periodic signals
such as a pulse that occurs intermittently.

To open the Trigger panel:

1 Open a Scope block window.
2

On the toolbar, click the Triggers button .
3 Run a simulation.

Triangle trigger pointers indicate the trigger time and trigger level of an event. The marker color
corresponds to the color of the source signal.
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Main Pane

Mode — Specify when the display updates.

• Auto — Display data from the last trigger event. If no event occurs after one time span, display
the last available data.

Normal — Display data from the last trigger event. If no event occurs, the display remains blank.
• Once — Display data from the last trigger event and freeze the display. If no event occurs, the

display remains blank. Click the Rearm button to look for the next trigger event.
• Off — Disable triggering.

Position (%) — Specify the position of the time pointer along the y-axis. You can also drag the time
pointer to the left or right to adjust its position.

Source/Type and Levels/Timing Panes

Source — Select a trigger signal. For magnitude and phase plots, select either the magnitude or the
phase.

Type — Select the type of trigger.
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Trigger Type Trigger Parameters
Edge — Trigger when the
signal crosses a threshold.

Polarity — Select the polarity for an edge-triggered signal.

• Rising — Trigger when the signal is increasing.

• Falling — Trigger when the signal value is decreasing.

• Either — Trigger when the signal is increasing or decreasing.

Level — Enter a threshold value for an edge triggered signal. Auto level
is 50%
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Trigger Type Trigger Parameters
Hysteresis — Enter a value for an edge-triggered signal. See
“Hysteresis of Trigger Signals” on page 25-72

Pulse Width — Trigger
when the signal crosses a
low threshold and a high
threshold twice within a
specified time.

Polarity — Select the polarity for a pulse width-triggered signal.

• Positive — Trigger on a positive-polarity pulse when the pulse
crosses the low threshold for a second time.

• Negative — Trigger on a negative-polarity pulse when the pulse
crosses the high threshold for a second time.

• Either — Trigger on both positive-polarity and negative-polarity
pulses.

Note A glitch-trigger is a special type of a pulse width-trigger. A glitch-
Trigger occurs for a pulse or spike whose duration is less than a
specified amount. You can implement a glitch trigger by using a pulse
width-trigger and setting the Max Width parameter to a small value.

High — Enter a high value for a pulse width-triggered signal. Auto level
is 90%.

Low — Enter a low value for a pulse width-triggered signal. Auto level
is 10%.

Min Width — Enter the minimum pulse-width for a pulse width
triggered signal. Pulse width is measured between the first and second
crossings of the middle threshold.

Max Width — Enter the maximum pulse width for a pulse width
triggered signal.
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Trigger Type Trigger Parameters
Transition — Trigger
on the rising or falling
edge of a signal that
crosses the high and low
levels within a specified
time range.

Polarity — Select the polarity for a transition-triggered signal.

• Rise Time — Trigger on an increasing signal when the signal
crosses the high threshold.

• Fall Time — Trigger on a decreasing signal when the signal crosses
the low threshold.

• Either — Trigger on an increasing or decreasing signal.

High — Enter a high value for a transition-triggered signal. Auto level
is 90%.

Low — Enter a low value for a transition-triggered signal. Auto level is
10%.

Min Time — Enter a minimum time duration for a transition-triggered
signal.

Max Time — Enter a maximum time duration for a transition-triggered
signal.
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Trigger Type Trigger Parameters
Runt— Trigger when a
signal crosses a low
threshold or a high
threshold twice within a
specified time.

Polarity — Select the polarity for a runt-triggered signal.

• Positive — Trigger on a positive-polarity pulse when the signal
crosses the low threshold a second time, without crossing the high
threshold.

• Negative — Trigger on a negative-polarity pulse.
• Either — Trigger on both positive-polarity and negative-polarity

pulses.

High — Enter a high value for a runt-triggered signal. Auto level is
90%.

Low — Enter a low value for a runt-triggered signal. Auto level is 10%.

Min Width — Enter a minimum width for a runt-triggered signal. Pulse
width is measured between the first and second crossing of a threshold.

Max Width — Enter a maximum pulse width for a runt-triggered signal.
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Trigger Type Trigger Parameters
Window — Trigger when a
signal stays within or
outside a region defined
by the high and low
thresholds for a specified
time.

Polarity — Select the region for a window-triggered signal.

• Inside — Trigger when a signal leaves a region between the low and
high levels.

• Outside — Trigger when a signal enters a region between the low
and high levels.

• Either — Trigger when a signal leaves or enters a region between
the low and high levels.
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Trigger Type Trigger Parameters
High — Enter a high value for a window-triggered signal. Auto level is
90%.

Low — Enter a low value for a window-trigger signal. Auto level is 10%.

Min Time — Enter the minimum time duration for a window-triggered
signal.

Max Time — Enter the maximum time duration for a window-triggered
signal.
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Trigger Type Trigger Parameters
Timeout — Trigger when
a signal stays above or
below a threshold longer
than a specified time

Polarity — Select the polarity for a timeout-triggered signal.

• Rising — Trigger when the signal does not cross the threshold from
below. For example, if you set Timeout to 7.50 seconds, the scope
triggers 7.50 seconds after the signal crosses the threshold.

• Falling — Trigger when the signal does not cross the threshold
from above.

• Either — Trigger when the signal does not cross the threshold from
either direction

Level — Enter a threshold value for a timeout-triggered signal.

Hysteresis — Enter a value for a timeout-triggered signal. See
“Hysteresis of Trigger Signals” on page 25-72.

Timeout — Enter a time duration for a timeout-triggered signal.

Alternatively, a trigger event can occur when the signal stays within the
boundaries defined by the hysteresis for 7.50 seconds after the signal
crosses the threshold.
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Trigger Type Trigger Parameters

Hysteresis of Trigger Signals

Hysteresis (V) — Specify the hysteresis or noise reject value. This parameter is visible when you set
Type to Edge or Timeout. If the signal jitters inside this range and briefly crosses the trigger level,
the scope does not register an event. In the case of an edge trigger with rising polarity, the scope
ignores the times that a signal crosses the trigger level within the hysteresis region.

You can reduce the hysteresis region size by decreasing the hysteresis value. In this example, if you
set the hysteresis value to 0.07, the scope also considers the second rising edge to be a trigger event.
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Delay/Holdoff Pane

Offset the trigger position by a fixed delay, or set the minimum possible time between trigger events.

• Delay (s) — Specify the fixed delay time by which to offset the trigger position. This parameter
controls the amount of time the scope waits after a trigger event occurs before displaying a signal.

• Holdoff (s) — Specify the minimum possible time between trigger events. This amount of time is
used to suppress data acquisition after a valid trigger event has occurred. A trigger holdoff
prevents repeated occurrences of a trigger from occurring during the relevant portion of a burst.

Cursor Measurements Panel

The Cursor Measurements panel displays screen cursors. The panel provides two types of cursors
for measuring signals. Waveform cursors are vertical cursors that track along the signal. Screen
cursors are both horizontal and vertical cursors that you can place anywhere in the display.

Note If a data point in your signal has more than one value, the cursor measurement at that point is
undefined and no cursor value is displayed.

Display screen cursors with signal times and values. To open the Cursor measurements panel:

• From the menu, select Tools > Measurements > Cursor Measurements.
•

On the toolbar, click the Cursor Measurements  button.

In the Settings pane, you can modify the type of screen cursors used for calculating measurements.
When more than one signal is displayed, you can assign cursors to each trace individually.
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• Screen Cursors — Shows screen cursors (for spectrum and dual view only).
• Horizontal — Shows horizontal screen cursors (for spectrum and dual view only).
• Vertical — Shows vertical screen cursors (for spectrum and dual view only).
• Waveform Cursors — Shows cursors that attach to the input signals (for spectrum and dual view

only).
• Lock Cursor Spacing — Locks the frequency difference between the two cursors.
• Snap to Data — Positions the cursors on signal data points.

The Measurements pane displays time and value measurements.

• 1 — View or modify the time or value at cursor number one (solid line cursor).
• 2 — View or modify the time or value at cursor number two (dashed line cursor).
• ΔT or ΔX — Shows the absolute value of the time (x-axis) difference between cursor number one

and cursor number two.
• ΔY — Shows the absolute value of the signal amplitude difference between cursor number one and

cursor number two.
• 1/ΔT or 1/ΔX — Shows the rate. The reciprocal of the absolute value of the difference in the times

(x-axis) between cursor number one and cursor number two.
• ΔY/ΔT or ΔY/ΔX — Shows the slope. The ratio of the absolute value of the difference in signal

amplitudes between cursors to the absolute value of the difference in the times (x-axis) between
cursors.
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Signal Statistics Panel

Display signal statistics for the signal selected in the Trace Selection panel. To open the Signal
Statistics panel:

• From the menu, select Tools > Measurements > Signal Statistics.
•

On the toolbar, click the Signal Statistics  button.

The statistics shown are:

• Max — Maximum or largest value within the displayed portion of the input signal.
• Min — Minimum or smallest value within the displayed portion of the input signal.
• Peak to Peak — Difference between the maximum and minimum values within the displayed

portion of the input signal.
• Mean — Average or mean of all the values within the displayed portion of the input signal.
• Median — Median value within the displayed portion of the input signal.
• RMS — Root mean squared of the input signal.

When you use the zoom options in the scope, the Signal Statistics measurements automatically adjust
to the time range shown in the display. In the scope toolbar, click the Zoom In or Zoom X button to
constrict the x-axis range of the display, and the statistics shown reflect this time range. For example,
you can zoom in on one pulse to make the Signal Statistics panel display information about only
that particular pulse.

The Signal Statistics measurements are valid for any units of the input signal. The letter after the
value associated with each measurement represents the appropriate International System of Units
(SI) prefix, such as m for milli-. For example, if the input signal is measured in volts, an m next to a
measurement value indicates that this value is in units of millivolts.

Bilevel Measurements Panel
Bilevel Measurements

Display information about signal transitions, overshoots, undershoots, and cycles. To open the Bilevel
Measurements panel:

• From the menu, select Tools > Measurements > Bilevel Measurements.
•

On the toolbar, click the Bilevel Measurements  button.
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Settings

The Settings pane enables you to modify the properties used to calculate various measurements
involving transitions, overshoots, undershoots, and cycles. You can modify the high-state level, low-
state level, state-level tolerance, upper-reference level, mid-reference level, and lower-reference
level.

• Auto State Level — When this check box is selected, the Bilevel measurements panel detects the
high- and low- state levels of a bilevel waveform. When this check box is cleared, you can enter in
values for the high- and low- state levels manually.

• High — Used to specify manually the value that denotes a positive polarity, or high-state level.
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• Low — Used to specify manually the value that denotes a negative polarity, or low-state level.

• State Level Tolerance — Tolerance within which the initial and final levels of each transition
must be within their respective state levels. This value is expressed as a percentage of the
difference between the high- and low-state levels.

• Upper Ref Level — Used to compute the end of the rise-time measurement or the start of the fall
time measurement. This value is expressed as a percentage of the difference between the high-
and low-state levels.

• Mid Ref Level — Used to determine when a transition occurs. This value is expressed as a
percentage of the difference between the high- and low- state levels. In the following figure, the
mid-reference level is shown as the horizontal line, and its corresponding mid-reference level
instant is shown as the vertical line.
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• Lower Ref Level — Used to compute the end of the fall-time measurement or the start of the rise-
time measurement. This value is expressed as a percentage of the difference between the high-
and low-state levels.

• Settle Seek — The duration after the mid-reference level instant when each transition occurs
used for computing a valid settling time. This value is equivalent to the input parameter, D, which
you can set when you run the settlingtime function. The settling time is displayed in the
Overshoots/Undershoots pane.

Transitions Pane

Display calculated measurements associated with the input signal changing between its two possible
state level values, high and low.

A positive-going transition, or rising edge, in a bilevel waveform is a transition from the low-state
level to the high-state level. A positive-going transition has a slope value greater than zero. The
following figure shows a positive-going transition.

When there is a plus sign (+) next to a text label, the measurement is a rising edge, a transition from
a low-state level to a high-state level.
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A negative-going transition, or falling edge, in a bilevel waveform is a transition from the high-state
level to the low-state level. A negative-going transition has a slope value less than zero. The following
figure shows a negative-going transition.

When there is a minus sign (–) next to a text label, the measurement is a falling edge, a transition
from a high-state level to a low-state level.

The Transition measurements assume that the amplitude of the input signal is in units of volts. For
the transition measurements to be valid, you must convert all input signals to volts.

• High — The high-amplitude state level of the input signal over the duration of the Time Span
parameter. You can set Time Span in the Main pane of the Visuals—Time Domain Properties
dialog box.

• Low — The low-amplitude state level of the input signal over the duration of the Time Span
parameter. You can set Time Span in the Main pane of the Visuals—Time Domain Properties
dialog box.

• Amplitude — Difference in amplitude between the high-state level and the low-state level.
• + Edges — Total number of positive-polarity, or rising, edges counted within the displayed portion

of the input signal.
• + Rise Time — Average amount of time required for each rising edge to cross from the lower-

reference level to the upper-reference level.
• + Slew Rate — Average slope of each rising-edge transition line within the upper- and lower-

percent reference levels in the displayed portion of the input signal. The region in which the slew
rate is calculated appears in gray in the following figure.
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• – Edges — Total number of negative-polarity or falling edges counted within the displayed portion
of the input signal.

• – Fall Time — Average amount of time required for each falling edge to cross from the upper-
reference level to the lower-reference level.

• – Slew Rate — Average slope of each falling edge transition line within the upper- and lower-
percent reference levels in the displayed portion of the input signal.

Overshoots / Undershoots Pane

The Overshoots/Undershoots pane displays calculated measurements involving the distortion and
damping of the input signal. Overshoot and undershoot refer to the amount that a signal respectively
exceeds and falls below its final steady-state value. Preshoot refers to the amount before a transition
that a signal varies from its initial steady-state value.

This figure shows preshoot, overshoot, and undershoot for a rising-edge transition.
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The next figure shows preshoot, overshoot, and undershoot for a falling-edge transition.

• + Preshoot — Average lowest aberration in the region immediately preceding each rising
transition.

• + Overshoot — Average highest aberration in the region immediately following each rising
transition.

• + Undershoot — Average lowest aberration in the region immediately following each rising
transition.

• + Settling Time — Average time required for each rising edge to enter and remain within the
tolerance of the high-state level for the remainder of the settle-seek duration. The settling time is
the time after the mid-reference level instant when the signal crosses into and remains in the
tolerance region around the high-state level. This crossing is illustrated in the following figure.
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You can modify the settle-seek duration parameter in the Settings pane.
• – Preshoot — Average highest aberration in the region immediately preceding each falling

transition.
• – Overshoot — Average highest aberration in the region immediately following each falling

transition.
• – Undershoot — Average lowest aberration in the region immediately following each falling

transition.
• – Settling Time — Average time required for each falling edge to enter and remain within the

tolerance of the low-state level for the remainder of the settle-seek duration. The settling time is
the time after the mid-reference level instant when the signal crosses into and remains in the
tolerance region around the low-state level. You can modify the settle-seek duration parameter in
the Settings pane.

Cycles Pane

The Cycles pane displays calculated measurements pertaining to repetitions or trends in the
displayed portion of the input signal.

Properties to set:

• Period — Average duration between adjacent edges of identical polarity within the displayed
portion of the input signal. The Bilevel measurements panel calculates period as follows. It takes
the difference between the mid-reference level instants of the initial transition of each positive-
polarity pulse and the next positive-going transition. These mid-reference level instants appear as
red dots in the following figure.

• Frequency — Reciprocal of the average period. Whereas period is typically measured in some
metric form of seconds, or seconds per cycle, frequency is typically measured in hertz or cycles
per second.

• + Pulses — Number of positive-polarity pulses counted.
• + Width — Average duration between rising and falling edges of each positive-polarity pulse

within the displayed portion of the input signal.
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• + Duty Cycle — Average ratio of pulse width to pulse period for each positive-polarity pulse
within the displayed portion of the input signal.

• – Pulses — Number of negative-polarity pulses counted.
• – Width — Average duration between rising and falling edges of each negative-polarity pulse

within the displayed portion of the input signal.
• – Duty Cycle — Average ratio of pulse width to pulse period for each negative-polarity pulse

within the displayed portion of the input signal.

When you use the zoom options in the Scope, the bilevel measurements automatically adjust to the
time range shown in the display. In the Scope toolbar, click the Zoom In or Zoom X button to
constrict the x-axis range of the display, and the statistics shown reflect this time range. For example,
you can zoom in on one rising edge to make the Bilevel Measurements panel display information
about only that particular rising edge. However, this feature does not apply to the High and Low
measurements.

Use Bilevel Measurements Panel with Clock Input Signal

This example shows how to use the Bilevel Measurements panel in the Time Scope block.

Open the example model ex-timescope-clockex:

open_system("ex_timescope_clockex")

In this example, Simulink® imports the variable x , from the MATLAB® workspace. This variable is
created when the model loads because the commands that construct it reside in the model Preload
function. To view these commands,

1 On the Simulink toolbar, on the Modeling tab, in the Setup section, in the drop-down, select
Model Properties.

2 In the Model Properties dialog box, select the Callbacks tab. The following lines of MATLAB
code appear.

load clockex;
ts = t(2)-t(1);

Run your model and open the Time Scope block to see the time domain output.

To show the Bilevel Measurements panel:

1 In the Time Scope menu, select Tools > Measurements > Bilevel Measurements.
2 Collapse the Transitions section and Expand the Settings and Overshoots/Undershoots

sections.
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sim("ex_timescope_clockex")
open_system("ex_timescope_clockex/Time Scope")

The value for the rising edge Settling Time parameter is not displayed because the default value of
Settle Seek is longer than the entire simulation.

1 Enter a smaller value for Settle seek of 2e-6 and press the Enter key. The Time Scope now
displays a rising edge settling time value of 118.392 ns.

The settling time value displayed is the statistical average of the settling times for all five rising
edges.

To show the settling time for one rising edge, zoom in on that transition.

1 In the Time Scope toolbar, click the Zoom X button.
2 Click the display near a value of 2 microseconds on the time-axis. Drag to the right and release

near a value of 4 microseconds on the time-axis.

The Time Scope updates the rising edge settling time value to reflect the new time window.
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Peak Finder Panel

The Peak Finder panel displays the maxima, showing the x-axis values at which they occur. Peaks
are defined as a local maximum where lower values are present on both sides of a peak. Endpoints
are not considered peaks. This panel allows you to modify the settings for peak threshold, maximum
number of peaks, and peak excursion.

• From the menu, select Tools > Measurements > Peak Finder.
•

On the toolbar, click the Peak Finder  button.

The Settings pane enables you to modify the parameters used to calculate the peak values within the
displayed portion of the input signal. For more information on the algorithms this pane uses, see the
findpeaks function reference.
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Properties to set:

• Peak Threshold — The level above which peaks are detected. This setting is equivalent to the
MINPEAKHEIGHT parameter, which you can set when you run the findpeaks function.

• Max Num of Peaks — The maximum number of peaks to show. The value you enter must be a
scalar integer from 1 through 99. This setting is equivalent to the NPEAKS parameter, which you
can set when you run the findpeaks function.

• Min Peaks Distance — The minimum number of samples between adjacent peaks. This setting is
equivalent to the MINPEAKDISTANCE parameter, which you can set when you run the findpeaks
function.

• Peak Excursion — The minimum height difference between a peak and its neighboring samples.
Peak excursion is illustrated alongside peak threshold in the following figure.

The peak threshold is a minimum value necessary for a sample value to be a peak. The peak
excursion is the minimum difference between a peak sample and the samples to its left and right
in the time domain. In the figure, the green vertical line illustrates the lesser of the two height
differences between the labeled peak and its neighboring samples. This height difference must be
greater than the Peak Excursion value for the labeled peak to be classified as a peak. Compare
this setting to peak threshold, which is illustrated by the red horizontal line. The amplitude must
be above this horizontal line for the labeled peak to be classified as a peak.
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The peak excursion setting is equivalent to the THRESHOLD parameter, which you can set when
you run the findpeaks function.

• Label Format — The coordinates to display next to the calculated peak values on the plot. To see
peak values, you must first expand the Peaks pane and select the check boxes associated with
individual peaks of interest. By default, both x-axis and y-axis values are displayed on the plot.
Select which axes values you want to display next to each peak symbol on the display.

• X+Y — Display both x-axis and y-axis values.
• X — Display only x-axis values.
• Y — Display only y-axis values.

The Peaks pane displays the largest calculated peak values. It also shows the coordinates at which
the peaks occur, using the parameters you define in the Settings pane. You set the Max Num of
Peaks parameter to specify the number of peaks shown in the list.

The numerical values displayed in the Value column are equivalent to the pks output argument
returned when you run the findpeaks function. The numerical values displayed in the second
column are similar to the locs output argument returned when you run the findpeaks function.

The Peak Finder displays the peak values in the Peaks pane. By default, the Peak Finder panel
displays the largest calculated peak values in the Peaks pane in decreasing order of peak height.

Use the check boxes to control which peak values are shown on the display. By default, all check
boxes are cleared and the Peak Finder panel hides all the peak values. To show or hide all the peak
values on the display, use the check box in the top-left corner of the Peaks pane.

The Peaks are valid for any units of the input signal. The letter after the value associated with each
measurement indicates the abbreviation for the appropriate International System of Units (SI) prefix,
such as m for milli-. For example, if the input signal is measured in volts, an m next to a measurement
value indicates that this value is in units of millivolts.

Style Dialog Box

Select View > Style or the Style button ( ) in the dropdown below the Configuration Properties
button to open the Style dialog box. In this dialog box, you can change the figure colors, background
axes colors, foreground axes colors, and properties of lines in a display.

For more details about the properties, see “Style Properties”.

Axes Scaling Properties
The Axes Scaling Properties dialog box provides you with the ability to automatically zoom in on and
zoom out of your data, and to scale the axes of the Time Scope. In the Time Scope menu, select Tools
> Axes Scaling > Axes Scaling Properties to open this dialog box.

For more details about the properties, see “Axes Scaling Properties”.
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Sources — Streaming Properties
The Sources – Streaming Properties dialog box lets you control the number of input signal samples
that Time Scope holds in memory. In the Time Scope menu, select View > Data History Properties
to open this dialog box.

Buffer length
Specify the size of the buffer that the scope holds in its memory cache. Memory is limited by
available memory on your system. If your signal has M rows of data and N data points in each
row, M x N is the number of data points per time step. Multiply this result by the number of time
steps for your model to obtain the required buffer length. For example, if you have 10 rows of
data with each row having 100 data points and your run will be 10 time steps, you should enter
10,000 (which is 10 x 100 x 10) as the buffer length.
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Configure Time Scope MATLAB Object
When you use the timescope object in MATLAB, you can configure many settings and tools from the
window. These sections show you how to use the Time Scope interface and the available tools.

Signal Display
This figure highlights the important aspects of the Time Scope window in MATLAB.

• Min X-Axis — Time scope sets the minimum x-axis limit using the value of the
TimeDisplayOffset property. To change the Time Offset from the Time Scope window, click

Settings ( ) on the Scope tab. Under Data and Axes, set the Time Offset.
• Max X-Axis — Time scope sets the maximum x-axis limit by summing the value of the Time
Offset property with the span of the x-axis values. If Time Span is set to Auto, the span of x-axis
is 10/SampleRate.

The values on the x-axis of the scope display remain the same throughout the simulation.
• Status — Provides the current status of the plot. The status can be:

• Processing — Occurs after you run the object and before you run the release function.
• Stopped — Occurs after you create the scope object and before you first call the object. This

status also occurs after you call release.
• Title, YLabel — You can customize the title and the y-axis label from Settings or by using the

Title and YLabel properties.
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• Toolstrip

• Scope tab — Customize and share the time scope. For example, showing and hiding the legend
• Measurements tab — Turn on and control different measurement tools.
• Trigger tab — Turn on and modify triggers.

Use the pin button  to keep the toolstrip showing or the arrow button  to hide the toolstrip.

Multiple Signal Names and Colors
By default, if the input signal has multiple channels, the scope uses an index number to identify each
channel of that signal. For example, the legend for a two-channel signal will display the default names

Channel 1, Channel 2. To show the legend, on the Scope tab, click Settings ( ). Under Display
and Labels, select Show Legend. If there are a total of seven input channels, the legend displayed
is:

By default, the scope has a black axes background and chooses line colors for each channel in a
manner similar to the Simulink Scope block. When the scope axes background is black, it assigns
each channel of each input signal a line color in the order shown in the legend. If there are more than
seven channels, then the scope repeats this order to assign line colors to the remaining channels.
When the axes background is not black, the signals are colored in this order:

To choose line colors or background colors, on the Scope tab click Settings.Use the Axes color
pallet to change the background of the plot. Click Line to choose a line to change, and the Color
drop-down to change the line color of the selected line.

Configure Scope Settings
On the Scope tab, the Configuration section allows you to modify the scope.

• The Legend button turns the legend on or off. When you show the legend, you can control which
signals are shown. If you click a signal name in the legend, the signal is hidden from the plot and
shown in grey on the legend. To redisplay the signal, click on the signal name again. This button
corresponds to the ShowLegend property in the object.
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• The Settings button opens the settings window which allows you to customize the data, axes,
display settings, labels, and color settings.

On the Scope tab, the Layout section allows you to modify the scope layout dimensions.

The Display Grid button enables you to select the display layout of the scope.

Use timescope Measurements and Triggers
All measurements are made for a specified channel. By default, measurements are applied to the first
channel. To change which channel is being measured, use the Select Channel drop-down on the
Measurements tab.

Data Cursors

Use the Data Cursors button to display screen cursors. Each cursor tracks a vertical line along the
signal. The difference between x- and y-values of the signal at the two cursors is displayed in the box
between the cursors.

Signal Statistics

Use the Signal Statistics button to display statistics about the selected signal at the bottom of the
time scope window. You can hide or show the Statistics panel using the arrow button  at the
bottom right of the panel.

• Max — Maximum value within the displayed portion of the input signal.
• Min — Minimum value within the displayed portion of the input signal.
• Peak to Peak — Difference between the maximum and minimum values within the displayed

portion of the input signal.
• Mean — Average or mean of all the values within the displayed portion of the input signal.
• Variance –– Variance of the values within the displayed portion of the input signal.
• Standard Deviation –– Standard deviation of the values within the displayed portion of the input

signal.
• Median — Median value within the displayed portion of the input signal.
• RMS — Root mean square of the input signal.
• Mean Square –– Mean square of the values within the displayed portion of the input signal.

To customize which statistics to show and compute, use the Signal Statistics list.
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Peak Finder

Use the Peak Finder button to display peak values for the selected signal. Peaks are defined as a
local maximum where lower values are present on both sides of a peak. End points are not considered
peaks. For more information on the algorithms used, see the findpeaks function.

When you turn on the peak finder measurements, an arrow appears on the plot at each maxima and a
Peaks panel appears at the bottom of the timescope window showing the x and y values at each
peak.

You can customize several peak finder settings:

• Num Peaks — The number of peaks to show. Must be a scalar integer from 1 through 99.
• Min Height — The minimum height difference between a peak and its neighboring samples.
• Min Distance — The minimum number of samples between adjacent peaks.
• Threshold — The level above which peaks are detected.
• Label Peaks — Show labels (P1, P2, …) above the arrows on the plot.

Bilevel Measurements

With bilevel measurements, you can measure transitions, aberrations, and cycles.

Bilevel Settings

When using bilevel measurements, you can set these properties:

• Auto State Level — When this check box is selected, the Bilevel measurements panel detects the
high- and low-state levels of a bilevel waveform. When this check box is cleared, you can enter in
values for the high- and low-state levels manually.
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• High — Manually specify the value that denotes a positive polarity or high-state level.

• Low — Manually specify the value that denotes a negative polarity or low-state level.

• State Level Tol. % — Tolerance levels within which the initial and final levels of each transition
must lie to be within their respective state levels. This value is expressed as a percentage of the
difference between the high- and low-state levels.

• Upper Ref Level — Used to compute the end of the rise-time measurement or the start of the fall-
time measurement. This value is expressed as a percentage of the difference between the high-
and low-state levels.

• Mid Ref Level — Used to determine when a transition occurs. This value is expressed as a
percentage of the difference between the high- and low-state levels. In the following figure, the
mid-reference level is shown as a horizontal line, and its corresponding mid-reference level instant
is shown as a vertical line.
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• Lower Ref Level — Used to compute the end of the fall-time measurement or the start of the rise-
time measurement. This value is expressed as a percentage of the difference between the high-
and low-state levels.

• Settle Seek — The duration after the mid-reference level instant when each transition occurs is
used for computing a valid settling time. Settling time is displayed in the Aberrations pane.

Transitions

Select Transitions to display calculated measurements associated with the input signal changing
between its two possible state level values, high and low. The measurements are displayed in the
Transitions pane at the bottom of the scope window.

The + Edges row measures rising edges or a positive-going transition. A rising edge in a bilevel
waveform is a transition from the low-state level to the high-state level with a slope value greater
than zero.

The - Edges row measures falling edges or a negative-going transition. A falling edge in a bilevel
waveform is a transition from the high-state level to the low-state level with a slope value less than
zero.
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The Transition measurements assume that the amplitude of the input signal is in units of volts. For
the transition measurements to be valid, you must convert all input signals to volts.

Aberrations

Select Aberrations to display calculated measurements involving the distortion and damping of the
input signal such as preshoot, overshoot, and undershoot. Overshoot and undershoot, respectively,
refer to the amount that a signal exceeds and falls below its final steady-state value. Preshoot refers
to the amount before a transition that a signal varies from its initial steady-state value. The
measurements are displayed in the Transitions pane at the bottom of the scope window.

This figure shows preshoot, overshoot, and undershoot for a rising-edge transition.

The next figure shows preshoot, overshoot, and undershoot for a falling-edge transition.
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Cycles

Select Cycles calculates repetitions or trends in the displayed portion of the input signal. The
measurements are displayed in the Cycles pane at the bottom of the scope window in two rows: +
Pulses for the positive-polarity pulses and - Pulses for the negative-polarity pulses.

• Period — Average duration between adjacent edges of identical polarity within the displayed
portion of the input signal. To calculate period, the timescope takes the difference between the
mid-reference level instants of the initial transition of each pulse and the next identical-polarity
transition. These mid-reference level instants for a positive-polarity pulse appear as red dots in the
following figure.

• Frequency — Reciprocal of the average period, measured in hertz.
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• Count — Number of positive- or negative-polarity pulses counted.
• Width — Average duration between rising and falling edges of each pulse within the displayed

portion of the input signal.
• Duty Cycle — Average ratio of pulse width to pulse period for each pulse within the displayed

portion of the input signal.

Triggers

Define a trigger event to identify the simulation time of specified input signal characteristics. You can
use trigger events to stabilize periodic signals such as a sine wave or capture non-periodic signals
such as a pulse that occurs intermittently.

To define a trigger:

1 On the Trigger tab of the scope window, select the channel you want to trigger.
2 Specify when the display updates by selecting a triggering Mode.

• Auto — Display data from the last trigger event. If no event occurs after one time span,
display the last available data.

Normal — Display data from the last trigger event. If no event occurs, the display remains
blank.

• Once — Display data from the last trigger event and freeze the display. If no event occurs, the
display remains blank. Click the Rearm button to look for the next trigger event.

3 Select a triggering type, polarity, and any other properties. See the Trigger Properties table.
4 Click Enable Trigger.

You can set the trigger position to specify the position of the time pointer along the y-axis. You can
also drag the time pointer to the left or right to adjust its position.
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Trigger Properties

Trigger Type Trigger Parameters
Edge — Trigger
when the signal
crosses a
threshold.

Polarity — Select the polarity for an edge-triggered signal.

• Rising — Trigger when the signal is increasing.

• Falling — Trigger when the signal value is decreasing.
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Trigger Type Trigger Parameters
• Either — Trigger when the signal is increasing or decreasing.

Level — Enter a threshold value for an edge-triggered signal. Auto level is 50%

Hysteresis — Enter a value for an edge-triggered signal. See “Hysteresis of
Trigger Signals” on page 25-106

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
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Trigger Type Trigger Parameters
Pulse Width —
Trigger when the
signal crosses a
low threshold and
a high threshold
twice within a
specified time.

Polarity — Select the polarity for a pulse width-triggered signal.

• Positive — Trigger on a positive-polarity pulse when the pulse crosses the
low threshold for a second time.

• Negative — Trigger on a negative-polarity pulse when the pulse crosses the
high threshold for a second time.

• Either — Trigger on both positive-polarity and negative-polarity pulses.

Note A glitch-trigger is a special type of a pulse width-trigger. A glitch-trigger
occurs for a pulse or spike whose duration is less than a specified amount. You
can implement a glitch-trigger by using a pulse-width-trigger and setting the
Max Width parameter to a small value.

High — Enter a high value for a pulse-width-triggered signal. Auto level is
90%.

Low — Enter a low value for a pulse-width-triggered signal. Auto level is 10%.

Min Width — Enter the minimum pulse width for a pulse-width-triggered
signal. Pulse width is measured between the first and second crossings of the
middle threshold.

Max Width — Enter the maximum pulse width for a pulse-width-triggered
signal.

Delay — Offset the trigger by a fixed delay in seconds.
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Trigger Type Trigger Parameters
Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
Transition —
Trigger on the
rising or falling
edge of a signal
that crosses the
high and low levels
within a specified
time range.

Polarity — Select the polarity for a transition-triggered signal.

• Rise Time — Trigger on an increasing signal when the signal crosses the
high threshold.

• Fall Time — Trigger on a decreasing signal when the signal crosses the
low threshold.

• Either — Trigger on an increasing or decreasing signal.

High — Enter a high value for a transition-triggered signal. Auto level is 90%.

Low — Enter a low value for a transition-triggered signal. Auto level is 10%.

Min Time — Enter a minimum time duration for a transition-triggered signal.

Max Time — Enter a maximum time duration for a transition-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
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Trigger Type Trigger Parameters
Runt— Trigger
when a signal
crosses a low
threshold or a high
threshold twice
within a specified
time.

Polarity — Select the polarity for a runt-triggered signal.

• Positive — Trigger on a positive-polarity pulse when the signal crosses the
low threshold a second time without crossing the high threshold.

• Negative — Trigger on a negative-polarity pulse.
• Either — Trigger on both positive-polarity and negative-polarity pulses.

High — Enter a high value for a runt-triggered signal. Auto level is 90%.

Low — Enter a low value for a runt-triggered signal. Auto level is 10%.

Min Width — Enter a minimum width for a runt-triggered signal. Pulse width is
measured between the first and second crossing of a threshold.

Max Width — Enter a maximum pulse width for a runt-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
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Trigger Type Trigger Parameters
Window — Trigger
when a signal
stays within or
outside a region
defined by the high
and low thresholds
for a specified
time.

Polarity — Select the region for a window-triggered signal.

• Inside — Trigger when a signal leaves a region between the low and high
levels.

• Outside — Trigger when a signal enters a region between the low and high
levels.
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Trigger Type Trigger Parameters
• Either — Trigger when a signal leaves or enters a region between the low

and high levels.

High — Enter a high value for a window-triggered signal. Auto level is 90%.

Low — Enter a low value for a window-trigger signal. Auto level is 10%.

Min Time — Enter the minimum time duration for a window-triggered signal.

Max Time — Enter the maximum time duration for a window-triggered signal.

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.
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Trigger Type Trigger Parameters
Timeout —
Trigger when a
signal stays above
or below a
threshold longer
than a specified
time

Polarity — Select the polarity for a timeout-triggered signal.

• Rising — Trigger when the signal does not cross the threshold from below.
For example, if you set Timeout to 7.50 seconds, the scope triggers 7.50
seconds after the signal crosses the threshold.

• Falling — Trigger when the signal does not cross the threshold from
above.

• Either — Trigger when the signal does not cross the threshold from either
direction

Level — Enter a threshold value for a timeout-triggered signal.

Hysteresis — Enter a value for a timeout-triggered signal. See “Hysteresis of
Trigger Signals” on page 25-106.

Timeout — Enter a time duration for a timeout-triggered signal.

Alternatively, a trigger event can occur when the signal stays within the
boundaries defined by the hysteresis for 7.50 seconds after the signal crosses
the threshold.

 Configure Time Scope MATLAB Object

25-105



Trigger Type Trigger Parameters

Delay — Offset the trigger by a fixed delay in seconds.

Holdoff — Set the minimum possible time between triggers.

Position — Set horizontal position of the trigger on the screen.

Hysteresis of Trigger Signals

Hysteresis — Specify the hysteresis or noise-reject value. This parameter is visible when you set
Type to Edge or Timeout. If the signal jitters inside this range and briefly crosses the trigger level,
the scope does not register an event. In the case of an edge trigger with rising polarity, the scope
ignores the times that a signal crosses the trigger level within the hysteresis region.
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You can reduce the hysteresis region size by decreasing the hysteresis value. In this example, if you
set the hysteresis value to 0.07, the scope also considers the second rising edge to be a trigger event.

Share or Save the Time Scope
If you want to save the time scope for future use or share it with others, use the buttons in the Share
section of the Scope tab.

• Generate Script — Generate a script to re-create your time scope with the same settings. An
editor window opens with the code required to re-create your timescope object.
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• Copy Display — Copy the display to your clipboard. You can paste the image in another program
to save or share it.

• Print — Opens a print dialog box from which you can print out the plot image.

Scale Axes
To scale the plot axes, you can use the mouse to pan around the axes and the scroll button on your
mouse to zoom in and out of the plot. Additionally, you can use the buttons that appear when you
hover over the plot window.

•
 — Maximize the axes, hiding all labels and insetting the axes values.

•
 — Zoom in on the plot.

•
 — Pan the plot.

•
 — Autoscale the axes to fit the shown data.

See Also
Objects
timescope
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Common Scope Block Tasks
In this section...
“Connect Multiple Signals to a Scope” on page 25-109
“Save Simulation Data Using Scope Block” on page 25-111
“Pause Display While Running” on page 25-113
“Copy Scope Image” on page 25-113
“Plot an Array of Signals” on page 25-115
“Scopes in Referenced Models” on page 25-116
“Scopes Within an Enabled Subsystem” on page 25-120
“Modify x-axis of Scope” on page 25-121
“Show Signal Units on a Scope Display” on page 25-124
“Select Number of Displays and Layout” on page 25-126
“Dock and Undock Scope Window to MATLAB Desktop” on page 25-127

To visualize your simulation results over time, use a Scope block or Time Scope block

Connect Multiple Signals to a Scope
To connect multiple signals to a scope, drag additional signals to the scope block. An additional port
is created automatically.

To specify the number of input ports:

1 Open a scope window.
2 From the toolbar, select File > Number of Input Ports > More.
3 Enter the number of input ports, up to 96.

Signals from Nonvirtual Buses and Arrays of Buses

You can connect signals from nonvirtual buses and arrays of buses to a Scope block. To display the
bus signals, use normal or accelerator simulation mode. The Scope block displays each bus element
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signal, in the order the elements appear in the bus, from the top to the bottom. Nested bus elements
are flattened. For example, in this model the nestedBus signal has the const, subSignal, and
step signals as elements. The subSignal sub-bus has the chirp and sine signals as its bus
elements. In the Scope block, the two elements of the subSignal bus display between the const
and step signals.
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Save Simulation Data Using Scope Block
This example shows how to save signals to the MATLAB Workspace using the Scope block. You can us
these steps for the Scope or Time Scope blocks. To save data from the Floating Scope or Scope
viewer, see “Save Simulation Data from Floating Scope” (Simulink).

Using the vdp model, turn on data logging to the workspace. You can follow the commands below, or
in the Scope window, click the Configuration Properties button and navigate to the Logging tab, turn
on Log data to workspace.

vdp
scopeConfig = get_param('vdp/Scope','ScopeConfiguration');
scopeConfig.DataLogging = true;
scopeConfig.DataLoggingSaveFormat = 'Dataset';
out = sim('vdp');
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In the MATLAB Command window, view the logged data from the out.ScopeData structure.

x1_data = out.ScopeData{1}.Values.Data(:,1);
x1_time = out.ScopeData{1}.Values.Time;
plot(x1_time,x1_data)

25 Visualize Data and Signals

25-112



Pause Display While Running
Use the Simulink Snapshot to pause the scope display while the simulation keeps running in the
background.

1 Open a scope window and start the simulation.
2 Select Simulation > Simulink Snapshot.

The scope window status in the bottom left is Frozen, but the simulation continues to run in the
background.

3 Interact with the paused display. For example, use measurements, copy the scope image, or zoom
in or out.

4 To unfreeze the display, select Simulation > Simulink Snapshot again.

Copy Scope Image
This example uses the model vdp to demonstrate how to copy and paste a scope image.

1 Add a scope block to your model.
2 Connect signals to scope ports. See “Connect Multiple Signals to a Scope” on page 25-109. For

example, in the vdp model, connect the signals x1 and x2 to a scope.
3 Open the scope window and run the simulation.
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4 Select File > Copy to Clipboard.
5 Paste the image into a document.

By default, Copy to Clipboard saves a printer-friendly version of the scope with a white
background and visible lines. If you want to paste the exact scope plot displayed, select View >
Style, then select the Preserve colors for copy to clipboard check box.
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Plot an Array of Signals
This example shows how the scope plots an array of signals.

In this simple model, a Sine Wave block is connected to a scope block. The Sine Wave block outputs
four signals with the amplitudes [10, 20; 30 40]. The scope displays each sine wave in the array
separately in the matrix order (1,1), (2,1), (1,2), (2,2).
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Scopes in Referenced Models
This example shows the behavior of scopes in referenced models. When you use a scope in a
referenced model, you see different output in the scope depending on where you started the
simulation: from the top model or the scope in the referenced model.

Note Scope windows display simulation results for the most recently opened top model. Playback
controls in scope blocks and viewers simulate the model containing that block or viewer.

This example uses the sldemo_mdlref_counter model both as a top model and as a referenced
model from the sldemo_mdlref_basic model.

Open the model:

openExample('sldemo_mdlref_basic')

Double-click the CounterA block. The sldemo_mdlref_counter model opens as a referenced
model, as evidenced by the breadcrumb above the canvas.
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Run the simulation using the main run button, then open up the ScopeA scope. The scope visualizes
the data from the entire model.
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If you specifically want to visualize a referenced model in isolation, open the model as a top model. In
this example, right-click the CounterA block and select Open as Top Model. The model opens in
another window and the breadcrumb only shows the referenced model name.
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When you run the simulation from either the Simulink window or the scope window, the scope
visualizes the model without any reference to another model. In this case, the model input is zero the
entire time.
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Scopes Within an Enabled Subsystem
When placed within an Enabled Subsystem block, scopes behave differently depending on the
simulation mode:

• Normal mode — A scope plots data when the subsystem is enabled. The display plot shows gaps
when the subsystem is disabled.

• External, Accelerator, and Rapid modes — A scope plots data when the subsystem is enabled. The
display connects the gaps with straight lines.
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Modify x-axis of Scope
This example shows how to modify the x-axis values of the Scope block using the Time span and
Time display offset parameters. The Time span parameter modifies how much of the simulation
time is shown and offsets the x-axis labels. The Time display offset parameter modifies the labels
used on the x-axis.

You can also use this procedure for the Time Scope block, Floating Scope block, or Scope viewer.

Open the model and run the simulation to see the original scope output. The simulation runs for 10
time steps stepping up by 1 at each time step.

model = 'ModifyScopeXAxis';
open_system(model);
sim(model);
open_system([model,'/Scope']);
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Modify Time Span Shown

Modify the Time span parameter to 2. You can follow the commands below, or in the Scope window,
click the Configuration Properties button and navigate to the Time tab.

scopeConfig = get_param([model,'/Scope'],'ScopeConfiguration');
scopeConfig.TimeSpan = '2';
sim(model);
open_system([model,'/Scope']);
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The x-axis of the scope now shows only the last 2 time steps and offsets the x-axis labels to show 0-2.
The bottom toolbar shows that the x-axis is offset by 8. This offset is different from the Time display
offset value.

The Time span parameter is useful if you do not want to visualize signal initialization or other start-
up tasks at the beginning of a simulation. You can still see the full simulation time span if you click
the Span x-axis button.

Offset x-axis Labels

Modify the Time display offset parameter to 5. Again, use the commands below, or in the Scope
window, click the Configuration Properties button and navigate to the Time tab.

scopeConfig.TimeDisplayOffset = '5';
sim(model);
open_system([model,'/Scope']);
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Now, the same time span of 2 is show in the scope, but the x-axis labels are offset by 5, starting at 5
and ending at 7. If you click the Span x-axis button, the x-axis labels still start at 5.

Show Signal Units on a Scope Display
You can specify signal units at a model component boundary (Subsystem and Model blocks) using
Inport and Outport blocks. See “Unit Specification in Simulink Models” (Simulink). You can then
connect a Scope block to an Outport block or a signal originating from an Outport block. In this
example, the Unit property for the Out1 block was set to m/s.

Show Units on a Scope Display

1 From the Scope window toolbar, select the Configuration Properties button .
2 In the Configuration Properties: Scope dialog box, select the Display tab.
3 In the Y-label box, enter a title for the y-axis followed by (%<SignalUnits>). For example,

enter

Velocity (%<SignalUnits>)
4 Click OK or Apply.
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Signal units display in the y-axis label as meters per second (m/s) and in the Cursor
Measurements panel as millimeters per second (mm/s).

From the Simulink toolstrip, you can also select Debug > Information Overlays > Units. You do
not have to enter (%<SignalUnits>) in the Y-Label property.

Show Units on a Scope Display Programmatically

1 Get the scope properties. In the Command Window, enter

load_system('my_model')
s = get_param('my_model/Scope','ScopeConfiguration');

2 Add a y-axis label to the first display.

s.ActiveDisplay = 1
s.YLabel = 'Velocity (%<SignalUnits>)';

You can also set the model parameter ShowPortUnits to 'on'. All scopes in your model, with and
without (%<SignalUnits>) in the Y-Label property, show units on the displays.

load_system('my_model')
get_param('my_model','ShowPortUnits')

ans =
off

set_param('my_model', 'ShowPortUnits','on')

ans =
on
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Determine Units from a Logged Data Object

When saving simulation data from a scope with the Dataset format, you can find unit information in
the DataInfo field of the timeseries object.

Note Scope support for signal units is only for the Dataset logging format and not for the legacy
logging formats Array, Structure, and Structure With Time.

1 From the Scope window toolbar, select the Configuration Properties button .
2 In the Configuration Properties window, select the Logging tab.
3 Select the Log data to workspace check box. In the text box, enter a variable name for saving

simulation data. For example, enter ScopeData.
4 From the Scope window toolbar, select the run button .
5 In the Command Window, enter

ScopeData.getElement(1).Values.DataInfo

Package: tsdata
Common Properties:
             Units: m/s (Simulink.SimulationData.Unit)
     Interpolation: linear (tsdata.interpolation)

Connect Signals with Different Units to a Scope

When there are multiple ports on a scope, Simulink ensures that each port receives data with only
one unit. If you try to combine signals with different units (for example by using a Bus Creator block),
Simulink returns an error.

Scopes show units depending on the number of ports and displays:

• Number of ports equal to the number of displays — One port is assigned to one display with
units for the port signal shown on the y-axis label.

• Greater than the number of displays — One port is assigned to one display, with the last
display assigned the remaining signals. Different units are shown on the last y-axis label as a
comma-separated list.

Select Number of Displays and Layout
1 From a Scope window, select the Configuration Properties button .
2 In the Configuration Properties dialog box, select the Main tab, and then select the Layout

button.
3 Select the number of displays and the layout you want.

You can select more than four displays in a row or column. Click within the layout, and then drag
your mouse pointer to expand the layout to a maximum of 16 rows by 16 columns.
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4 Click to apply the selected layout to the Scope window.

Dock and Undock Scope Window to MATLAB Desktop
1 In the right corner of a Scope window, click the Dock Scope button.

The Scope window is placed above the Command Window in the MATLAB desktop.
2 Click the Show Scope Actions button, and then click Undock Scope.

See Also
Scope | Floating Scope | Scope Viewer

Related Examples
• “Scope Blocks and Scope Viewer Overview” (Simulink)
• “Floating Scope and Scope Viewer Tasks” (Simulink)
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Display Frequency Input on Spectrum Analyzer
This example shows how to visualize frequency input signals with the Spectrum Analyzer block.

To visualize frequency-domain input signals using a Spectrum Analyzer block, in the Spectrum
Settings, set Input domain to Frequency. In this example, also clear the Two-sided spectrum check
box.
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You can see two peaks at 5 kHz and 10 kHz. To measure these peaks, use the Peak Finder
measurement tool.
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Use Peak Finder to Find Heart Rate from ECG Input
This example shows how to use the Time Scope Peak Finder panel to measure the heart rate from an
ECG.

To emulate a heart beat, the model Preload creates the variable mhb in the MATLAB® workspace.
This variable is then called by the Signal From Workspace block. To see all the model Preload
commands, open the Model Explorer and look at the Callback functions.

Run your model to see the time domain output.
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1 To show the Peak Finder panel, in the Time Scope menu, select Tools > Measurements >
Peak Finder.

2 Expand the Settings section, enter 10 for Max Num of Peaks. The Time Scope Peaks section
now displays a list of 10 peak amplitude values, and the times at which they occur.

3 Turn on the Cursor Measurements by selecting Tools > Measurements > Cursor
Measurements.

4 Set the cursor time values to two consecutive peak times, for example 1.725 and 2.4. The time
difference between all peaks is 675 milliseconds.
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Therefore, you can calculate the heart rate of the ECG signal:
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Configure Array Plot From the Command-Line
This example shows how to change Array Plot block behavior and appearance from the MATLAB
command line.

Load the model. Then, change the title of the Array Plot and the axes scaling.

model = 'zoomfftExample';

load_system(model)
sim(model)
open_system([model '/View Spectrum'])

sim(model)
set_param([model '/View Spectrum'],'Title','My Array Plot');
set_param([model '/View Spectrum'],'AxesScaling','Manual');
set_param([model '/View Spectrum'],'YLimits','[-1 80]');
open_system([model '/View Spectrum'])
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Waterfall Tasks

Scope Trigger Function
The diagram below explains the different states of the Waterfall scope triggering process.

You can create custom scope trigger functions to control when the scope starts, stops, or begins
waiting to capture data.
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These functions must be valid MATLAB functions and be located either in the current folder or on the
MATLAB path.

Each scope trigger function must have the form

y = functionname(blk,t,u),

where functionname refers to the name you give your scope trigger function. The variable blk is
the Simulink block handle. When the scope trigger function is called by the block, Simulink
automatically populates this variable with the handle of the Waterfall block. The variable t is the
current simulation time, represented by a real, double-precision, scalar value. The variable u is the
vector input to the block. The output of the scope trigger function, y, is interpreted as a logical
signal. It is either true or false:

• Begin recording scope trigger function

• When the output of this scope trigger function is true, the Waterfall block starts capturing
data.

• When the output is false, the block remains in its current state.
• Stop recording scope trigger function

• When the output of this scope trigger function is true, the block stops capturing data.
• When the output is false, the block remains in its current state.

• Re-arm trigger scope trigger function

• When the output of this scope trigger function is true, the block waits for a triggering even to
begin recording again.

• When the output is false, the block remains in its current state.

Note  The Waterfall block passes its input data directly to the scope trigger functions. These
functions do not use the transformed data defined by the Transform parameters.

The following function is an example of a scope trigger function. This function, called trigPower,
detects when the energy in the input u exceeds a certain threshold.
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function y = trigPower(blk, t, u)

y = (u'*u > 2300);

The following function is another example of a scope trigger function. This function, called count3,
triggers the scope once three vectors with positive means are input to the block. Then the function
resets itself and begins searching for the next three input vectors with positive means. This scope
trigger function is valid only when one Waterfall block is present in your model.

function y = count3(blk, t, u)

persistent state;
if isempty(state); state = 0; end
if mean(u)>0; state = state+1; end
y = (state>=3);
if y; state = 0; end

Scope Transform Function
You can create a scope transform function to control how the Waterfall block transforms your input
data. This function must have a valid MATLAB function name and be located either in the current
folder or on the MATLAB path.

Your scope transform function must have the form

y = functionname(u)

where functionname refers to the name you give your function. The variable u is the real or
complex vector input to the block. The output of the scope transform function, y, must be a double-
precision, real-valued vector. When it is not, the simulation stops and Simulink displays an error. Note
that the output vector does not need to be the same size as the input vector.

Exporting Data
You can use the Waterfall block to export data to the MATLAB workspace:

1 Open and run the dspanc example.
2 While the simulation is running, click the Export to Workspace button.
3 Type whos at the MATLAB command line.

The variable ExportData appears in your MATLAB workspace. ExportData is a 40-by-6 matrix.
This matrix represents the six data vectors that were present in the Waterfall window at the time
you clicked the Export to Workspace button. Each column of this matrix contains 40 filter
coefficients. The columns of data were captured at six consecutive instants in time.

You can control what data is exported using the Data logging parameter on the Data history
tab of the Parameters dialog box. For more information, see “Data History”.

Capturing Data
You can use the Waterfall block to interact with your data while it is being captured:

1 Open and run the dspanc example.
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2 While the simulation is running, click the Suspend data capture button.

The Waterfall block no longer captures or displays the data coming from the Downsample block.
3 To continue capturing data, click the Resume data capture button.
4 To freeze the data display while continuing to capture data, click the Snapshot display button.
5 To view the Waterfall block that the data is coming from, click the Go to scope block button.

In the Simulink model window, the Waterfall block that corresponds to the active Waterfall
window flashes. This feature is helpful when you have more than one Waterfall block in a model
and you want to clarify which data is being displayed.

Linking Scopes
You can link several Waterfall blocks together in order to capture the effect of a model event in all of
the Waterfall windows in the model:

1 Open the dspanc example.
2 Drag a second Waterfall block into the example model.
3 Connect this block to the Output port of the LMS Filter block as shown in this figure:

4 Run the model and view the model behavior in both Waterfall windows.
5 In the dspanc/Waterfall window, click the Link scopes button.
6 In the same window, click the Suspend data capture button.

The data capture is suspended in both scope windows.
7 Click the Resume data capture button.

The data capture resumes in both scope windows.
8 In the dspanc/Waterfall window, click the Snapshot display button.

In both scope windows, the data display freezes while the block continues to capture data.
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9 To continue displaying the captured data, click the Resume display button.

Selecting Data

1 To select a particular set of data, click the Select button.
2 Click on the Time Bar at the bottom right of the axes to select a vector of data.

The Waterfall block highlights the selected trace.
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While the simulation is running, in the bottom right corner, the Waterfall window displays the
relative index of the selected trace. For example, in the previous figure, the selected vector is two
sample times away from the most current data vector. When the simulation is stopped, the
Waterfall window displays both the relative index and the simulation time associated with the
selected trace.

3 To deselect the data vector, click it again.
4 Click-and-drag along the Time Bar.

Your selection follows the movement of the pointer.

You can use this feature to choose a particular vector to export to the MATLAB workspace. For more
information, see “Data History”.

Zooming
You can use the Waterfall window to zoom in on data:

1 Click the Zoom camera button.
2 In the Waterfall window, click and hold down the left mouse button.
3 Move the mouse up and down and side-to-side to move closer and farther away from the axes.
4 To resize the axes to fit the Waterfall window, click the Fit to view button.

Rotating the Display
You can rotate the data displayed in the Waterfall window:

1 Click on the Orbit camera button.
2 In the Waterfall window, click and hold down the left mouse button.
3 Move the mouse in a circular motion to rotate the axes.
4 To return to the position of the original axes, click the Restore scope position and view button.

Scaling the Axes
You can use the Waterfall window to rescale the y-axis values:

1 Open and run the dspanc example.
2 Click the Rescale amplitude button.

The y-axis changes so that its minimum value is zero. The maximum value is scaled to fit the data
displayed.

Alternatively, you can scale the y-axis using the Y Min and Y Max parameters on the Axes tab of the
Parameters dialog box. This is helpful when you want to undo the effects of rescaling the amplitude.
For more information, see “Axes”.

Saving Scope Settings
The Waterfall block can save the screen position and viewpoint of the Waterfall window:
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1 Click the Save scope position and view button.
2 Close the Waterfall window.
3 Reopen the Waterfall window.

It reopens at the same place on your screen. The viewpoint of the axes also remains the same.

See Also
Waterfall
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Logic Analyzer

• “Inspect and Measure Transitions Using the Logic Analyzer” on page 26-2
• “Configure Logic Analyzer” on page 26-8
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Inspect and Measure Transitions Using the Logic Analyzer
In this section...
“Open a Simulink Model” on page 26-2
“Open the Logic Analyzer” on page 26-2
“Configure Global Settings and Visual Layout” on page 26-3
“Set Stepping Options” on page 26-4
“Run Model” on page 26-5
“Configure Individual Wave Settings” on page 26-5
“Inspect and Measure Transitions” on page 26-5
“Step Through Simulation” on page 26-7
“Save Logic Analyzer Settings” on page 26-7

In this tutorial, you explore key functionality of the Logic Analyzer, such as choosing and
configuring signals to visualize, stepping through a simulation, and measuring transitions.

Open a Simulink Model
To follow along with this tutorial, open the Sigma-Delta A/D Conversion (fixed-point version) model
(dspsdadc_fixpt).

Open the Logic Analyzer
From the Simulink toolstrip, on the Simulation tab, in the Review Results gallery, click the Logic

Analyzer button .

The Logic Analyzer opens with the selected signals shown in the channel display.
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Configure Global Settings and Visual Layout
1 Click Settings. Set the Height to 20 and the Spacing to 10, and then click OK.
2 From the Logic Analyzer toolstrip, click Add Divider. A divider named Divider is added to the

bottom of your channels. You can use dividers to separate signals.
3 Double-click Divider and rename Divider as Analog Input Calculation. Drag the divider

to the top of the channels pane.
4 Add another divider and name it Error Calculation.
5 From the Logic Analyzer toolstrip, click Add Group. A group named Group1 is added to the

bottom of your channels. You can use groups to group signals in a collapsible tree structure.
Double-click Group1 and rename it as Digital Approximation Calculation.

6 You can visualize the same signal in multiple places. Right-click the Analog Input(Delayed)
signal and select Copy. Paste this signal under the Error Calculation divider. Repeat the
process for the CIC Digitized Approximation signal. Organize your dividers and signals as
shown in the screen shot, and then collapse the Digital Approximation Calculation
group.
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Set Stepping Options
1 From the Logic Analyzer toolstrip, click Stepping Options.
2 Select the Enable stepping back option. Specify the Maximum number of saved back steps

as 2 and the Interval between stored back steps as 100 steps. When you run the simulation, a
snapshot of the model is taken every 100 steps. Only the last snapshot is saved.

3 Set Move back/forward by to 100 steps.
4 Select the Pause simulation when time reaches option. Specify the simulation to pause after

0.2 seconds of model time has elapsed, and then click OK.
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Run Model
1 To run the model, click Run on the Logic Analyzer toolstrip. The model runs for 0.2 seconds of

model time and then pauses.
2 Click  to fit your data to the time range.

Configure Individual Wave Settings
1 Select all waves under your Analog Input Calculation divider. Then on the Waves tab,

select a new Wave Color for the selected waves.
2 Under the Error Calculation divider, select the Analog Input(Delayed) and CIC

Digitized Approximation waves. On the Waves tab, modify the Format to Digital. The
selected waves are now displayed as digital transitions.

Inspect and Measure Transitions
1 On the Logic Analyzer toolstrip, click  and then drag-and-drop start and end points to zoom

in time.
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2 For waves displayed as digital, you can use the Next Transition and Previous Transition
buttons. To move the active cursor to the next transition, click Next Transition.

3 Click Lock to lock the active cursor in place.
4 Click Add Cursor to add another cursor to the axes. The cursor shows its current position in

time, and the difference from all surrounding cursors in time.

5 Right-click the second cursor you added and select Delete Cursor.
6 Press the space bar to zoom out.
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7 Add another cursor and line it up with a low point of the Analog Input wave in your Analog
Input Calculation division. Use the value displayed in the wave value pane to fine-tune the
cursor position in time.

8 Add another cursor and line it up with the corresponding low point of the Analog
Input(Delayed) wave in your Analog Input Calculation division.

Step Through Simulation
1 To move the simulation forward 100 steps, click Step Forward. The time axis adjusts so that you

can see the most recent data.
2 To move the simulation backward 100 steps, click Step Back. The Step Back button becomes

disabled because you specified saving only two back step.

Save Logic Analyzer Settings
When you save your model, the logic analyzer settings are also saved for that model.

See Also
Logic Analyzer | dsp.LogicAnalyzer

 Inspect and Measure Transitions Using the Logic Analyzer

26-7



Configure Logic Analyzer
Open the Logic Analyzer and select Settings from the toolstrip. A global settings dialog box opens.
Any setting you change for an individual signal supersedes the global setting. The Logic Analyzer
saves any setting changes with the model (Simulink) or System object (MATLAB).

Set the display Radix of your signals as one of the following:

• Hexadecimal — Displays values as symbols from zero to nine and A to F
• Octal — Displays values as numbers from zero to seven
• Binary — Displays values as zeros and ones
• Signed decimal — Displays the signed, stored integer value
• Unsigned decimal — Displays the stored integer value

Set the display Format as one of the following:

• Automatic — Displays floating point signals in Analog format and integer and fixed-point signals
in Digital format. Boolean signals are displayed as zero or one.

• Analog — Displays values as an analog plot
• Digital — Displays values as digital transitions

Set the display Time Units to one of the following:

• Automatic — Uses a time scale appropriate to the time range shown in the current plot
• seconds
• milliseconds
• microseconds
• nanoseconds
• picoseconds
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• femtoseconds

Set the Boolean Highlighting to one of the following:

• None
• Rows — Adds a highlighted background for the entire Boolean signal row.

Select Highlight boolean values to add highlighting to Boolean signals.
• Gradient— Adds color highlighting to Boolean signals based on value. If the signal value is true,

the highlight fades out below. If the signal value is false, the signal fades out above. With this
option, you can visually deduce the value of the signal.

Inspect the graphic for an explanation of the global settings: Wave Color, Axes Color, Height,
Font Size, and Spacing. Font Size applies only to the text within the axes.

By default, when your simulation stops, the Logic Analyzer shows all the data for the simulation time
on one screen. If you do not want this behavior, clear Fit to view at Stop. This option is disabled for
long simulation times.
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To display the short names of waves without path information, select Display short wave names.

You can expand fixed-point and integer signals and view individual bits. The Display Least
Significant bit first option enables you to reverse the order of the displayed bits.

If you stream logged bus signals to the Logic Analyzer, you can display the names of the signals inside
the bus using the Display bus element names option. To show bus element names:

1 Add the bus signal for logging.
2 In the Logic Analyzer settings, select the Display bus element names check box.
3 Run the simulation.

When you expand the bus signals, you will see the bus signal names.

Some special situations:

• If the signal has no name, the Logic Analyzer shows the block name instead.
• If the bus is a bus object, the Logic Analyzer shows the bus element names specified in the Bus

Object Editor.
• If one of the bus elements contains an array, each element of the array is appended with the

element index.

• If a bus element contains an array with complex elements, the real and complex values (i) are
split.

• Bus signals passed through a Gain block are labeled Gain(1), Gain(2),...Gain(n).
• If the bus contains an array of buses, the Logic Analyzer prepends the element name with the bus

array index.
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Statistics and Linear Algebra

• “What Are Moving Statistics?” on page 27-2
• “Sliding Window Method and Exponential Weighting Method” on page 27-5
• “Measure Statistics of Streaming Signals” on page 27-14
• “How Is a Moving Average Filter Different from an FIR Filter?” on page 27-17
• “Energy Detection in the Time Domain” on page 27-21
• “Remove High-Frequency Noise from Gyroscope Data” on page 27-24
• “Linear Algebra and Least Squares” on page 27-26
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What Are Moving Statistics?
You can measure statistics of streaming signals in MATLAB and Simulink along each independent
data channel using the moving statistics System objects and blocks. Statistics such as average, RMS,
standard deviation, variance, median, maximum, and minimum change as the data changes
constantly with time. With every data sample that comes in, the System objects and blocks compute
the statistics over the current sample and a specific window of past samples. This window "moves" as
new data comes in.

MATLAB System object Simulink Block Statistic Computed
dsp.MedianFilter Median Filter Moving median
dsp.MovingAverage Moving Average Moving average
dsp.MovingMaximum Moving Maximum Moving maximum
dsp.MovingMinimum Moving Minimum Moving minimum
dsp.MovingRMS Moving RMS Moving RMS
dsp.MovingStandardDeviat
ion

Moving Standard Deviation Moving standard deviation

dsp.MovingVariance Moving Variance Moving variance

These System objects and blocks compute the moving statistic using one or both of the sliding
window method and exponential weighting method. For more details on these methods, see “Sliding
Window Method and Exponential Weighting Method” on page 27-5.

Consider an example of computing the moving average of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. At the first time step, the algorithm fills
the window with three zeros to represent the first three samples. In the subsequent time steps, to fill
the window, the algorithm uses samples from the previous data frame. The moving statistic
algorithms have a state and remember the previous data.
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If the data is stationary, use the stationary statistics blocks to compute the statistics over the entire
data in Simulink. Stationary blocks include Autocorrelation, Correlation, Maximum, Mean, Median,
Minimum, RMS, Sort, Standard Deviation, and Variance.

These blocks do not maintain a state. When a new data sample comes in, the algorithm computes the
statistic over the entire data and has no influence from the previous state of the block.

Consider an example of computing the stationary average of streaming input data using the Mean
block in Simulink. The Mean block is configured to find the mean value over each column.

 What Are Moving Statistics?
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At each time step, the algorithm computes the average over the entire data that is available in the
current time step and does not use data from the previous time step. The stationary statistics blocks
are more suitable for data that is already available rather than for streaming data.

See Also

More About
• “Measure Statistics of Streaming Signals” on page 27-14
• “Sliding Window Method and Exponential Weighting Method” on page 27-5
• “How Is a Moving Average Filter Different from an FIR Filter?” on page 27-17
• “Streaming Signal Statistics” on page 4-12
• “Energy Detection in the Time Domain” on page 27-21
• “Remove High-Frequency Noise from Gyroscope Data” on page 27-24
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Sliding Window Method and Exponential Weighting Method
In this section...
“Sliding Window Method” on page 27-5
“Exponential Weighting Method” on page 27-7

The moving objects and blocks compute the moving statistics of streaming signals using one or both
of the sliding window method and exponential weighting method. The sliding window method has a
finite impulse response, while the exponential weighting method has an infinite impulse response. To
analyze a statistic over a finite duration of data, use the sliding window method. The exponential
weighting method requires fewer coefficients and is more suitable for embedded applications.

Object, Block Sliding Window Method Exponential Weighting
Method

dsp.MedianFilter, Median
Filter

✓  

dsp.MovingAverage, Moving
Average

✓ ✓

dsp.MovingMaximum, Moving
Maximum

✓  

dsp.MovingMinimum, Moving
Minimum

✓  

dsp.MovingRMS, Moving RMS ✓ ✓

dsp.MovingStandardDeviat
ion, Moving Standard Deviation

✓ ✓

dsp.MovingVariance, Moving
Variance

✓ ✓

Sliding Window Method
In the sliding window method, a window of specified length, Len, moves over the data, sample by
sample, and the statistic is computed over the data in the window. The output for each input sample
is the statistic over the window of the current sample and the Len - 1 previous samples. In the first-
time step, to compute the first Len - 1 outputs when the window does not have enough data yet, the
algorithm fills the window with zeros. In the subsequent time steps, to fill the window, the algorithm
uses samples from the previous data frame. The moving statistic algorithms have a state and
remember the previous data.

Consider an example of computing the moving average of a streaming input data using the sliding
window method. The algorithm uses a window length of 4. With each input sample that comes in, the
window of length 4 moves along the data.
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The window is of finite length, making the algorithm a finite impulse response filter. To analyze a
statistic over a finite duration of data, use the sliding window method.

Effect of Window Length

The window length defines the length of the data over which the algorithm computes the statistic.
The window moves as the new data comes in. If the window is large, the statistic computed is closer
to the stationary statistic of the data. For data that does not change rapidly, use a long window to get
a smoother statistic. For data that changes fast, use a smaller window.
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Exponential Weighting Method
The exponential weighting method has an infinite impulse response. The algorithm computes a set of
weights, and applies these weights to the data samples recursively. As the age of the data increases,
the magnitude of the weighting factor decreases exponentially and never reaches zero. In other
words, the recent data has more influence on the statistic at the current sample than the older data.
Due to the infinite impulse response, the algorithm requires fewer coefficients, making it more
suitable for embedded applications.

The value of the forgetting factor determines the rate of change of the weighting factors. A forgetting
factor of 0.9 gives more weight to the older data than does a forgetting factor of 0.1. To give more
weight to the recent data, move the forgetting factor closer to 0. For detecting small shifts in rapidly
varying data, a smaller value (below 0.5) is more suitable. A forgetting factor of 1.0 indicates infinite
memory. All the previous samples are given an equal weight. The optimal value for the forgetting
factor depends on the data stream. For a given data stream, to compute the optimal value for
forgetting factor, see [1].

Consider an example of computing the moving average using the exponential weighting method. The
forgetting factor is 0.9.

The moving average algorithm updates the weight and computes the moving average recursively for
each data sample that comes in by using the following recursive equations.
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wN, λ = λwN − 1, λ + 1

xN, λ = 1− 1
wN, λ

xN − 1, λ + 1
wN, λ

xN

• λ — Forgetting factor.
• wN, λ — Weighting factor applied to the current data sample.
• xN — Current data input sample.
• xN − 1, λ — Moving average at the previous sample.
• 1− 1

wN, λ
xN − 1, λ — Effect of the previous data on the average.

• xN, λ — Moving average at the current sample.

Data WeightwN, λ = λwN − 1, λ + 1 Average
xN, λ = 1− 1

wN, λ
xN − 1, λ

+ 1
wN, λ

xN

Frame 1   
2 1. For N = 1, this value is 1. 2
3 0.9×1+1 = 1.9 (1–(1/1.9))×2+(1/1.9)×3 =

2.5263
4 0.9×1.9+1 = 2.71 (1–(1/2.71))×2.52+(1/2.71)×4 =

3.0701
5 0.9×2.71+1 = 3.439 (1–(1/3.439))×3.07+(1/3.439)×5

= 3.6313
Frame 2   
6 0.9×3.439+1 = 4.095 (1–(1/4.095))×3.6313+(1/4.095)

×6 = 4.2097
7 0.9×4.095+1 = 4.6855 (1–(1/4.6855))

×4.2097+(1/4.6855)×7 =
4.8052

8 0.9×4.6855+1 = 5.217 (1–(1/5.217))×4.8052+(1/5.217)
×8 = 5.4176

9 0.9×5.217+1 = 5.6953 (1–(1/5.6953))
×5.4176+(1/5.6953)×9 =
6.0466

Frame 3   
3 0.9×5.6953+1 = 6.1258 (1–(1/6.1258))

×6.0466+(1/6.1258)×3 =
5.5493

4 0.9×6.1258+1 = 6.5132 (1–(1/6.5132))
×5.5493+(1/6.5132)×4 =
5.3114
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Data WeightwN, λ = λwN − 1, λ + 1 Average
xN, λ = 1− 1

wN, λ
xN − 1, λ

+ 1
wN, λ

xN

6 0.9×6.5132+1 = 6.8619 (1–(1/6.8619))
×5.3114+(1/6.8619)×6 =
5.4117

8 0.9×6.8619+1 = 7.1751 (1–(1/7.1751))
×5.4117+(1/7.1751)×8 =
5.7724

The moving average algorithm has a state and remembers the data from the previous time step.

For the first sample, when N = 1, the algorithm chooses wN, λ = 1. For the next sample, the weighting
factor is updated and the average is computed using the recursive equations.

As the age of the data increases, the magnitude of the weighting factor decreases exponentially and
never reaches zero. In other words, the recent data has more influence on the current average than
the older data.

When the forgetting factor is 0.5, the weights applied to the older data are lower than when the
forgetting factor is 0.9.
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When the forgetting factor is 1, all the data samples are weighed equally. In this case, the
exponentially weighted method is the same as the sliding window method with an infinite window
length.

When the signal changes rapidly, use a lower forgetting factor. When the forgetting factor is low, the
effect of the past data is lesser on the current average. This makes the transient sharper. As an
example, consider a rapidly varying noisy step signal.
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Compute the moving average of this signal using the exponentially weighted method. Compare the
performance of the algorithm with forgetting factors 0.8, 0.9, and 0.99.
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When you zoom in on the plot, you can see that the transient in the moving average is sharp when the
forgetting factor is low. This makes it more suitable for data that changes rapidly.

For more information on the moving average algorithm, see the Algorithms section in the
dsp.MovingAverage System object or the Moving Average block page.

For more information on other moving statistic algorithms, see the Algorithms section in the
respective System object and block pages.
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Measure Statistics of Streaming Signals
In this section...
“Compute Moving Average Using Only MATLAB Functions” on page 27-14
“Compute Moving Average Using System Objects” on page 27-15

The moving statistics System objects measure statistics of streaming signals in MATLAB. You can also
use functions such as movmean, movmedian, movstd, and movvar to measure the moving statistics.
These functions are more suitable for one-time computations on data that is available in a batch.
Unlike System objects, the functions are not designed to handle large streams of data.

Compute Moving Average Using Only MATLAB Functions
This example shows how to compute the moving average of a signal using the movmean function.

The movmean function computes the 10-point moving average of the noisy data coming from an
accelerometer. The three columns in this data represent the linear acceleration of the accelerometer
in the X-axis, Y-axis, and Z-axis, respectively. All the data is available in a MAT file. Plot the moving
average of the X-axis data.

winLen = 10;
accel = load('LSM9DS1accelData73.mat');
movAvg = movmean(accel.data,winLen,'Endpoints','fill');
plot([accel.data(:,1),movAvg(:,1)]);
legend('Input','Moving average along X data');
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The data is not very large (7140 samples in each column) and is entirely available for processing. The
movmean function is designed to handle such one-time computations. However, if the data is very
large, such as in the order of GB, or if the data is a live stream that needs to be processed in real
time, then use System objects. The System objects divide the data into segments called frames and
process each frame in an iteration loop seamlessly. This approach is memory efficient, because only
one frame of data is processed at any given time. Also, the System objects are optimized to handle
states internally.

Compute Moving Average Using System Objects
Create a dsp.MovingAverage System object to compute the 10-point moving average of the
streaming signal. Use a dsp.MatFileReader System object to read data from the accelerometer
MAT file. View the moving average output in the time scope.

The System objects automatically index the data into frames. Choose a frame size of 714 samples.
There are 7140 samples or 10 frames of data in each column of the MAT file. Each iteration loop
computes the moving average of 1 frame of data.

frameSize = 714;
reader = dsp.MatFileReader('SamplesPerFrame',frameSize,...
    'Filename','LSM9DS1accelData73.mat','VariableName','data');
movAvg = dsp.MovingAverage(10);
scope = timescope('NumInputPorts',2,'SampleRate',119,...
    'YLimits',[-2500 2500],...
    'TimeSpanSource','property','TimeSpan',60,...
    'ChannelNames',{'Input','Moving Average along X data'},...
    'ShowLegend',true);

while ~isDone(reader)
    accel = reader();
    avgData = movAvg(accel);
    scope(accel(:,1),avgData(:,1));
end
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The processing loop is very simple. The System Objects handle data indexing and states
automatically.

See Also

More About
• “What Are Moving Statistics?” on page 27-2
• “Sliding Window Method and Exponential Weighting Method” on page 27-5
• “How Is a Moving Average Filter Different from an FIR Filter?” on page 27-17
• “Streaming Signal Statistics” on page 4-12
• “Energy Detection in the Time Domain” on page 27-21
• “Remove High-Frequency Noise from Gyroscope Data” on page 27-24
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How Is a Moving Average Filter Different from an FIR Filter?
The moving average filter is a special case of the regular FIR filter. Both filters have finite impulse
responses. The moving average filter uses a sequence of scaled 1s as coefficients, while the FIR filter
coefficients are designed based on the filter specifications. They are not usually a sequence of 1s.

The moving average of streaming data is computed with a finite sliding window:

movAvg = x[n] + x[n− 1] + ... + x[n− N]
N + 1

N + 1 is the length of the filter. This algorithm is a special case of the regular FIR filter with the
coefficients vector, [b0, b1, ..., bN].

FIROutput = b0x[n] + b1x[n− 1] + ... + bNx[n− N]

To compute the output, the regular FIR filter multiplies each data sample with a coefficient from the
[b0, b1, ..., bN] vector and adds the result. The moving average filter does not use any multipliers. The
algorithm adds all the data samples and multiplies the result with 1 / filterLength.

Frequency Response of Moving Average Filter and FIR Filter
Compare the frequency response of the moving average filter with that of the regular FIR filter. Set
the coefficients of the regular FIR filter as a sequence of scaled 1's. The scaling factor is 1/|
filterLength|.

Create a dsp.FIRFilter System object™ and set its coefficients to 1/40. To compute the moving
average, create a dsp.MovingAverage System object with a sliding window of length 40. Both
filters have the same coefficients. The input is Gaussian white noise with a mean of 0 and a standard
deviation of 1.

filter = dsp.FIRFilter('Numerator',ones(1,40)/40);
mvgAvg = dsp.MovingAverage(40);
input = randn(1024,1);
filterOutput = filter(input);
mvgAvgOutput = mvgAvg(input);

Visualize the frequency response of both filters by using fvtool.

hfvt = fvtool(filterOutput,1,mvgAvgOutput,1);
legend(hfvt,'FIR Filter','Moving Average Filter');
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The frequency responses match exactly, which proves that the moving average filter is a special case
of the FIR filter.

For comparison, view the frequency response of the filter without noise.

fvtool(filter);
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Compare the filter's frequency response to that of the ideal filter. You can see that the main lobe in
the passband is not flat and the ripples in the stopband are not constrained. The moving average
filter's frequency response does not match the frequency response of the ideal filter.

To realize an ideal FIR filter, change the filter coefficients to a vector that is not a sequence of scaled
1s. The frequency response of the filter changes and tends to move closer to the ideal filter response.

Design the filter coefficients based on predefined filter specifications. For example, design an
equiripple FIR filter with a normalized cutoff frequency of 0.1, a passband ripple of 0.5, and a
stopband attenuation of 40 dB. Use fdesign.lowpass to define the filter specifications and the
design method to design the filter.

FIReq = fdesign.lowpass('N,Fc,Ap,Ast',40,0.1,0.5,40);
filterCoeff = design(FIReq,'equiripple','SystemObject',true);
fvtool(filterCoeff)
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The filter's response in the passband is almost flat (similar to the ideal response) and the stopband
has constrained equiripples.

See Also

More About
• “What Are Moving Statistics?” on page 27-2
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• “Remove High-Frequency Noise from Gyroscope Data” on page 27-24
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Energy Detection in the Time Domain
This example shows how to detect the energy of a discrete-time signal over a finite interval using the
RMS value of the signal. By definition, the RMS value over a finite interval -N ≤ n ≤ N is given by:

RMS = 1
2N + 1 ∑

n = − N

N
x(n) 2

The energy of a discrete-time signal over a finite interval -N ≤ n ≤ N is given by:

EN = ∑
n = − N

N
x(n) 2

To determine the signal energy from the RMS value, square the RMS value and multiply the result by
the number of samples that are used to compute the RMS value.

EN = RMS2 × (2N + 1)

To compute the RMS value in MATLAB and Simulink, use the moving RMS System object and block,
respectively.

Detect Signal Energy
This example shows how to compute the energy of a signal from the signal's RMS value and compares
the energy value with a specified threshold. Detect the event when the signal energy is above the
threshold.

Create a dsp.MovingRMS System object™ to compute the moving RMS of the signal. Set this object
to use the sliding window method with a window length of 20. Create a timescope object to view the
output.

FrameLength = 20;
Fs = 100;
movrmsWin = dsp.MovingRMS(20);
scope  = timescope('SampleRate',Fs,...
    'TimeSpanOverrunAction','Scroll',...
    'TimeSpanSource','Property','TimeSpan',100,...
    'ShowGrid',true,'LayoutDimensions',[3 1],'NumInputPorts',3);

scope.ActiveDisplay = 1;
scope.YLimits = [0 5];
scope.Title = 'Input Signal';

scope.ActiveDisplay = 2;
scope.YLimits = [0 350];
scope.Title = 'Compare Signal Energy with a Threshold';

scope.ActiveDisplay = 3;
scope.YLimits = [0 2];
scope.PlotType = 'Stairs';
scope.Title = 'Detect When Signal Energy Is Greater Than the Threshold';

Create the input signal. The signal is a noisy staircase with a frame length of 20. The threshold value
is 200. Compute the energy of the signal by squaring the RMS value and multiplying the result with
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the window length. Compare the signal energy with the threshold value. Detect the event, and when
the signal energy crosses the threshold, mark it as 1.

count = 1;
Vect = [1/8 1/2 1 2 3 4 3 2 1];
threshold = 200;
for index = 1:length(Vect)
    V = Vect(index);
    for i = 1:90
        x = V + 0.1 * randn(FrameLength,1);
        y1 = movrmsWin(x);
        y1ener = (y1(end)^2)*20;
        event = (y1ener>threshold);
        scope(y1,[y1ener.*ones(FrameLength,1),threshold.*ones(FrameLength,1)],event.*ones(FrameLength,1));
    end
end

You can customize the energy mask into a pattern that varies by more than a scalar threshold. You
can also record the time for which the signal energy stays above or below the threshold.

See Also

More About
• “What Are Moving Statistics?” on page 27-2
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• “Measure Statistics of Streaming Signals” on page 27-14
• “Sliding Window Method and Exponential Weighting Method” on page 27-5
• “Streaming Signal Statistics” on page 4-12
• “How Is a Moving Average Filter Different from an FIR Filter?” on page 27-17
• “Remove High-Frequency Noise from Gyroscope Data” on page 27-24
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Remove High-Frequency Noise from Gyroscope Data
This example shows how to remove the high-frequency outliers from a streaming signal using the
dsp.MedianFilter System object?.

Use the dsp.MatFileReader System object to read the gyroscope MAT file. The gyroscope MAT file
contains 3 columns of data, with each column containing 7140 samples. The three columns represent
the X-axis, Y-axis, and Z-axis data from the gyroscope motion sensor. Choose a frame size of 714
samples so that each column of the data contains 10 frames. The dsp.MedianFilter System object
uses a window length of 10. Create a timescope object to view the filtered output.

reader = dsp.MatFileReader('SamplesPerFrame',714,...
    'Filename','LSM9DS1gyroData73.mat',...
    'VariableName','data');
medFilt = dsp.MedianFilter(10);
scope = timescope('NumInputPorts',1,...
    'SampleRate',119,...
    'YLimits',[-300 300],...
    'ChannelNames',{'Input','Filtered Output'},...
    'TimeSpanSource','Property',...
    'TimeSpan',60,'ShowLegend',true);

Filter the gyroscope data using the dsp.MedianFilter System object. View the filtered Z-axis data
in the time scope.

for i = 1:10
    gyroData = reader();
    filteredData = medFilt(gyroData);
    scope([gyroData(:,3),filteredData(:,3)]);
end
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The original data contains several outliers. Zoom in on the data to confirm that the median filter
removes all the outliers.

See Also

More About
• “What Are Moving Statistics?” on page 27-2
• “Measure Statistics of Streaming Signals” on page 27-14
• “Sliding Window Method and Exponential Weighting Method” on page 27-5
• “Streaming Signal Statistics” on page 4-12
• “How Is a Moving Average Filter Different from an FIR Filter?” on page 27-17
• “Energy Detection in the Time Domain” on page 27-21
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Linear Algebra and Least Squares
In this section...
“Linear Algebra Blocks” on page 27-26
“Linear System Solvers” on page 27-26
“Matrix Factorizations” on page 27-27
“Matrix Inverses” on page 27-28

Linear Algebra Blocks
The Matrices and Linear Algebra library provides three large sublibraries containing blocks for linear
algebra; Linear System Solvers, Matrix Factorizations, and Matrix Inverses. A fourth library, Matrix
Operations, provides other essential blocks for working with matrices.

Linear System Solvers
The Linear System Solvers library provides the following blocks for solving the system of linear
equations AX = B:

• Autocorrelation LPC
• Cholesky Solver
• Forward Substitution
• LDL Solver
• Levinson-Durbin
• LU Solver
• QR Solver
• SVD Solver

Some of the blocks offer particular strengths for certain classes of problems. For example, the
Cholesky Solver block is adapted for a square Hermitian positive definite matrix A, whereas the
Backward Substitution block is suited for an upper triangular matrix A.

Solve AX=B Using the LU Solver Block

In the following ex_lusolver_tut model, the LU Solver block solves the equation Ax = b, where

A =
1 −2 3
4 0 6
2 −1 3

b =
1
−2
−1

and finds x to be the vector [-2 0 1]'.
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You can verify the solution by using the Matrix Multiply block to perform the multiplication Ax, as
shown in the following ex_matrixmultiply_tut1 model.

Matrix Factorizations
The Matrix Factorizations library provides the following blocks for factoring various kinds of
matrices:

• Cholesky Factorization
• LDL Factorization
• LU Factorization
• QR Factorization
• Singular Value Decomposition

Some of the blocks offer particular strengths for certain classes of problems. For example, the
Cholesky Factorization block is suited to factoring a Hermitian positive definite matrix into triangular
components, whereas the QR Factorization is suited to factoring a rectangular matrix into unitary and
upper triangular components.

Factor a Matrix into Upper and Lower Submatrices Using the LU Factorization Block

In the following ex_lufactorization_tut model, the LU Factorization block factors a matrix Ap into
upper and lower triangular submatrices U and L, where Ap is row equivalent to input matrix A, where
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The lower output of the LU Factorization, P, is the permutation index vector, which indicates that the
factored matrix Ap is generated from A by interchanging the first and second rows.

Ap =
4 0 6
1 −2 3
2 −1 3

The upper output of the LU Factorization, LU, is a composite matrix containing the two submatrix
factors, U and L, whose product LU is equal to Ap.

U =
4 0 6
0 −2 1.5
0 0 −0.75

L =
1 0 0

0.25 1 0
0.5 0.5 1

You can check that LU = Ap with the Matrix Multiply block, as shown in the following
ex_matrixmultiply_tut2 model.

Matrix Inverses
The Matrix Inverses library provides the following blocks for inverting various kinds of matrices:

• Cholesky Inverse
• LDL Inverse
• LU Inverse
• Pseudoinverse

27 Statistics and Linear Algebra

27-28

matlab:ex_matrixmultiply_tut2


Find the Inverse of a Matrix Using the LU Inverse Block

In the following ex_luinverse_tut model, the LU Inverse block computes the inverse of input matrix A,
where

A =
1 −2 3
4 0 6
2 −1 3

and then forms the product A-1A, which yields the identity matrix of order 3, as expected.

As shown above, the computed inverse is

A−1 =
−1 −0.5 2
0 0.5 −1

0.6667 0.5 −1.333
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Run Audio I/O Features Outside MATLAB and Simulink
You can deploy these audio input and output features outside the MATLAB and Simulink
environments:

System Objects

• audioDeviceWriter
• dsp.AudioFileReader
• dsp.AudioFileWriter

Blocks

• Audio Device Writer
• From Multimedia File
• To Multimedia File

The generated code for the audio I/O features relies on prebuilt dynamic library files included with
MATLAB. You must account for these extra files when you run audio I/O features outside the MATLAB
and Simulink environments. To run a standalone executable generated from a model or code
containing the audio I/O features, set your system environment using commands specific to your
platform.

Platform Command
Mac setenv DYLD_LIBRARY_PATH "$

{DYLD_LIBRARY_PATH}:$MATLABROOT/bin/
maci64" (csh/tcsh)

export DYLD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
maci64 (Bash)

Linux setenv LD_LIBRARY_PATH $
{LD_LIBRARY_PATH}:$MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH=%PATH%;%MATLABROOT%\bin\win64

The path in these commands is valid only on systems that have MATLAB installed. If you run the
standalone app on a machine with only MCR, and no MATLAB installed, replace $MATLABROOT/
bin/... with the path to the MCR.

To run the code generated from the above System objects and blocks on a machine does not have
MCR or MATLAB installed, use the packNGo function. The packNGo function packages all relevant
files in a compressed zip file so that you can relocate, unpack, and rebuild your project in another
development environment with no MATLAB installed.

You can use the packNGo function at the command line or the Package option in the MATLAB Coder
app. The files are packaged in a compressed file that you can relocate and unpack using a standard
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zip utility. For more details on how to pack the code generated from MATLAB code, see “Package
Code for Other Development Environments” (MATLAB Coder). For more details on how to pack the
code generated from Simulink blocks, see the packNGo function.

See Also

More About
• “Understanding C Code Generation in DSP System Toolbox” on page 19-6
• “MATLAB Programming for Code Generation” (MATLAB Coder)
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Decrease Underrun
Examine the Audio Device Writer block in a Simulink® model, determine underrun, and decrease
underrun.

1. Run the model. The Audio Device Writer sends an audio stream to your computer's default audio
output device. The Audio Device Writer block sends the number of samples underrun to your Time
Scope.
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2. Uncomment the Artificial Load block. This block performs computations that slow the simulation.

3. Run the model. If your device writer is dropping samples:

a. Stop the simulation.

b. Open the From Multimedia File block.

c. Set the Samples per frame parameter to 1024.

d. Close the block and run the simulation.

If your model continues to drop samples, increase the frame size again. The increased frame size
increases the buffer size used by the sound card. A larger buffer size decreases the possibility of
underruns at the cost of higher audio latency.

See Also
From Multimedia File | Time Scope
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